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Abstract

Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with meta-

bolic disturbances representing aberrant liver function and increased uric acid (UA) lev-

els. Growing evidences have suggested a close relationship between metabolic

disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized

clinical trial was therefore conducted to explore the impacts of daily supplements with var-

ious combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reu-

teri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum

UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), ala-

nine aminotransferase (ALT), and UA were recruited and randomly allocated into six

groups. Eighty-two participants successfully completed the 60-day intervention without

any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were

significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis

revealed the intervention led to an increase in the population of commensal bacteria and

a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study

indicated the probiotic treatments reduced lipid accumulation and inflammatory factor

expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supple-

mentation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve

liver function and UA management and may have good potential in treating asymptomatic

MAFLD.

Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.

gov) with the number NCT06183801 on December 28, 2023.
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Introduction

Urbanization leads to higher rates of metabolic disturbances due to changes in diet, reduced

physical activity, and increased stress. Metabolic disturbances commonly result in obesity,

insulin resistance, and dyslipidemia. Fatty liver disease (FLD) is a condition where excess fat

builds up in the liver, and there are two types of FLDs: non-alcoholic fatty liver disease

(NAFLD) and alcoholic liver disease (ALD) [1]. FLD is a spectrum, with the presence of fat

accumulation being the mildest form and steatohepatitis and cirrhosis being the worst form

[2]. While ALD and NAFLD share similar pathological spectra, their etiological factors diverge

significantly. ALD is primarily driven by excessive alcohol intake, whereas NAFLD is associ-

ated with overconsumption of food [3]. There is growing evidence that NAFLD is a multisys-

tem disease, affecting extra-hepatic organs and regulatory pathways [4]. Recently, the new

term ’metabolic-associated fatty liver disease’ (MAFLD) was proposed to better reflect the

metabolism-related etiology [5]. NAFLD, or MAFLD, are asymptomatic, so the combination

of serum ALT and AST levels, age, body mass index (BMI), and sex is an important biomarker

in the diagnosis of hepatic steatosis [6].

In addition to the three high-risk factors, abnormal UA levels were found to be involved in

implications for various medical conditions and became the fourth factor for metabolic syn-

drome [7]. The relationship between high UA levels and gouty arthritis was well-known for

centuries. Recently, high UA levels have been observed to affect inflammation, oxidative stress,

as well as enzymes related to lipid and glucose metabolism [8]. Both hyperuricemia and

NAFLD are associated with lipid metabolism, and their correlation has been observed in both

animal and human studies [9, 10]. Moreover, the association was identified in individuals both

with and without obesity. Thus, serum UA levels can be an early indicator for metabolic dysre-

gulation [11, 12]. In other words, effectively managing UA levels is as crucial to human health

as managing blood pressure, blood sugar, and blood lipids [13].

Although conflicting results existed in different human clinical studies due to the difficulty

to identify all intestinal microbes, the evidence still implicated a link between the gut micro-

biome and metabolic events [14, 15]. The animal studies demonstrated that FLD development

was determined by gut bacteria, and dysbiosis of the gut microbiota was observed in NAFLD

patients [16]. Studies have observed different changes in specific taxa correlated with obesity,

hyperglycemia, dyslipidemia, hypertension, hyperuricemia, and NAFLD [17]. The develop-

ment of high-throughput sequencing technologies further illustrates microbial composition

differences in diseases [18]. Recent research reveals that dietary lipids favor the growth of Bilo-
phila, especially the pathobiont B. wadsworthia, which can synergize with high fat diet and

lead to higher glucose dysmetabolism and hepatic steatosis [19, 20]. The supplementation of

prebiotic and probiotic functional foods has drawn much attention as an alternative microbial

medicine to maintain healthy metabolism [21]. The health conditions of patients can be

improved by probiotic supplementation via reducing serum UA level, fatty liver index, and

body weight in clinical trials [22–24]. However, no significant impact of probiotics was

reported on the modulation of Bilophila or B. wadsworthia. The positive effects of symbiotics

appear to be strain-specific, meaning that a particular symbiotic strain may enhance intestinal

health by reshaping the gut microbiota composition without necessarily exhibiting any benefi-

cial effects on liver fat [25, 26]. Therefore, clinical studies are imperative to validate the influ-

ence of probiotic functional foods on maintaining human health and microbiota balance,

specifically by reducing potential pathobionts.

Prevention is better than cure. A probiotic was defined as “live microorganisms that, when

administered in adequate amounts, confer a health benefit on the host” [27]. In recent years,

probiotic supplements have been widely used to prevent diseases. Lactobacillus fermentum
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TSF331 and Lactobacillus reuteri TSR332 were isolated from healthy human gut. Lactobacillus
plantarum TSP05 was isolated from Taiwanese pickled cabbage. A study demonstrated L. fer-
mentum TSF331, L. reuteri TSR332, and L. plantarum TSP05 had high antioxidant capacity in
vitro, and reduced oxidative stress and inflammatory responses in ethanol-induced liver dam-

aged mice [28]. Another study presented L. fermentum TSF331 and L. reuteri TSR332 assimi-

lated purine nucleoside without UA generation in vitro, and stabilized serum UA levels in

oxonate-induced hyperuricemia rats [29]. Therefore, these three Lactobacillus strains displayed

good potential for liver health and UA management. In addition to probiotics, growing studies

demonstrated the postbiotics (probiotic metabolites) played an important role in modulating

intestinal microbiota [30, 31].

The aim of this study was to understand whether the supplementation of mono-strain pro-

biotic, multi-strain probiotics, and multi-strain probiotics plus postbiotics displayed different

improvements on liver function and UA levels in subjects with a potential risk of MAFLD.

Blood samples were collected to monitor the biochemistry profiles, such as AST, ALT and UA

levels. Fecal samples were collected to investigate the gut microbiota modulation using NGS

analysis. Lipid accumulation and gene expressions of inflammatory factors were examined to

elucidate the liver-protective mechanisms in HepG2 cells. UA transporter activity was ana-

lyzed to assess UA excretion in Caco-2 cells.

Materials and methods

Clinical study

Study population. This was a placebo-controlled, double-blinded, randomized clinical

study. One hundred and twenty participants were recruited according to their latest physical

examination report. The inclusion criteria were� 18 years old, AST> 38 U/L, ALT> 44 U/L,

UA> 7 mg/dL for male, and> 6 mg/dL for female. Besides, participants should not have any

history of severe liver, cardiovascular, respiratory, kidney disorders or malignancies. Partici-

pants were excluded under the following conditions: Firstly, if their serum AST, ALT, or UA

levels did not meet the inclusion criteria on day 0. Secondly, if their informed consents were

not correctly signed. Thirdly, if their blood test results on day 0 indicated underlying health

conditions, such as infections or anemia.

Ethical approval. Informed consent was obtained in written form from every subject ran-

domized in the study. The study protocol was approved by the Ethics Committee of Aging and

Disease Prevention Research Center at Fooyin University Hospital (FYH-IRB-110-01-02). The

recruitment period for this study was from June 1 to December 15, 2021.

Study design and sample collection. The placebo capsule contained 500 mg maltodex-

trin. The mono-strain probiotic capsule contained 6.7 × 109 cfu of either L. fermentum
TSF331, L. reuteri TSR332, or L. plantarum TSP05. The 3 Mix capsule contained a total

6.7 × 109 cfu, combining L. fermentum TSF331, L. reuteri TSR332, and L. plantarum TSP05.

The 3 Mix+PE0401 capsule was composed of a total 6.7 × 109 cfu, including L. fermentum
TSF331, L. reuteri TSR332, L. plantarum TSP05, and 200 mg Totipro1 PE0401 postbiotic pow-

der. L. fermentum TSF331 (BCRC 910815 = CGMCC 15527) and L. reuteri TSR332 (BCRC

910816 = CGMCC 15528) were isolated from the gut of healthy humans, whereas L. plantarum
TSP05 (BCRC 910855 = CGMCC 16710) was isolated from kimchi. Totipro1 PE0401 was a

fermentation product derived from probiotics [32]. Capsules were prepared with the same

appearance by Glac Biotech Co., Ltd., Taiwan. Every subject was not aware of his/her treat-

ment group, and took 3 capsules per day for 60 days. The blood and fecal samples were col-

lected on day 0 and 60.
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Blood biochemistry. The blood samples were analyzed by Everest Inspection Interna-

tional Co., Ltd. Seventeen tests were performed to examine the effect of the intervention on

physical indexes. The panel of tests measuring liver function included AST, ALT, albumin

(ALB), total bilirubin (TBIL), gamma-glutamyl transferase (GGT), and alkaline phosphatase

(ALKP). The panel of tests measuring kidney function included UA, creatinine (CREA), and

blood urea nitrogen (BUN). The panel of tests measuring energy metabolism included blood

glucose (GLU), triglycerides (TG), cholesterol (CHOL), high-density lipoprotein (HDL), low-

density lipoprotein (LDL). The panel of tests measuring body damages or inflammation

included lactate dehydrogenase (LDH), creatine kinase (CK), high-sensitive C-reactive protein

(hs-CRP).

Gut microbiota analysis

DNA extraction and next generation sequencing (NGS). Bacteria DNA extraction was

performed on the fecal samples using the QIAamp1DNA Mini Kit (QIAGEN Canada, Missis-

sauga, ON, Canada), following the manufacturer’s protocol. After extraction and purification,

the DNA was used as the polymerase chain reaction (PCR) template for amplification. The

bacterial V3-V4 region of 16S rRNA was amplified using the specific primer pair 314F (5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’) and 805R

(5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’)

[33, 34]. The amplification was performed with KAPA HiFi HotStart ReadyMix [Roche

Sequencing Solutions, Pleasanton, CA, USA (KK2601)] through the following steps: 95˚C for 5

min; followed by 30 cycles of 95˚C for 30 s, 60˚C for 30 s, and 72˚C for 30 s; and final extension

at 72˚C for 5 min. The PCR products were stored at 4˚C and then used as templates for Index

PCR, which was run under the following conditions: 95˚C for 30 s; 8 cycles of 95˚C for 30 s,

60˚C for 30 s, and 72˚C for 30 s; and final extension at 72˚C for 5 min. DNA samples were

paired-end sequenced (2 × 300 bp) on an Illumina MiSeq platform (Illumina, San Diego, USA)

by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Flora diversity and statistical analysis. Sequence data were performed using 16S Metage-

nomics apps on Basespace (Illumina, San Diego, CA, USA) and the reads were clustered to

operational taxonomic units (OTUs) with Illumina-curated version of May 2013 Greengenes

taxonomic database for downstream analysis. The Simpson index was used to indicate the

alpha diversity of bacteria, in which a larger index represents higher community diversity. Beta

diversity was estimated with Jaccard index using MicrobiomeAnalyst 2.0 [35], and principal

coordinate analysis (PCoA) was calculated to analyze changes in species composition on time

and space scales.

Heatmap of microbiota modulation and statistical analysis DNA extraction and next

generation sequencing (NGS). The percentage of each bacterium was calculated by dividing

its individual hit number by the total hit number. The difference between the end and the

beginning of the intervention was assessed using Student’s t-test. Statistical significance is

denoted as the P-value.

The THP-1-HepG2 cell system analysis

The co-culture supernatant of probiotic bacteria and THP-1-differentiated macro-

phages (SPT) preparation.. THP-1 monocytic leukemia cells (ATCC TIB-202) were inocu-

lated in a 75T flask at a density of 2 × 105 cells/ml and grown to a density of 107 cells/ml. The

THP-1 cells were differentiated into macrophages using a 24-hours phorbol-12-myristate-

13-acetate (PMA, Sigma, United States) treatment. After resting in fresh medium for 24 hours,

the THP-1 macrophages were detached from the culture plate by adding 5 ml 0.25% trypsin.
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Then, the THP-1-differentiated macrophages were seeded into a 12-well plate at a density of

8 × 105 cells/ml/well, and co-cultured for 24 hours with probiotic bacteria at a cell to bacteria

ratio of 1:50 after cell attachment. The supernatant was collected by centrifugation at 4000 rpm

for 10 min and 0.22 μm filtration. The SPT was store at −20˚C for further use. The supernatant

of THP-1-differentiated macrophages served as a blank SPT.

Oil Red O staining in HepG2 cells. The free fatty acid (FFA) medium was prepared by

adding 186 μL 354 mM oleic acid and 846 μL 39 mM palmitic acid in Dulbecco’s Modified

Eagle Medium (DMEM, Cytiva, United States) medium containing 10% fetal bovine sera

(FBS, Gibco, United States), 1% penicillin-streptomycin (PS, Cytiva, United States), 2% bovine

serum albumin (BSA, EMD Millipore, United States). HepG2 human hepatoma cells (BCRC

60177) were seeded into a 6-well plate and incubated for 3 days before further treatments.

Then, the HepG2 cells were treated with 1 mM FFA medium for 24 hours to induce hepatic

steatosis [36]. After washing with phosphate-buffered saline (PBS) twice, the HepG2 cells were

treated for 48 hours with either 1mM FFA medium, 1 μg/mL lipopolysaccharide (LPS, Sigma,

United States) or 50 μL/mL SPT mentioned above. After washing with PBS twice, the HepG2

cells were fixed with 10% formalin, washed with 60% isopropanol, and stained with 0.5% oil

red O (Sigma-Aldrich, United States). After the stained HepG2 cells were observed at 100x

magnification under a microscope (Nikon, Japan), the oil red O dye was eluted by 100% iso-

propanol and measured at OD520 by a CLARIOstar1 Plus (BMGlabtech, Germany).

The uric acid excretion in Caco-2 cells. Caco-2 human colon carcinoma cells (BCRC

67001) were seeded and grown as a monolayer on a 0.4 μm Falcon1 permeable support

(CORNING, United States). Before treatments, the trans-epithelial electric resistance (TEER)

across the Caco-2 monolayer was measured with fresh DMEM medium by a EVOM2 Epithe-

lial Voltohmmeter (World Precision Instruments, United States). Then, the Caco-2 cells were

treated with DMEM medium containing probiotic bacteria in the upper compartment, and

DMEM medium containing 10 μM UA in the lower compartment. The UA concentration in

the upper compartment was measured at 30 minutes as the starting point and at 24 hours as

the ending point with a UA assay kit (Cayman Chemical, United States) by a CLARIOstar1

Plus microplate reader (BMG LABTECH, Germany). After washing with PBS twice, the TEER

across the Caco-2 monolayer was measure with fresh DMEM medium again at the end of the

treatment.

Gene expression analysis. For cytokine gene expression (IL-6, IL-8 and CCL2), the

HepG2 cells grown in a 6-well culture plate for 3 days, and then treated with 1 mM FFA

medium for 24 hours. After washing with PBS twice, the HepG2 cells were treated for 48 hours

with either 1 mM FFA medium or 50 μL/mL SPT mentioned above. Except for the FFA group,

all groups were treated with 1 μg/mL LPS for further 3 hours, and cells were harvested for

qPCR analysis.

For UA transporter gene expression (ABCG2 and SLC2A9), the Caco-2 cell was grown as a

monolayer for 6 days on a 0.4 μm Falcon1 permeable support (CORNING, United States).

The Caco-2 monolayer was treated for 6 hours with DMEM medium containing probiotic bac-

teria in the upper compartment, and DMEM medium containing 10 μM UA in the lower com-

partment. After removing medium in the upper compartment, Caco-2 cells were harvested for

qPCR analysis.

RNA was extracted with Trizol (Invitrogen, United States). The cDNA was generated

with a GoScript™ Reverse Transcriptase (Promega, United States), and qPCR was performed

with a PB20.12–05 qPCRBio SyGreen Mix Hi-ROX (PCR Biosystems, United States) by an

ABI StepOnePlus™ qPCR machine (Applied Biosystems, United States). The primer pair

5’-CATCCTCGACGGCATCTCAG-3’ and 5’-TGCCTCTTTGCTGCTTTCAC-3’ was used

to detect IL-6 expression [37]. The primer pair 5’-CTGGCCGTGGCTCTCTTG-3’ and 5’-
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CCTTGGCAAAACTGCACCTT-3’ was used to detect IL-8 expression [36]. The primer pair

5’-CTCAGCCAGATGCAATCAATG-3’ and 5’-AGATCACAGCTTCTTTGGGACAC-3’ was

used to detect CCL2 expression [36]. The primer pair 5’-AATACATCAGCGGATACTA-3’
and 5’-AATAAGCCACCATCATAAG-3’ was used to detect ABCG2 expression [38]. The

primer pair 5’-CAATAGACCCAGACACTCTGACT-3’ and 5’-TCTTCACAATTAACGTCC
CCAC-3’ was used to detect SLC2A9 expression [38]. The primer pair 5’-GAAGATGGTG
ATGGGATTTC-3’ and 5’-GAAGGTGAAGGTCGGAGT-3’ was used to detect GAPDH

expression as the internal control [39].

Statistical analysis. One-way analysis of variance (ANOVA) was used to examine the dif-

ferences among all groups, and Student’s t-test was used to compare the differences between

two groups. The paired t-test was used to compare the difference before and after the interven-

tion within each group. The difference of P< 0.05 was considered statistically significant. The

change rate of the test item was presented as the standardized mean percentage (ValueEnd/

ValueStart). Figs were generated by using Graphpad prism 8 (Graphpad Software, San Diego,

CA, United States). The statistical analyses were performed utilizing SPSS software (IBM,

Armonk, NY, USA).

Results

The clinical study was carried out as the flowchart in Fig 1.

One hundred and twenty participants were recruited according to their latest physical

examination report. Twenty-three participants were excluded due to unqualified blood bio-

chemistry profiles on day 0. Additionally, six participants were excluded because of improperly

signed informed consents, while nine others were excluded due to other underlying health

conditions. Eighty-two participants were randomized into 6 groups, and all subjects completed

the intervention (11 in the placebo group, 41 in the mono-strain group, 15 in the 3 Mix groups,

and 15 in the 3 Mix+PE0401 group). Ten fecal samples were excluded due to poor storage or

bad sample quality. In the end, the blood chemistry was analyzed in 82 subjects, and gut micro-

biota was analyzed in 72 subjects.

The multi-strain probiotics plus postbiotics enhanced the protective effect

on liver health subsection

To assess the impact of the intervention on liver health, a comprehensive panel of tests mea-

suring liver function was conducted using blood samples obtained from the subjects. Before

the initiation of the intervention on day 0, there was no significant difference in the serum

AST levels among the groups (P = 0.735, Fig 2A). After the intervention on day 60, a notable

disparity in the serum AST levels emerged among the groups (P< 0.001, Fig 2A). All treat-

ment groups demonstrated a marked reduction in serum AST levels compared to the con-

trol group (P < 0.05). Remarkably, within each treatment group, serum AST levels

exhibited a significant reduction compared to their respective baseline levels (P < 0.01). The

placebo group showed a marginal increase of 3.84 ± 11.53%. In contrast, with the exception

of the TSR332 group, the TSF331, TSP05, 3 Mix, and 3 Mix+PE0401 groups demonstrated

substantial reductions of 13.09 ± 15.82%, 15.46 ± 13.29%, 22.61 ± 15.57%, and

31.43 ± 21.69%, respectively (Fig 2B). Particularly noteworthy is the multi-probiotics plus

postbiotics group, which exhibited the most significant reduction in AST levels among all

the groups.

Similarly, there was no discernible difference in the serum ALT levels among the groups

prior to the initiation of the intervention on day 0 (P = 0.683, Fig 2C). A notable divergence

in the serum ALT levels emerged among the groups, showing a significant contrast post-
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intervention on day 60 (P< 0.001, Fig 2C). Notably, within each treatment group, serum

ALT levels showed a substantial reduction compared to their respective baseline levels

(P< 0.05). The placebo group experienced a marginal increase of 4.01 ± 9.68%. In contrast,

with the exception of the TSF331 and TSR332 groups, the TSP05, 3 Mix, and 3 Mix+PE0401

groups demonstrated noteworthy reductions of 20.26 ± 27.59%, 29.74 ± 37.43%,

40.00 ± 21.72%, respectively (Fig 2D). Particularly remarkable is the multi-probiotics plus

postbiotics group, showcasing the most significant reduction in ALT levels among all the

groups.

Fig 1. The subject enrollment, randomization, and disposition were presented in the diagram.

https://doi.org/10.1371/journal.pone.0307181.g001
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The multi-strain probiotics plus postbiotics enhanced the UA lowing effect

UA levels can vary between males and females, partly due to the sex hormone. To assess the

impact of the intervention on UA management, the serum UA levels were separately analyzed

in the male and female subjects. In males, there was no significant difference in the serum UA

levels among the groups before the intervention on day 0 (P = 0.535, Fig 3A). After the inter-

vention on day 60, a significant difference in the serum UA levels appeared among the groups

(P< 0.001, Fig 3A). All treatment groups demonstrated a marked reduction in serum UA lev-

els compared to the control group (P< 0.01). Notably, within each treatment group, serum

Fig 2. The effect of probiotic supplementation on liver health was evaluated in liver enzymes. (A) The AST levels were recorded on day 0 and 60. (B) The

difference of serum AST levels between before and after the intervention was converted to the change rate in each group. (C) The serum ALT levels were recorded

on day 0 and 60. (D) The difference of serum ALT levels between before and after the intervention was converted to the change rate in each group. The dotted

lines denote the upper limit of normal serum AST and ALT levels. Data are presented as mean ± standard deviation (SD) of the results from each subject. #The

paired t-test was used to compare the difference before and after the intervention within each group, #P< 0.05, ##P< 0.01, ###P< 0.001. The one-way analysis of

variance (ANOVA) was utilized to compare the change rate with the control group, followed by the least significant difference (LSD) post hoc test for subsequent

analysis. Statistical significance was denoted as *P< 0.05, **P< 0.01, and ***P< 0.001.

https://doi.org/10.1371/journal.pone.0307181.g002
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UA levels exhibited a significant reduction compared to their respective baseline levels

(P< 0.01). The placebo group showed a marginal reduction of 0.97 ± 5.59%, while the

TSF331, TSR332, TSP05, 3 Mix, and 3 Mix+PE0401 groups demonstrated substantial reduc-

tions of 8.77 ± 4.44%, 9.76 ± 7.04%, 8.29 ± 5.61%, 13.01 ± 6.81%, 19.93 ± 5.43%, respectively

(Fig 3B). The serum UA levels for males were significantly reduced in all probiotic groups and,

remarkably, the greatest reduction was observed in the multi-probiotics plus postbiotics

group.

In females, no discernible difference was observed in the serum UA levels among the

groups prior to the initiation of the intervention on day 0 (P = 0.793, Fig 3C). There was no

statistical significance in the serum UA levels was detected among the groups after the inter-

vention on day 60 (P = 0.188, Fig 3C). Remarkably, within each treatment group, serum UA

Fig 3. The effect of probiotic supplementation on UA management was investigated in mono- and multi-strain groups. (A) The serum UA levels were

recorded in male on day 0 and 60. (B) The difference of serum UA levels between before and after the intervention was converted to the change rate in male

subjects in each group. (C) The serum UA levels were recorded in female on day 0 and 60. (D) The difference of serum UA levels between before and after the

intervention was converted to the change rate in female subjects in each group. The dotted lines denote the upper limit of normal serum UA levels. Data are

presented as mean ± SD of the results from each subject. # The paired t-test was used to compare the difference before and after the intervention within each

group, #P< 0.05, ##P< 0.01, ###P< 0.001. The one-way ANOVA was utilized to compare the change rate with the control group, followed by the LSD post

hoc test for subsequent analysis. Statistical significance was denoted as *P< 0.05, **P< 0.01, and ***P< 0.001.

https://doi.org/10.1371/journal.pone.0307181.g003
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levels underwent a notable reduction compared to their respective baseline levels (P< 0.05).

The placebo group displayed a slight increase of 1.69 ± 2.79%, while the TSF331, TSR332, 3

Mix, and 3 Mix+PE0401 groups exhibited significant reduction of 7.47 ± 5.77%, 7.77 ± 7.58%,

12.46 ± 6.62%, 15.76 ± 6.81%, respectively (Fig 3D). The serum UA levels for females were sig-

nificantly reduced in all probiotic groups, with the exception of the TSP05 group. Notably, the

greatest reduction was observed in the multi-probiotics plus postbiotics group.

The multi-strain probiotics plus postbiotics enhanced the improvement on

energy metabolism

Despite the wide age range among the subjects, the allocation was evenly distributed

(P = 0.161, S1 Table). The blood chemistry profiles were initially comparable, with measure-

ments, e.g., TBIL, GGT, and ALKP, in the liver function panel falling within the normal range

across all groups on day 0 (S1 Table). Remarkably, by day 60, the blood chemistry profiles con-

tinued to remain within the normal range (Table 1).

Notably, the probiotic intervention exerted discernible effects on various energy metabolic

panels. Specifically, the serum glucose (GLU) levels exhibited a reduction in all probiotic

groups. Additionally, the blood lipid profile, including TG, CHOL, and LDL, showed a

decrease in the multi-probiotics plus postbiotics group.

Probiotic supplementation modulated gut microbiota without affecting

diversity

To assess the modulation of gut microbiota through probiotic supplementation, the microbial

composition in fecal samples was compared between day 0 and day 60. No significant alter-

ation was detected in alpha and beta diversity (Fig 4A and 4B). Two phyla Firmicutes and Bac-

teroidetes composed more than 80% of the flora (Fig 4C). Five genera Bacteroides, Prevotella,

Faecalibacterium, Blautia, and Bifidobacterium represented more than 80% of the population

(Fig 4D). Prior to the intervention, the patterns of the 10 most abundant phyla and genera

were similar but not identical among the groups, and the probiotic supplementation did not

dramatically alter these patterns in any of the groups.

While preserving diversity, several microbial changes occurred. The abundance of the Fir-

micutes phylum significantly increased in the 3 Mix group (Fig 5A). Notably, the 3 Mix and 3

Mix+PE0401 groups displayed the best efficiency on the modulation. Two probiotic genera

(Lactobacillus and Faecalibacterium) showed significant increases in the 3 Mix group, while

two pathobiont genera (Mogibacterium and Catonella) decreased (Fig 5B). Three probiotic

genera (Lactobacillus, Faecalibacterium, and Leuconostoc) showed significant increases in the 3

Mix+PE0401 group, while one pathobiont genus, Bilophila, decreased (Fig 5B). Additionally,

three probiotic species (L. reuteri, F. prausnitzii, and B. wexlerae) significantly increased, and

two pathobiont species (M. neglectum and C. morbi) decreased in the 3 Mix group (Fig 5C).

Five probiotic species (L. fermentum, L. plantarum, L. gasseri, B. producta, and S. thermophilus)
significantly increased, and one pathobiont species, B. wadsworthia, decreased in the 3 Mix+-

PE0401 group (Fig 5C).

Lactobacillus strains reduced the lipid accumulation and inflammatory

factor expressions in a gut-liver axis system

To ascertain whether the oral probiotic supplementation reduced serum AST and ALT levels

by mitigating lipid accumulation and inflammation, the oil red O staining and the expression

of inflammatory factor genes were conducted in a THP-1-HepG2 cell system. The oil red O
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staining reveled a red color for the lipid accumulation in both FFA and LPS treated HepG2

cells (Fig 6A). The lipid accumulation was quantified by eluting the cellular oil red O dye, and

the dye concentration was significantly reduced in all treatment groups (Fig 6B). The LPS

treatment significantly elevated the expression of inflammatory factors IL-6 and chemokine

(C-C motif) ligand 2 (CCL2) in FFA-treated HepG2 cells. Conversely, the expression of IL-6,

IL-8, and CCL2 was significantly reduced in all SPT treatment groups (Fig 6C).

Lactobacillus strains enhanced UA transporter expressions and heightened

the UA excretion in Caco-2 cells

To confirm whether oral probiotic supplementation reduces serum UA levels by enhancing

UA excretion in the gastrointestinal tract, the directional UA transport experiments were con-

ducted using the Transwell system as indicated in Fig 7A. In the presence of a well-maintained

Table 1. The blood biochemical profile on day 60.

Placebo (N = 11) TSF331 (N = 14) TSR332 (N = 14) TSP05 (N = 13) 3 Mix (N = 15) 3 Mix +PE0401 (N = 15) P-value

TBIL 0.82 0.58 0.82 0.80 0.59# 0.81# 0.136

(mg/dL) ± 0.35 ± 0.26 ± 0.32 ± 0.36 ± 0.25 ± 0.40

GGT 23.18 29.43 27.07 27.85 23.13### 20.40*### 0.394

(U/L) ± 13.28 ± 16.35 ± 10.99 ± 5.87 ± 6.51 ± 17.72

ALKP 54.36 62.00 58.21 63.23 51.33 52.00## 0.358

(U/L) ± 7.57 ± 13.52 ± 24.18 ± 20.82 ± 15.57 ± 19.54

ALB 4.46# 4.83 4.51 4.57 4.41 4.41 0.076

(g/dL) ± 0.24 ± 0.48 ± 0.39 ±0.42 ± 0.22 ± 0.22

CREA 0.85 0.85 0.75 0.77 0.74 0.74 0.096

(mg/dL) ± 0.10 ± 0.14 ± 0.14 ± 0.11 ± 0.14 ± 0.14

BUN 13.55 14.61 13.61 15.62 11.92 11.92 0.466

(mg/dL) ± 5.40 ± 6.26 ± 4.24 ± 6.83 ± 2.60 ± 2.60

GLU 88.91 80.36*# 77.79*# 77.92*# 78.27*# 78.73*# 0.206

(mg/dL) ± 7.08 ± 12.11 ± 10.42 ± 12.44 ± 15.33 ± 11.98

TG 124.55 110.64 116.79# 111.92## 104.33*## 102.20*### 0.256

(mg/dL) ± 39.06 ± 15.00 ± 22.11 ± 20.72 ± 31.97 ± 18.92

CHOL 183.82 163.29 176.29 160.08# 160.27# 160.80*## 0.341

(mg/dL) ± 25.98 ± 38.42 ± 37.99 ± 33.53 ± 31.13 ± 29.99

LDL 115.25 100.64 84.16 99.13 90.59 95.31# 0.295

(mg/dL) ± 30.80 ± 29.72 ± 34.88 ± 36.48 ± 30.33 ± 35.89

HDL 51.55 54.61 53.23 51.91 49.72 51.36 0.909

(mg/dL) ± 12.09 ± 12.17 ± 10.53 ± 13.72 ± 10.00 ± 10.90

Hs-CRP 0.19a 0.26a 0.32b 0.27a 0.15a 0.19a 0.042

(mg/dL) ± 0.08 ± 0.18 ± 0.16 ± 0.15 ± 0.14 ± 0.17

LDH 109.27 123.43 97.93 110.62 99.07 89.00**## 0.058

(U/L) ± 28.99 ± 32.52 ± 30.62 ± 36.50 ± 32.12 ± 19.78

CK 112.55 111.29 102.71 80.69 81.67 98.27 0.362

(U/L) ± 65.94 ± 52.05 ± 44.59 ± 40.27 ± 36.22 ± 50.05

Data are presented as mean ± SD of the results from each subject. The P-value presented the difference among groups using One-way ANOVA. a,b Groups with different

letters are considered significantly different from each other, P < 0.05. Change rate was calculated as valueend/valuestart × 100% in the same subject. * The change rate

was compared between placebo and treatment groups using Student’s t-test, *P < 0.05, and **P < 0.01. # The difference before and after the intervention was compared

within each group using a paired t-test, #P < 0.05, ##P < 0.01, ###P< 0.001.

https://doi.org/10.1371/journal.pone.0307181.t001
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Caco-2 monolayer with good integrity, efficient transport of UA from the lower compartment

to the upper compartment was observed in the TSF331, 3 Mix, and 3 Mix+PE0401 groups

(Fig 7B). ABCG2 is a membrane transporter involving in the efflux of UA from intestinal cells,

and its expression was enhanced in the TSF331 and 3 Mix groups (Fig 7C). SLC2A9 is another

transporter playing a role in the regulation of UA levels in the body, and its expression signifi-

cantly increased in all treatment groups (Fig 7D).

Discussion

This pilot study sought to assess the varying efficacy of mono-strain, multi-strain, and multi-

strain plus postbiotics in the individuals at high risk of MAFLD. The findings should be

Fig 4. The effect of probiotic supplementation on gut microbiota was analyzed by NGS. No significant alteration was detected in (A) alpha diversity and (B)

beta diversity. The composition of the 10 most abundant (C) phyla and (D) genera was not affected by the intervention in all groups.

https://doi.org/10.1371/journal.pone.0307181.g004

PLOS ONE Probiotics TSF331, TSR332, TSP05: Enhancing liver function & uric acid regulation—Preliminary results

PLOS ONE | https://doi.org/10.1371/journal.pone.0307181 July 24, 2024 12 / 22

https://doi.org/10.1371/journal.pone.0307181.g004
https://doi.org/10.1371/journal.pone.0307181


interpreted cautiously owing to the limited sample size within each group. Nonetheless, our

results indicate that further investigation into the efficacy of multi-strain and multi-strain plus

postbiotics is warranted. In the context of treating irritable bowel syndrome (IBS), a systematic

review revealed more pronounced beneficial effects in trials utilizing multi-strain supplements

as opposed to mono-strain alternatives [40]. The gut microbiota is a microbial ecosystem con-

taining a complex and diverse community of microorganisms. Gut microbiota dysbiosis is dis-

ruptions in the balance, which may lead to neurodegenerative diseases, cardiovascular

diseases, metabolic diseases and gastrointestinal diseases [41]. Hence, the synergistic effect of

combining probiotics and postbiotics may be more effective than mono-strain probiotics in

creating a harmonious environment within the gut, resulting in enhanced health benefits.

As of now, the information establishing a clear relationship between a specific genus or spe-

cies and metabolic disturbances remains limited. Our study sheds the light on a potential target

for reshaping the gut microbiota. Particularly in the 3 Mix+PE0401 group, we observed a sig-

nificant inhibition of the growth of Bilophila, especially the pathobiont B. wadsworthia. In

addition, several animal investigations have indicated an increase in the abundance of Bilo-
phila within the gut microbiota of high-fat diet (HFD)-fed rats, implying an association

between this bacterial genus and high-fat dietary intake [42, 43]. Enrichment of B. wads-
worthia in the host’s intestinal tract may precipitate disruptions in bile acid metabolism,

inflammation, and compromise intestinal barrier integrity. Consequently, these disturbances

may exacerbate glucose metabolism disorders and hepatic steatosis [43–45]. Totipro1 PE0401

Fig 5. The probiotic supplementation promoted the growth of commensal bacteria and inhibited pathobiont bacteria in gut microbiota. The intervention

resulted in significant alterations to the abundance of (A) one phylum, (B) seven genera, and (C) eleven species. * The paired t-test was employed to assess the

differences in abundance within the group before and after the intervention, *P< 0.05, and **P< 0.01.

https://doi.org/10.1371/journal.pone.0307181.g005
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is postbiotics consisted of metabolites from Lactobacillus salivarius AP-32, L. acidophilus
TYCA06, L. plantarum LPL28, Bifidobacterium longum subsp. infantis BLI-02. Totipro1

PE0401 displayed the unique synergistic effect on the expression of tight junction proteins

(TJPs) and the growth promoting effect on various probiotic bacteria strains [32]. Therefore,

Fig 6. The SPT treatments reduced lipid droplet accumulation and inflammatory factor expression in HepG2 cells. (A) The lipid droplet accumulation

in HepG2 cells was observed at 100x magnification under microscope. (B) The oil red O dye was eluted and measured at OD520. Data were analyzed using

one-way ANOVA, followed by the LSD post hoc test. Significance levels were indicated as follows: ***P< 0.001 compared to No FFA; #P< 0.05, and
###P< 0.001 compared to FFA. (C) The gene expression of IL-6, IL-8, and CCL2 was analyzed by RT-qPCR. Blank: The supernatant of THP-1-differentiated

macrophages without co-culturing with probiotic bacteria. Data were analyzed using one-way ANOVA, followed by the LSD post hoc test. Significance levels

were denoted as follows: for the difference between FFA and LPS groups, *P< 0.05 and ***P< 0.001; for the difference between LPS and SPT treatment

groups, ##P< 0.01 and ###P< 0.001. All experiments were performed in triplicate and data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0307181.g006
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Totipro1 PE0401 may be able to enhance the health effect of probiotic bacteria via promoting

intestinal barrier and beneficial bacteria growth. While some weak inhibition was observed in

other treatment groups, the effect was not profound. Instead, there was a reduction in the

abundance of genera Mogibacterium, Catonella, and Mycoplasma in certain groups. Mogibac-
terium exhibited a positive correlation with the pro-inflammatory factors interferon-γ and

tumor necrosis factor-α in individuals diagnosed with medication-related osteonecrosis of the

jaw (MRONJ) [46]. Catonella bacteria typically inhabit the gastrointestinal tract, but the pres-

ence of this genus, especially C. morbi species, in the oral cavity is associated with oral micro-

bial dysbiosis [47, 48]. Mycoplasmas have a unique cell membrane and lack a rigid cell wall

[49]. Although not all Mycoplasma species are naturally pathobionts, some commensals can

become opportunistic pathobionts under certain conditions, especially when the host’s

immune system is compromised [50]. In this study, varying degrees of growth inhibition were

Fig 7. The probiotic bacteria promoted UA excretion and the gene expression of UA transporters in Caco-2 cells. (A) UA was introduced into the lower

compartment, and the concentration of UA in the upper compartment was analyzed using enzyme-linked immunosorbent assay (ELISA). (B) The UA

concentration in the upper compartment was recorder at 30 min and 24 hours. At the end of 24 hours incubation, the TEER was recorded to exam the integrity

of Caco-2 monolayer. The gene expression of UA transporters, (C) ABCG2 and (D) SLC2A9, was analyzed by RT-qPCR. All experiments were performed in

triplicate and data are presented as mean ± SD. Data were analyzed using one-way ANOVA, followed by the LSD post hoc test. Significance levels were indicated

as follows: *P< 0.05, **P< 0.01, and ***P< 0.001 compared to control.

https://doi.org/10.1371/journal.pone.0307181.g007
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observed among pathobiont populations in different combinations of probiotics and postbio-

tics. The findings indicated that the combination of multi-strain probiotics with postbiotics

exhibited the most effective inhibition of B. wadsworthia, a bacterium associated with glucose

dysmetabolism and hepatic steatosis.

Lipid accumulation in the liver, also known as hepatic steatosis, occurs when there is an

excessive build-up of fats (lipids), primarily TG, within liver cells (hepatocytes) [51]. In

some cases, hepatic steatosis can progress to non-alcoholic steatohepatitis, which is charac-

terized by not only fat accumulation but also liver inflammation and damage. Elevated levels

of ALT and AST in the blood can be indicative of liver damage. Recently, accumulating data

indicated that FFAs played a damaging role on liver cells and involved in the cross-talk

between the gut and the liver [52]. A meta-analysis of randomized controlled trials con-

cluded microbial therapies could improve liver steatosis and ALT levels [53]. Furthermore,

an additional systematic review, encompassing 10 studies, assessed the influence of probiot-

ics on liver function tests, demonstrating a beneficial effect of probiotics on ALT, AST, and

GGT levels among patients with NAFLD [54]. In an animal study, feeding mice a HFD

along with L. paracasei CCFM1224-derived postbiotics (800 mg/kg/day) was found to miti-

gate weight gain [55]. Simultaneously, it inhibited the accumulation of epididymal white adi-

pose tissue and insulin resistance, improved serum biochemical indicators related to lipid

metabolism, and alleviated hepatic steatosis and inflammation. The postbiotics were capable

of modulating the gut microbiota of HFD-fed mice, thereby increasing the relative abun-

dance of Akkermansia. Remarkably, our study demonstrated the combination of probiotic

microbials (L. fermentum TSF331, L. reuteri TSR332, and L. plantarum TSP05) and postbio-

tics (Totipro1 PE0401) exhibited more effective ALT and AST reduction than the probiotics

alone. This combination also displayed the lowest lipid accumulation and the enhanced

anti-inflammatory effect in vitro. Symbiotic metabolites can modulate the composition and

activity of the gut microbiota, promoting a balanced and diverse microbial community [56].

Moreover, symbiotic metabolites have been shown to possess anti-inflammatory properties,

helping to mitigate excessive immune responses and reduce inflammation in the body [57].

Our study uncovered that the beneficial effects of combining probiotics and postbiotics are

additive.

Presently, there are safety and tolerability concerns associated with urate-lowering drugs

[58]. Drugs aimed at promoting UA excretion primarily target the kidneys, posing a height-

ened risk for kidney burden, particularly in chronic kidney disease patients. Hence, there is a

potential shift towards the intestine as a safer and more effective target organ for urate-lower-

ing drugs due to its substantial excretory capacity [59]. Remodeling the gut microbiota has

been suggested as a promising therapeutic strategy to manage hyperuricemia and gout [60].

An animal study revealed that oral administration of Lacticaseibacillus paracasei MJM60396

(3 × 109 cfu/mice/day) for three weeks significantly reduced serum uric acid levels to within

normal range [61]. This effect was achieved through the inhibition of xanthine oxidase (XO)

to decrease UA synthesis, as well as the modulation of uric acid transporters to enhance UA

excretion. Another animal study showed that mice with hyperuricemia experienced a notable

35.5% decrease in serum uric acid concentration after consuming Lactiplantibacillus plan-
tarum X7022 for four weeks [62]. Concurrently, levels of propionate and butyrate in their

feces were elevated. These physiological changes could be attributed to the suppression of XO

activity and the regulation of UA transport protein expression to normal levels. Furthermore,

probiotics also ameliorated dysbiosis in the gut microbiota of hyperuricemia mice and pro-

moted the production of SCFA-related microbiota. The supplementation of probiotic micro-

bials contributed to the nucleoside degeneration in the gastrointestinal tract and the UA

excretion in the feces and urine [63–66]. Interestingly, the combination of probiotic microbials
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(L. fermentum TSF331, L. reuteri TSR332, and L. plantarum TSP05) and postbiotics (Totipro1

PE0401) displayed more effective UA reduction compared to probiotics alone in our study.

This combination exhibited the best UA excretion and UA transporter SLC2A9 upregulation

in Caco-2 cells. However, the regulation may not be synchronized in different UA transporter

genes, such as ABCG2. Further investigations are needed to illustrate the UA lowering mecha-

nism by the combined action of probiotics and postbiotics in details.

Three Lactobacillus strains were introduced in this study, and several microbial changes in

respond to the intervention. The rise in abundance within the phylum Firmicutes, as well as in

the genera Lactobacillus and the specific species L. fermentum, L. reuteri, and L. plantarum, sig-

nifies the successful implementation of the intervention. Notably, the genera Faecalibacterium
and Leuconostoc increased in the 3 Mix and 3 Mix+PE0401 groups. Low levels of Faecalibacter-
ium spp. are reported to correlate with inflammatory conditions, and numerous studies have

demonstrated the important role of Faecalibacterium prausnitzii in human health [67–70].

The Leuconostoc spp. are commonly used as starter bacteria in some dairy fermentations, and

members in this genus were found to improve UA and liver metabolism in animals [71, 72].

While the overall increase in the Blautia genus did not reach statistical significance, notewor-

thy elevations were observed in the specific species B. producta within the 3 Mix+PE0401

group and B. wexlerae within the 3 Mix group. Recently, a substantial body of research has

concentrated on exploring the probiotic effects of the Blautia genus, particularly its potential

in alleviating metabolic syndrome [73]. B. wexlerae demonstrated efficacy in improving both

obesity and type 2 diabetes [74], while B. producta emerged as a promising candidate for probi-

otic use in preventing acute liver injury [75]. Overall, our results indicated the multi-strain

probiotics together with postbiotics was able to elevate commensal populations in the gut

microbiota.

Conclusions

The supplementation of multi-strain probiotics (L. fermentum TSF331, L. reuteri TSR332, and

L. plantarum TSP05) together was able to prevent fatty liver by reducing lipid accumulation

and inflammation. This combination was also more efficient on UA management by promot-

ing UA excretion in the gut. The synergy between probiotics and postbiotics has the potential

to establish a harmonious environment, specifically reshaping dysbiosis in metabolic

disturbances.
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