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Abstract

The log rank test is a popular nonparametric test for comparing survival distributions among 

groups. When data are organized in clusters of potentially correlated observations, adjustments can 

be made to account for within-cluster dependencies among observations, eg, tests derived from 

frailty models. Tests for clustered data can be further biased when the number of observations 

within each cluster and the distribution of groups within cluster are correlated with survival 

times, phenomena known as informative cluster size and informative within-cluster group size. 

In this manuscript, we develop a log rank test for clustered data that adjusts for the potentially 

biasing effect of informative cluster size and within-cluster group size. We provide the results 

of a simulation study demonstrating that our proposed test remains unbiased under cluster-based 

informativeness, while other candidate tests not accounting for the clustering structure do not 

properly maintain size. Furthermore, our test exhibits power advantages under scenarios in which 

traditional tests are appropriate. We demonstrate an application of our test by comparing time to 

functional progression between groups defined initial functional status in a spinal cord injury data 

set.
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1 ∣ INTRODUCTION

In many applications in survival analysis, data are organized in clusters within which 

survival times may be correlated. For example, an analyst may examine the time to the onset 

of tooth decay for individuals in a certain population. Time to onset is measured for multiple 

teeth within each individual, and in the context of clustered data, the individuals form the 

clusters and the teeth the potentially dependent observations within clusters. If there is 

interest in comparing the survival distribution among groups, say, upper and lower teeth 
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in our hypothetical example, clearly traditional i.i.d. methods such as the popular log rank 

test are invalidated. The dependence among observations can be handled by stratification by 

cluster or by including cluster or frailty terms in a proportional hazards regression model, 

corresponding to a generalized estimating equations (GEEs) and mixed effects approach to 

handling within-cluster correlation, respectively. In such marginal analyses, the clusters form 

the primary units of analysis, for example, patients, and the observations within cluster are 

generally replicate measurements of the outcome in question.

An additional problem can present when the number of observations per cluster, termed 

the cluster size, is nonconstant across clusters. In some applications, cluster size can be 

associated with the random variable of interest, a phenomenon referred to as informative 

cluster size. For example, individuals with poor dental health are more likely to experience 

tooth decay and tooth loss. Such individuals are thus more likely to experience shorter times 

to the onset of tooth decay and have fewer teeth available to be measured. A marginal 

analysis of the time to onset of tooth decay may be able to account for dependencies among 

teeth within individuals but can give positively biased estimates of the survival distribution 

of the time to onset of tooth decay, since individuals tending to have shorter onset times may 

also have fewer teeth and thus contribute fewer observations to the overall data set.

Hoffman et al1 introduced a Monte Carlo method known as within-cluster resampling 

(WCR) that is resistant to the biasing effects of informative cluster size in the marginal 

analysis of clustered data. WCR operates by randomly selecting single observations from 

each cluster with equal probability to form resampled data sets, which are i.i.d. under the 

assumption of independent clusters. Traditional i.i.d. methods, like the log rank test, can 

be applied to the resampled data set, and the process repeated many times to produce a 

WCR test statistic averaged over all Monte Carlo runs. Hoffman et al1 demonstrated that this 

approach was resistant to the biasing effects of informative cluster size. Williamson et al2 

developed an approach asymptotically equivalent to WCR that does not require Monte Carlo 

resampling, referred to as cluster-weighted averaging. In this approach, the traditional i.i.d. 

methods applied to the resampled data sets are weighted by the inverse of the cluster size 

and applied to the entire data set. This approach has since been used to develop clustered 

data analogs of the proportional hazards models for survival data,3,4 one- and two-sample 

Wilcoxon tests,5,6 and estimators of correlation coefficients7,8 among others.

Huang and Leroux9 detailed another type of informativeness for clustered data in which 

the within-cluster distribution of an explanatory covariate, particularly a categorical 

factor indicating group membership, is correlated with the outcome of interest. Such 

informativeness potentially biases not only traditional methods for clustered data, like 

GEE, but also methods adjusting for informative cluster size like WCR and within-cluster 

averaging. Huang and Leroux9 suggested a modified WCR procedure in which first a group 

defined by the categorical factor is randomly selected with equal probability from among 

all possible groups in a given cluster. Then, an observation is randomly selected with equal 

probability from the set of observations corresponding to the group selected in the first step. 

The resampled data set is built in this fashion and the WCR procedure continues as before. 

The authors also introduced asymptotically equivalent doubly weighted GEEs for estimation 

under this type of informativeness that eliminated the need for Monte Carlo resampling. In 
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the context of hypothesis testing for comparing groups, we term informativeness of this type 

informative within-cluster group size. Dutta and Datta10 referred to it as “informative intra-

cluster group size” and developed multisample rank sum tests for clustered data resistant to 

it.

In this paper, we develop a weighted log rank test for right-censored, clustered survival data 

that remains unbiased under informative cluster size and within-cluster group size. In the 

Section 2, we introduce our notation, define and comment upon the hypothesis to be tested, 

detail the adapted WCR approach to testing the appropriate null hypothesis, and derive our 

weighted log rank test. In the Section 3, we provide the results of a simulation study to 

evaluate our proposed test and compare its performance to the traditional, stratified, cluster-

weighted, and frailty approaches to testing. We also apply our test statistic to compare time 

to functional progression in a data set of spinal cord injured individuals. We offer concluding 

remarks in the Section 4.

2 ∣ METHODS

We develop our proposed log rank test statistic for clustered data under informative within-

cluster group size. For simplicity, we develop our test statistic for comparing two groups. 

The extension to more than two groups is straightforward, details of which are provided in 

the Appendix.

Let M be the number of clusters. The jth survival and censoring times in cluster i are T ij and 

Cij. We observe (Xij, δij), where Xij = min{T ij, Cij} and δij = I[T ij ≤ Cij] is the event indicator. 

Denote the two groups to be compared as Group 0 and Group 1, and let Gij be an indicator 

variable for membership in Group 1. The size of cluster i is denoted by ni, and let ni0, 

and ni1 denote the number of Group 0 and Group 1 observations in cluster i, respectively. 

The data for cluster i are denoted as Vi = {ni, Xij, δij, Gij, 1 ≤ i ≤ ni}. We note that, under this 

structure, the cluster sizes, group indicators, and, by extension, within-cluster group sizes are 

considered to be random, potentially associated with the survival times, T ij. We assume that 

the clusters are independent.

We will test the null hypothesis that the marginal survival functions in the two groups are 

equal

H0 :S0(t) = S1(t)( = S(t)say)for all t,

(1)

where Sk(t) = P[T ij > t ∣ Gij = k]. Dutta and Datta10 provide a thorough discussion of different 

ways in which the common distribution defined by the null hypothesis (S(t) in our case) 

can be empirically estimated, and how these different constructions imply comparisons of 

different marginal quantities. In brief, the common survival function of H0 can be defined 

as (1) that of a typical observation in the population of all observations, (2) that of a typical 

observation from a typical cluster, where “typical” is defined by the observed within-cluster 

group size, and (3) that of a typical observations from a typical cluster where “typical” is 
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defined by assuming equal representation of groups within each cluster. In many settings, 

these three marginal distributions coincide and the null hypotheses are equivalent. Notably, 

when cluster size and/or the within-cluster group size are informative, the null hypotheses do 

not coincide. In what follows, we focus on the third of the aforementioned marginal survival 

distributions.

Initially, we will consider only clusters with complete within-cluster group structure but 

will extend the statistic to account for incomplete structures. We begin by considering the 

modified WCR scheme of Dutta and Datta.10 From cluster i, we randomly select one of the 

two groups (0 or 1) with equal probability 1/2 and denote this resampled group indicator 

Gi
∗. Then, from the observations in cluster i belonging to group Gi

∗, we randomly select 

a survival time and its event indicator and denote this pair (Xi
∗, δi

∗). We do this for each 

cluster to create a resampled data set (Xi
∗, δi

∗, Gi
∗), 1 ≤ i ≤ M. Since clusters are assumed to 

be independent, this resampled data set is i.i.d. Furthermore, any informativeness in the 

within-cluster group size for survival times is marginalized by the selection of groups 

within-cluster with equal probability. The traditional log rank test can then be applied to the 

resampled data set. Let the counting process for observed failures in group k = 0, 1 in the 

resampled data set be Nk
∗(t) = ∑i = 1

M I[Xi
∗ ≤ t, δi

∗ = 1, Gi
∗ = k], and let the at risk process from 

group k be Y k
∗(t) = ∑i = 1

M I[Xi
∗ ≥ t, Gi

∗ = k]. Define the aggregated failure and at risk processes 

as N∗(t) = N0
∗(t) + N1

∗(t) and Y ∗(t) = Y 0
∗(t) + Y 1

∗(t). The log rank test statistic for the resampled 

data is then

Z1
∗(t) = ∫

0

t
dN1

∗(s) − Y 1
∗(s)

Y ∗(s)
dN∗(s) .

(2)

The estimated variance of Z1
∗(t) denoted σ∗2

(t), can be calculated in the usual way (see, 

for example, the work of Andersen et al11). H0 is rejected if Z1
∗(t)2 ∕ σ∗2(t) is greater that 

χ1, 1 − α
2 . However, this procedure makes inefficient use of the data, using only one observation 

from each cluster, so the WCR approach repeats the resampling procedure many times, 

averages the test statistics Z1
∗(t) over the replicate resampled data sets, calculates a variance 

expression for the averaged test statistic developed by Hoffman et al,1 and then compares to 

the chi-square distribution to accept or reject H0.

To avoid the computational expense and randomness of WCR, we can employ an 

asymptotically equivalent conditional expectation calculation first introduced by Williamson 

et al2 and adapted by Huang and Leroux9 and Dutta and Datta10 for informative within-

cluster group sizes. In particular, we calculate the conditional expectation of the counting 

and at risk processes for the resampled data, given the original data
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Nk(t) = E Nk
∗(t) ∣ {V1, …, VM}

= ∑
i = 1

M
∑

j = 1

ni 1
2nik

I [Xij ≤ t, δij, Gij = k]

= ∑
i = 1

M
∑

j = 1

ni
ωikI [Xij ≤ t, δij, Gij = k]

Y k(t) = E Y k
∗(t) ∣ {V1, …, VM}

= ∑
i = 1

M
∑

j = 1

ni 1
2nik

I[Xij ≥ t, Gij = k]

= ∑
i = 1

M
∑

j = 1

ni
ωikI [Xij ≥ t, Gij = k],

where, for convenience, we have defined the weights ωik = (2nik)−1. These equalities are 

informally verified by considering the WCR procedure. Within each cluster, groups are 

selected with uniform probability 1/2, and then observations are selected with uniform 

probability 1 ∕ nik, with k representing the group having been selected. We apply the WCR 

procedure to each of the counting and at risk processes, rather than the test statistic itself 

although the two are asymptotically equivalent. Define the aggregated counting processes 

N(t) = N0(t) + N1(t) and Y (t) = Y 0(t) + Y 1(t). We define our log rank test statistic for clustered 

data to be

Z1(t) = ∫
0

t
dN1(s) − Y 1(s)

Y (s)
dN(s) .

(3)

The variance of Z1(t) can be estimated by jackknife. Let Z1( − i) be the value of Z1 calculated 

with data from cluster i removed. Let Z1(i)
d = Z1 − Z1( − i) and Z1

d = M−1∑i − 1
M Z1(i)

d
. We estimate 

the variance of Z1(t) by

σ2(t) = Var Z1(t) = M
M − 1 ∑

i = 1

M
Z1(i)

d − Z1
d 2 .

(4)

Under appropriate conditions, we expect Z1(t)2 ∕ σ2(t) to follow a χ1
2 distribution that can be 

used in the usual way to accept or reject H0.

For data with incomplete within-cluster group structure, we utilize the modified WCR 

procedure and conditional expectation calculation described by Dutta and Datta.10 When 

both groups are represented in a given cluster, resampling for that cluster proceeds as before. 

If only 1 of the 2 groups is represented, that group is “selected” with probability 1, and a 

single observation from that particular group is selected with uniform probability. Under this 

resampling procedure, the conditional expectations of the resampled data counting processes 
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Nk
∗(t) and Y k

∗(t), and thus, the weights ωik assigned to observations in Nk(t) and Y k(t) change. It 

is not difficult to see, that under this modified resampling scheme,

ωik =
(2nik)−1, if ni0 > 0, ni1 > 0
nik

−1, if nik′ = 0, k′ ≠ k
0, if nik = 0 .

(5)

Essentially, observations are weighted by one-half of the inverse of the within-cluster group 

sizes when both clusters are represented, the inverse of the within-cluster group size when 

only the group being counted is represented, and 0 when the group being counted is not 

represented. The test statistics can be constructed according to formula (3) and variance 

calculated by the same jackknife procedure described above. We evaluate our test statistic 

via simulation in the next section.

3 ∣ RESULTS

We evaluated the performance of our cluster-weighted log rank test by conducting a 

simulation study and applying the test to a SCI data set featuring clustering. The results 

of each are detailed in the following sections.

3.1 ∣ Simulation study

Our simulation study included two designs, one with complete within-cluster group structure 

and one with incomplete within-cluster group structure. In each design, both the distribution 

of groups within each cluster and the survival times were a function of some latent factor, 

inducing informativeness in the within-cluster group size. We compared the size and power 

of five candidate tests: (1) the log rank test, (2) the log rank test stratified by cluster, (3) an 

inverse cluster size weighted log rank test, (4) the inverse within-cluster group size weighted 

test statistic developed above, and (5) the test of the group indicator coefficient from a Cox 

model with gamma frailty parameter. We note that the inverse cluster size weighted log rank 

test statistic for group k can be defined as

Z̄1(t) = ∫
0

t
dN̄1(s) − Ȳ 1(s)

Ȳ (s) dN̄(s),

where the counting processes N̄k(t) and Ȳ k(t) are defined analogously to Nk(t) and Y k(t) from 

Section 2, but with weights ωik = ni
−1. In both designs, we evaluated the performance of these 

test statistics in comparing two groups for M = 30, 50, and 100 clusters. We calculated the 

size and power of each test as the proportion of rejections of the null hypothesis over 3000 

Monte Carlo iterations.

In the first design, we adapted a simulation design featuring informative cluster size for 

survival data3 to additionally feature an informative within-cluster group size. Survival times 

were generated according to a frailty model parameterized as λ(t ∣ Gij, wi) = λ0(t)wi exp(βGij), 
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where λ0(t) represents the baseline hazard, Gij represents the Group 1 indicator, wi represents 

the frailty parameter for cluster i, and β represents the regression parameter. For each 

cluster, we simulated a frailty parameter, wi, according to the positive stable distribution12 

with correlation parameter 0.5, inducing moderate correlation among within-cluster survival 

times. The size of each cluster, ni, was defined to be c1 if wi > Med(w1, … , wn) and c2

otherwise. The pair (c1, c2) was chosen in different simulations to be (10, 10), (15, 5), and 

(5, 15), reflecting no association, negative association, and positive association between 

cluster size and survival times, respectively. Group membership (0 or 1) within each 

cluster was simulated from the BIN(1, p) distribution, where p was chosen in different 

simulations to be 0.5, 1 − (rank(wi) − 0.5) ∕ M, and (rank(wi) − 0.5) ∕ M. Under p = 0.5, there 

was no informativeness of the within-cluster group size. For p = 1 − (rank(wi) − 0.5) ∕ M, 

clusters with longer survival times tended to have more observations from Group 1. 

For p = (rank(wi) − 0.5) ∕ M, clusters with shorter survival times tended to have more 

observations from Group 1. In clusters having membership from only 1 of the two groups, 

we switched the group status of one randomly selected observation to ensure a complete 

intra-cluster group structure. Survival times were then generated as tij = −ln(u)
λ0(t)wi exp(βGij) , 

where λ0 = 0.25, and β ranged over 0, 0.2, 0.4, 0.6, and 0.8. Censoring times cij were 

generated in each configuration from the UNIF(0, D) distribution, with D selected so 

that approximately 25% and 50% of observations were censored in each combination of 

simulation parameters.

Table 1 provides the results of several of the parameter configurations for a small number 

of clusters (M = 30) and heavy censoring (50%). Both the traditional and cluster-weighted 

log rank tests were heavily biased when the within-cluster group size was informative, 

rejecting the null hypothesis in nearly all iterations in which the null hypothesis was 

true. Furthermore, these tests exhibited counterintuitive behavior with regard to regression 

parameter β, as power actually decreased for both tests as β increased. The frailty model 

test was biased under cluster- and group-size informativeness, but to a far lesser degree than 

the log rank and cluster-weighted log rank tests. We briefly note that other distributions 

commonly used for frailty parameter failed to correct for informativeness as well (results 

not shown). The stratified log rank test and our group-weighted log rank test exhibited 

appropriate size under all settings and appropriate behavior with respect to β. All tests 

were approximately unbiased when the within-cluster group size was not informative. The 

stratified log rank test and frailty model test exhibited power advantages over other tests 

under no informativeness, and the stratified test was more powerful than our test under all 

configurations. Figure 1 illustrates that our new log rank test exhibited appropriate behavior 

with respect to the number of clusters and the censoring rate. Additional tables and figures 

containing results for this simulation design can be found in the online supplementary 

material for this manuscript.

In the second design, we adapted a simulation design utilized to evaluate a nonparametric 

rank sum test under informative within-cluster group size.10 Briefly, we simulated bivariate 

random effects, (ai0, ai1), for each cluster from a bivariate normal distribution with mean 

zero, standard deviation equal to 0.25, and correlation equal to 0. Within-cluster group 
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sizes were then generated as ni0 ∼ POI(10 + 5ai0
2 ) and ni1 ∼ POI(10 + 5ai1), and ni = ni0 + ni1. The 

group indicator Gij was defined in each cluster so that ni0 observations were in Group 0 

and ni1 in Group 1. We note that clusters with incomplete group structure were permitted 

under this design. We then simulated survival times T ij = exp 0.5 + δ ∗ Gij + aiGij + ϵij , where 

the effect size parameter δ took values 0, 0.05, 0.10, and 0.15 and the ϵij were i.i.d. N(0, 0.32). 
Censoring times were again generated from the UNIF(0, D) distribution, with D selected 

under each configuration of simulation parameters so that approximately 25% and 50% of 

observations were censored.

Table 2 provides the results for this simulation design. Our group-weighted log rank test 

continued to maintain size fairly well and to exhibit appropriate behavior with regard 

to censoring rates and the number of clusters. The size of the cluster-weighted test was 

different than the nominal size, while the traditional, stratified, and frailty model tests 

exhibited sizes that were substantially different from the targeted size of 0.05.

3.2 ∣ Application

We applied our weighted log rank test to a spinal cord injury (SCI) data set featuring 

clustering of observations. The data are from participants in the Christopher and Dana Reeve 

Foundation’s NeuroRecovery Network (NRN), a network of treatment centers providing 

activity-based therapy to individuals with SCI.13 NRN participants receive regular sessions 

of standardized activity-based therapy and undergo comprehensive functional evaluations 

after approximately every 20 treatment sessions. One of the functional measurements 

taken at the periodic comprehensive functional evaluation is the Neuromuscular Recovery 

Scale (NRS), developed by NRN researchers to measure functional recovery without 

compensation.14 The NRS is administered by therapists and requires individuals with SCI to 

perform 14 functional tasks including postural changes, sitting, standing, and walking (Table 

3). The therapist provides an ordinal rating called the phase of recovery for each task after 

observing the participant attempt to complete it. Phase 1 represents the lowest measure of 

capability and Phase 4 represents a return to pre-injury functional capacity. The NRS has 

been show to possess good reliability, validity, and responsiveness.15-18

Progression from one phase of recovery to the next is an important marker of functional 

recovery, so the time to progression to the next NRS Phase is an outcome of interest to 

clinicians. Our specific interest was in determining if the time to progression was different 

between tasks rated as NRS Phase 1 at enrollment (representing tasks with the most severe 

functional deficit) and tasks rated as Phase 2 at enrollment. In a marginal comparison 

as described above, our interest was in testing H0 :S1(t) = S2(t), where Sk(t) represents the 

survival function for NRS tasks measured to be Phase k at enrollment.

We considered 10 of the 14 NRS tasks (three upper extremity tasks were added to and one 

treadmill task removed from the NRS during data collection) for 172 NRN participants. In 

the context of clustered data, the 172 NRN participants defined the clusters and the times 

to progression for the 10 NRN tasks the observations within each cluster. Clearly, cluster 

size was fixed and thus noninformative, but the within-cluster group size, defined by the 

phase of recovery for each task at enrollment (1 or 2), was variable and thus potentially 
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informative. Most of the 172 patients had five or more items initially rated in Phase 1 of 

recovery (141 (82%), Table 3), and one patient had an incomplete group structure with 

all items rated in Phase 2 at enrollment. Of the 1720 overall times to progression, 679 

were observed to occur and 1041 were right censored. The maximum observed time to 

progression was 558 days and the maximum censored time 1191 days. Figure 2 plots 

Kaplan-Meier estimates of the survival functions for the time to progression to the next NRS 

phase for the two groups. The weighted estimators, which correspond to our weighted log 

rank test, were calculated as Sk(t) = ∏s ≤ t (1 − dNk(s) ∕ Y k(s)) with Nk(s) and Y k(s) defined as 

above. There were notable differences between our weighted estimated survival functions 

and the traditional Kaplan-Meier estimates in both groups.

We calculated our weighted log rank test statistic for comparing these two groups to be 

X2 = 94.3. Compared against the critical value of χ1
2(.95) = 3.84, this indicated a substantial 

difference in time to progression between groups. Figure 2 makes clear that progression 

from Phase 1 to Phase 2 occurred much more rapidly than progression from Phase 2 to 

Phase 3. A possible clinical explanation for this is that the functional gains required for 

progression from Phase 1 to Phase 2 may be less difficult to achieve for SCI individuals than 

those for progression from Phase 2 to Phase 3.

The unweighted log rank statistic for these data was X2 = 51.5, while the stratified log 

rank test produced X2 = 112.0. The test of the group coefficient from a gamma frailty Cox 

model was X2 = 94.1. Although all tests rejected H0, the weighted, stratified, and frailty 

test statistics were notably larger. Figure 2 illustrates that this was potentially due to some 

informativeness in the within-cluster covariate distribution. The traditional Kaplan-Meier 

estimator overestimated survival for NRS items initially scored as Phase 1 relative to the 

weighted Kaplan-Meier estimator and underestimated survival for items initially scored as 

Phase 2, giving the appearance that the survival curves were closer together (although still 

significantly different).

4 ∣ DISCUSSION

When conducting a marginal analysis of clustered data, it is important not only to gage 

potential cluster-based informativeness but also to clarify the marginal analysis of interest. 

We explain in the context of our analysis of the SCI data in Section 3. Our marginal analysis 

showed that the time to progression from Phase 1 to Phase 2 was shorter than the time 

to progression from Phase 2 to Phase 3. Recall that the clusters in this marginal analysis 

were individuals with SCI and the observations within cluster were individual tasks on the 

NRS. Thus, we conclude that a typical NRS task initially measured as Phase 1 from a 

typical individual with SCI will progress to Phase 2 more quickly than a typical NRS task 

initially measured as Phase 2 from a typical individual with SCI will progress to Phase 3. As 

previously noted, our analysis implicitly assumes “typical” to mean equitable representation 

of tasks initially measured as Phase 1 and Phase 2. Furthermore, it is important to keep in 

mind that in these marginal analyses, the cluster, ie, the patient in many applications, forms 

the primary unit of analysis and the observations within cluster are replicate measurements. 

Because of this and since our test statistic is asymptotically normal, it is important to note 
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that the reliability of the test hinges in part on having a sufficient number of clusters, 

rather than observations. Our simulations indicate that the test performs reasonably well for 

samples with as few as 30 clusters.

Of course, other marginal analyses for this and other clustered survival data are possible. 

Two alternatives also noted in Section 2 define different marginal analysis based on different 

conceptions of a “typical” observation. One alternative considers the marginal survival 

distribution of typical observations in the population of all observations, corresponding to a 

GEE approach. Another alternative also considers typical observations from typical clusters 

but defines typical to correspond to the observed within-cluster distribution of groups or 

other potentially explanatory covariates. As previously noted,8-10,19 these marginal analyses 

often coincide, particularly when there are no concerns of informativeness. Our simulation 

results suggest that our weighted log rank test performs better than the traditional log rank 

test or a clustered averaged log rank test when cluster size and within-cluster group size are 

noninformative but may be less powerful than stratified and frailty model-based approaches. 

However, the traditional, cluster-weighted, and frailty model-based tests were biased under 

our first simulation design when cluster and/or within-cluster group size was informative. 

The log rank test stratified by cluster remained unbiased under all configurations of our 

first simulation design and exhibited a clear power advantage over all tests, including our 

within-cluster group size weighted test. However, under our second simulation design, the 

stratified log rank test and all other competitor tests were biased, while our test remained 

approximately unbiased. We briefly note that the informative cluster-averaged log rank 

test evaluated in Section 3 can be obtained from the cluster-weighted proportional hazards 

methodology developed by Cong et al,3 but as demonstrated here, this test would fail to 

maintain the targeted nominal size under informative within-cluster group size.

Other approaches to this particular data set and clustered survival data in general are 

possible. One may be interested in estimating the multivariate survival distribution of the 

10 NRS tasks among groups defined by an external covariate. Given that the NRS tasks 

measure different aspects of patient function and recovery, one may be interested in the 

specific NRS tasks themselves and perhaps comparing univariate survival distributions for 

specific tasks among groups. A competing risks analysis would be a reasonable approach 

if one were interested in examining the time to first progression and identifying NRS tasks 

typically showing first progression. It should be noted that this is not a true competing 

risks setup because time to progression for other NRS tasks remains observable even after 

observation of the first progression on an NRS task. Nevertheless, it remains that there are 

many approaches to analyzing clustered survival data, and analysts should be clear on the 

purpose of their analyses and implications of their results.

Seaman et al19 provide a thorough discussion of the nuances involved in the analysis 

of clustered data and clarify the relationship between informativeness in cluster size and 

missingness of observations. Furthermore, they outline conditions of informativeness and 

missingness under which different marginal analyses of clustered data coincide, and when 

they differ, with particular focus on weighted versions of GEE models and modified random 

effects models. The paper provides a number of technical results and an example analysis 

of a clustered data set for illustration. The authors conclude that their is an inherent danger 
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of misinterpreting results from marginal analyses of clustered data and recommend careful 

thought be given to the marginal analysis of interest and the selection of the method 

appropriate for the analysis of interest.

Standard software routines implementing the Cox proportional hazards model can be use to 

obtain an approximate version of our proposed test. For example, in the survival library20,21 

of the R software environment,22 a Cox proportional hazards model can be specified with 

a single group-membership covariate, a clustering term to identify clusters of correlated 

observations and induce a robust sandwich variance estimate (which closely approximates 

the jackknife variance estimate suggested above) and case weights equal to the appropriate 

ωik defined above. The resulting test of the estimated coefficient for the group membership 

covariate approximates our proposed testing procedure detailed above and provides a more 

computationally efficient way of estimating variance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Power corves for the proposed within-cluster group size weighted log rank test at different 

sample sizes and censoring rates under noninformative cluster size. Clusters with longer 

survival times had over-representation from Group 0 (left panel), over-representation from 

Group 1 (center), or equal group representation (right)
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FIGURE 2. 
Estimated survival functions for time to time to progression to the next Neuromuscular 

Recovery Scale phase of recovery for spinal cord injured NeuroRecovery Network 

participants. The traditional Kaplan-Meier estimator is plotted as dotted lines and the 

weighted estimator as solid lines. The plot is truncated at 600 days; the last observed 

progression time was 585 days and the last censored time 1191 days
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TABLE 1

Estimates of size and power for three log rank tests under simulation design 1 with M = 30 clusters and heavy 

(50%) censoring. Positive/Negative cluster size informativeness indicates that larger/smaller clusters tended to 

have longer survival times. Group size informativeness indicates which group tended to be over-represented in 

clusters with longer survival times. LR = log rank, SLR = stratified log rank, CWLR = cluster size-weighted 

log rank, GWLR = group size-weighted log rank, and Frailty = frailty model

Informativeness Power

Group Size Cluster Size Test Size β = 0 . 2 β = 0 . 4 β = 0 . 6 β = 0 . 8
None None LR 0.054 0.10 0.22 0.44 0.67

SLR 0.048 0.16 0.49 0.83 0.97

CWLR 0.061 0.11 0.22 0.42 0.64

GWLR 0.055 0.14 0.37 0.68 0.89

Frailty 0.045 0.17 0.50 0.84 0.98

Positive LR 0.044 0.09 0.23 0.45 0.67

SLR 0.051 0.17 0.50 0.85 0.97

CWLR 0.057 0.08 0.17 0.30 0.47

GWLR 0.055 0.11 0.24 0.47 0.70

Frailty 0.042 0.17 0.51 0.86 0.98

Negative LR 0.043 0.11 0.33 0.62 0.84

SLR 0.050 0.16 0.48 0.81 0.96

CWLR 0.055 0.10 0.26 0.48 0.69

GWLR 0.055 0.16 0.47 0.78 0.95

Frailty 0.057 0.16 0.50 0.84 0.97

Group 0 None LR 1.000 1.00 1.00 1.00 1.00

SLR 0.058 0.13 0.36 0.70 0.90

CWLR 1.000 1.00 1.00 1.00 1.00

GWLR 0.055 0.10 0.26 0.53 0.79

Frailty 0.095 0.29 0.61 0.89 0.97

Positive LR 1.000 1.00 1.00 1.00 1.00

SLR 0.052 0.11 0.35 0.63 0.85

CWLR 0.994 1.00 1.00 1.00 1.00

GWLR 0.057 0.08 0.20 0.37 0.60

Frailty 0.074 0.23 0.53 0.79 0.95

Negative LR 1.000 1.00 1.00 1.00 1.00

SLR 0.045 0.14 0.41 0.75 0.93

CWLR 1.000 1.00 1.00 1.00 1.00

GWLR 0.053 0.11 0.33 0.59 0.85

Frailty 0.097 0.32 0.68 0.91 0.98

Group 1 None LR 1.000 1.00 1.00 0.99 0.97

SLR 0.051 0.13 0.37 0.70 0.91

CWLR 1.000 1.00 0.98 0.94 0.83

GWLR 0.058 0.14 0.33 0.59 0.81
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Informativeness Power

Group Size Cluster Size Test Size β = 0 . 2 β = 0 . 4 β = 0 . 6 β = 0 . 8
Frailty 0.090 0.07 0.22 0.54 0.81

Positive LR 1.000 1.00 0.98 0.95 0.86

SLR 0.053 0.15 0.38 0.67 0.89

CWLR 1.000 0.98 0.94 0.87 0.72

GWLR 0.052 0.12 0.25 0.46 0.63

Frailty 0.075 0.08 0.25 0.52 0.78

Negative LR 1.000 1.00 0.97 0.86 0.64

SLR 0.048 0.14 0.43 0.73 0.94

CWLR 1.000 1.00 0.98 0.89 0.72

GWLR 0.066 0.16 0.40 0.67 0.88

Frailty 0.093 0.07 0.25 0.57 0.85
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TABLE 2

Estimates of size and power for three log rank tests under simulation design 2. LR = log rank, SLR = stratified 

log rank, CWLR = cluster size-weighted log rank, GWLR = group size-weighted log rank, and Frailty = frailty 

model

N Censoring Test Size

Power

δ = 0 . 05 δ = 0 . 10 δ = 0 . 15
30 Light LR 0.318 0.470 0.716 0.865

SLR 0.307 0.435 0.684 0.854

CWLR 0.076 0.148 0.337 0.567

GWLR 0.058 0.110 0.281 0.509

Frailty 0.349 0.494 0.743 0.892

Heavy LR 0.370 0.534 0.745 0.900

SLR 0.337 0.495 0.720 0.887

CWLR 0.082 0.167 0.354 0.576

GWLR 0.057 0.140 0.297 0.532

Frailty 0.381 0.542 0.774 0.922

50 Light LR 0.390 0.653 0.879 0.974

SLR 0.349 0.602 0.853 0.973

CWLR 0.064 0.209 0.514 0.794

GWLR 0.053 0.151 0.436 0.741

Frailty 0.396 0.656 0.899 0.983

Heavy LR 0.339 0.609 0.846 0.961

SLR 0.326 0.540 0.818 0.951

CWLR 0.066 0.206 0.499 0.768

GWLR 0.049 0.148 0.428 0.711

Frailty 0.369 0.614 0.865 0.969

100 Light LR 0.251 0.962 1.000 1.000

SLR 0.044 0.819 1.000 1.000

CWLR 1 1 1 1

GWLR 1 1 1 1

Frailty 0.076 0.898 1.000 1.000

Heavy LR 0.237 0.919 1.000 1.000

SLR 0.052 0.702 0.999 1.000

CWLR 1 1 1 1

GWLR 1 1 1 1

Frailty 0.074 0.821 1.000 1.000
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TABLE 3

Functional tasks of the Neuromuscular Recovery Scale (NRS) administered to NeuroRecovery Network 

(NRN) patients, and enrollment distribution of phase classifications. Each item is measured on an ordinal scale 

referred to as the phase of recovery, which ranges from Phase 1 (most impaired) to Phase 4 (full recovery). NA 

= Not analyzed here

Category NRS Tasks

Treadmill training Stand adaptability
Stand retraining (NA)
Step adaptability
Step retraining

Trunk control Reverse sit up
Trunk extension while sitting
Sit upright
Sit up

Lower extremity Sit to stand
Stand upright
Walk

Upper extremity Reach and grasp item (NA)
Reach overhead (NA)
Open door (NA)

Tasks Rated
Phase 1

Tasks Rated
Phase 2

Enrollment
Frequency (%)

0 10 1 (1%)

1 9 3 (2%)

2 8 6 (3%)

3 7 8 (5%)

4 6 13 (7%)

5 5 20 (12%)

6 4 31 (18%)

7 3 36 (20%)

8 2 31 (18%)

9 1 23 (13%)

10 0 0 (0%)

Stat Med. Author manuscript; available in PMC 2024 July 24.


	Abstract
	INTRODUCTION
	METHODS
	RESULTS
	Simulation study
	Application

	DISCUSSION
	References
	FIGURE 1
	FIGURE 2
	TABLE 1
	TABLE 2
	TABLE 3

