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Abstract

n-Bu4NI/K2S2O8 mediated C-N coupling between aldehydes and amides is reported. A strong 

electronic effect is observed on the aromatic aldehyde substrates. The transformylation from 

aldehyde to amide takes place exclusively when an aromatic aldehyde bears electron-donating 

groups at either the ortho or para position of the formyl group, while the cross-dehydrogenative 

coupling dominates in the absence of these groups. Both the density functional theory (DFT) 

thermochemistry calculations and experimental data support the proposed single electron transfer 

mechanism with the formation of an acyl radical intermediate in the cross-dehydrogenative 

coupling. The n-Bu4NI/K2S2O8 mediated oxidative cyclization between 2-aminobenzamide and 

aldehydes is also reported, with four quinazolin-4(3H)-ones prepared in 65–99% yields.

Graphical Abstract

An n-Bu4NI/K2S2O8-mediated substrate-dependent C-N coupling between aldehydes and amides 

is reported. When an aromatic aldehyde bears electron-donating groups at either the ortho or para 
position of the formyl group, a transformylation takes place exclusively. Without these groups, a 

cross-dehydrogenative coupling dominates. Furthermore, when 2-aminobenzamide is employed, 

only quinazolin-4(3H)-ones are obtained regardless of the aldehyde used.
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Introduction

Imide motifs widely exist in natural products, pharmaceuticals, and materials,[1] which 

has prompted chemists to develop a number of synthetic methods for their preparation.[2] 

The traditional synthetic routes focus on the acylation of amides with carboxylic acids,[3] 

acid chlorides,[4] and acid anhydrides.[5] However, these methods have limitations, such as 

the lability of the activated acid derivatives, low atom economy, environmental pollution, 

and tedious procedures. Recently, the N-acylation of amides by aldehydes or alcohols via 

cross dehydrogenative coupling has attracted great interest. The known methods include 

transition-metal such as copper,[6] iron,[7] rhodium,[8] or palladium,[9] and N-heterocyclic 

carbene (NHC)[10] catalyzed oxidative N-acylation of amides by aldehydes (Scheme 1, Eq 

1) and copper[11] catalyzed oxidative N-acylation of amides by alcohols.

Iodine[12] or persulfate[13] mediated cross dehydrogenative coupling[14] reactions have 

aroused the great interest of chemists. These transformations are superior to the classical 

transition metal-catalyzed couplings in terms of their green chemistry features including 

environmental compatibility and economic impact. In addition, the iodine or persulfate-

mediated cross-dehydrogenative coupling reactions in general undergo single electron 

transfer pathways, which are different from the classical transition metal catalysis and often 

display different chemical reactivity from the latter. Inspired by the rapid progress in the 

iodine and persulfate-mediated oxidative cross-couplings in recent years and the lack of 

research on the iodine or persulfate mediated imide coupling, we have explored the imide 

synthesis by an n-Bu4NI/K2S2O8 mediated cross dehydrogenative C–N coupling between 

amides and aldehydes (Scheme 1, Eq 2). Herein, we report the details of our study.

Results and Discussion

Initially, the coupling of acetamide and benzaldehyde was explored in the presence of either 

10 mol% of n-Bu4NI or 2.0 equivalents of K2S2O8 (Table 1, entries 1–2). No imide product 

was observed in either case. On the other hand, N-acetylbenzamide (1a) was obtained in a 

27% yield in the presence of 2.0 equivalents of ammonium peroxydisulfate ((NH4)2S2O8) 

(Table 1, entry 3). The combination of one equivalent of 18-crown-6 and 2.0 equivalents 

of K2S2O8 led to a 43% yield of 1a (Table 1, entry 4). The combination of 10 mol% of 

n-Bu4NI and 2.0 equivalents of K2S2O8 further enhanced the yield of 1a to 66% (Table 

1, entry 5). Under the same conditions, other tetrabutylammonium halides (n-Bu4NCl and n-

Bu4NBr) only led to extremely low yields (Table 1, entries 6–7). No products were observed 

if other peroxides such as tert-butyl hydroperoxide (TBHP), cumene hydroperoxide (CHP), 

hydrogen peroxide (H2O2), and benzoyl peroxide (DBPO) were used (Table 1, entries 8–11). 

Lower yields of 1a were obtained in other solvents such as toluene, THF and DMF (Table 1, 

entries 12–14). No product 1a was observed in DMSO (Table 1, entry 15). When the amount 

of n-Bu4NI was raised to 20 mol%, the yield of 1a dropped to 50% (Table 1, entry 16). The 
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reaction time was not optimized, but we later found that the yield of 1a reached a maximum 

after approximately 12 hours.

After optimizing the reaction conditions, we investigated the scope of the aldehydes in 

the cross-dehydrogenative coupling with benzamide and observed a strong electronic effect 

on the aromatic aldehyde substrates. When an aryl aldehyde bears an electron-donating 

group at either the para or ortho position of the formyl group, such as p-anisaldehyde, 

o-anisaldehyde, p-tolualdehyde, 4-hydroxybenzaldehyde, 2-hydroxybenzaldehyde and 

thiophene-2-carbaldehyde, the reaction all exclusively led to the transformylation product 

2 (Table 2). Among all the aryl aldehydes examined, p-anisaldehyde afforded the highest 

yield of 2.[15] In the cases where the transformylation products were obtained in low yields, 

the unreacted amides were recovered. At the same time, the rest of the aldehydes were 

oxidized to the corresponding carboxylic acids.

When benzaldehyde (Table 3, 1a, 1e-1i, 1l-1r), ortho-bromobenzaldehyde (Table 3, 1j), 
or an aliphatic aldehyde (Table 3, 1f obtained in 73% yield) was employed, only 

a small amount of transformylation product (less than 10%) was observed, and the 

cross-dehydrogenative coupling product, imide, predominated. On the other hand, when 

the aromatic aldehydes bearing strong electron-withdrawing substituents were employed, 

such as methyl 4-formylbenzoate (Table 3, 1b), 4-nitrobenzaldehyde (Table 3, 1c), and 

picolinaldehyde (Table 3, 1d), the reactions all exclusively led to the cross-dehydrogenative 

coupling products – imides. m-Anisaldehyde led to a mixture of the transformylation and 

cross-dehydrogenative coupling products almost in equal amounts (Table 3, 1k). A broad 

scope of amides was well accommodated in the coupling, including alkyl (Table 3, 1a-i), 
alkenyl (Table 3, 1p-q), and aromatic amides (Table 3, 1j-o). Both the electron-donating 

group such as methoxy (Table 3, 1m), and the electron-withdrawing group such as fluorine 

(Table 3, 1o) were compatible on the aromatic amides. Secondary amide (pyrrolidin-2-one) 

was also well accommodated in the coupling with benzaldehyde affording the imide 

product in a 62% yield (Table 3, 1r). It is worth noting that imide 1f was successfully 

prepared in comparable yields by the coupling of two sets of different amide and aldehyde 

substrates, which offers chemists more flexibility in the choice of the starting materials when 

employing the current protocol to synthesize imides.

The reaction between 2-aminobenzamide and aldehydes, however, resulted in cyclization 

products – quinazolin-4(3H)-ones (Table 4, 3) instead of imides. Both aromatic and aliphatic 

aldehydes were well accommodated in the reaction with 2-aminobenzaimde (Table 4, 3a-d). 

It is worth noting that p-anisaldehyde also led to the quinazolin-4(3H)-one product in a 

65% yield (Table 4, 3d), which suggests the cyclization undergoes a different mechanistic 

pathway than the n-Bu4NI/K2S2O8 mediated C-N coupling between aldehydes and amides 

discussed in Tables 2 and 3. The former is believed to undergo an imine formation between 

aldehyde and the amino group of 2-aminobenzamide, followed by an intramolecular 

cyclization and oxidation.[16]

In order to gain more insights into the cyclization reaction, we examined the reaction 

between 2-aminobenzamide and benzaldehyde in the absence of n-Bu4NI and K2S2O8 and 

obtained 2,3-dihydroquinazolin-4(1H)-one (4) in a 64% yield (Scheme 2). When 4 was 
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subjected to our optimized cross-dehydrogenative coupling conditions, quinazolin-4(3H)-

one (3a) was obtained in a 90% yield. Therefore, we believe the cyclization between 

2-aminobenzamide and aldehydes undergoes a reaction pathway similar to that reported 

in the literature,[16] including the condensation of primary amines with aldehydes to form 

imines, and subsequent intramolecular cyclization and oxidation.

The literature reports indicated that n-Bu4NI and K2S2O8 mediated reactions usually 

take place via single electron transfer mechanisms.[17] When three equivalents of (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO) were added to the coupling reaction between 

benzamide and benzaldehyde, a benzoyl-TEMPO adduct (5) was obtained in an 11% yield 

(Eq 3), while the imide coupling was completely inhibited.

(Eq 3)

To gain more insights into the reaction mechanism, we also carried out DFT calculations 

(see the supporting information for details). The calculated DFT reaction enthalpies 

reflected the endo- and exothermicity for each elementary step, from which the probable 

rate-limiting step(s) may be singled out. The identified endothermic steps (i.e. the homolysis 

of peroxydisulfate anion, and the nucleophilic acyl substitution between benzoic sulfuric 

anhydride anion B and amides, see Scheme 3; and the oxidation of p-anisaldehyde to a 

phenyl cation radical C by a sulfate anion radical, see Scheme 4) are consistent with the fact 

that the reactions only start at an elevated temperature (80 °C).

Based on our experimental data, DFT calculations,[18] and the prior literature reports,[19] a 

plausible mechanism for the cross dehydrogenative coupling between amides and aldehydes 

is described in Scheme 3. First, the more soluble bis(tetrabutylammonium) peroxydisulfate 

is generated from n-Bu4NI and K2S2O8, which undergoes homolytic cleavage producing 

sulfate anion radical at the elevated temperature. The sulfate anion radical abstracts the 

formyl hydrogen from the aldehyde resulting in an acyl radical A and a bisulfate anion. 

A reacts with a second equivalent of sulfate anion radical forming benzoic sulfuric 

anhydride[20] anion B, which undergoes a nucleophilic acyl substitution with amides leading 

to the imide product.

On the other hand, since the sulfate anion radical is a well-known strong oxidant,[13] in 

the presence of electron-rich aromatic aldehydes such as p-anisaldehyde, the sulfate anion 

radical first oxidizes p-anisaldehyde to a phenyl cation radical (C). A second equivalent of 

sulfate anion radical then adds to the ipso position of the formyl group forming an arenium 

ion (1-formyl-4-methoxycyclohexa-3,5-dien-2-ylium-1-yl sulfate) D, which is stabilized by 

the electron-donating para-methoxy group. A subsequent nucleophilic acyl substitution 
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between D and amide takes place at the formyl group leading to the formyl imide and 

4-methoxyphenyl hydrogen sulfate (6).

Conclusion

In summary, a n-Bu4NI/K2S2O8 mediated C–N coupling between aldehydes and amides is 

reported. The reaction takes place via a single electron transfer mechanism, employing 

inexpensive and user-friendly reagents. A broad scope of amide substrates is well 

accommodated in the coupling reaction, but the aldehyde substrates have displayed a 

strong electronic effect. Aliphatic and electron-neutral or -deficient aromatic aldehydes 

predominantly undergo the cross dehydrogenative coupling pathway forming imides. On 

the other hand, the aromatic aldehydes bearing electron-donating groups at either the 

ortho or para position of the formyl group exclusively go through the transformylation 

pathway forming formyl imides. Both the experimental data and DFT calculations support 

the proposed mechanism with the formation of an acyl radical intermediate in the cross-

dehydrogenative coupling. Quinazolin-4(3H)-ones were also prepared by the cyclization 

between aldehydes and 2-aminobenzamide under the reported oxidative coupling conditions, 

but via a different mechanistic pathway. More n-Bu4NI/K2S2O8 mediated cross-coupling 

reactions are under investigation in our laboratory and will be reported in due course.

Experimental Section

General procedure for the preparation of imides (1) via n-Bu4NI/K2S2O8-mediated cross-
dehydrogenative coupling between amides and aldehydes.

An oven-dried 20 mL glass reaction vial was charged with amide (1.0 mmol, 1.0 equiv), 

aldehyde (1.2 mmol, 1.2 equiv), tetrabutylammonium iodide (36.9 mg, 0.1 mmol, 10 mol%), 

potassium persulfate (540.6 mg, 2.0 mmol, 2.0 equiv), and anhydrous acetonitrile (7 mL). 

The reaction mixture was sealed with a pressure relief cap and stirred at 80 °C for 20 h. 

The reaction mixture was diluted with 20 mL of ethyl acetate and washed with saturated 

aqueous NaHCO3 solution (20 mL). The aqueous phase was extracted with diethyl ether (2 

× 15 mL). The combined organic layers were dried over anhydrous MgSO4 and concentrated 

using a rotary evaporator under reduced pressure (20 mmHg). The residue was purified 

by flash column chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the 

corresponding products 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Synthesis of imides by cross-dehydrogenative coupling between aldehydes and amides.
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Scheme 2. 
Synthesis of 2,3-dihydroquinazolin-4(1H)-one (4) and n-Bu4NI/K2S2O8-mediated oxidation 

of 4 to 3a.
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Scheme 3. 
Proposed mechanism for the n-Bu4NI/K2S2O8-mediated cross dehydrogenative coupling 

between aldehydes and amides.
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Scheme 4. 
Proposed mechanism for the n-Bu4NI/K2S2O8-mediated transformylation from p-

anisaldehyde to primary amides.
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Table 1:

Optimization of the cross dehydrogenative coupling between acetamide and benzaldehyde.[a]

Entry PTC (10 mol%) Peroxide (2.0 equiv) Solvent Yield [%][b]

1 n-Bu4NI - CH3CN NR

2 - K2S2O8 CH3CN NR

3 - (NH4)2S2O8 CH3CN 27

4 18-crown-6[c] K2S2O8 CH3CN 43

5 n-Bu4NI K2S2O8 CH3CN 66

6 n-Bu4NCl K2S2O8 CH3CN 8

7 n-Bu4NBr K2S2O8 CH3CN 2

8 n-Bu4NI TBHP CH3CN ND[d]

9 n-Bu4NI CHP CH3CN NR

10 n-Bu4NI H2O2 CH3CN NR

11 n-Bu4NI DBPO CH3CN NR

12 n-Bu4NI K2S2O8 toluene 47

13[e] n-Bu4NI K2S2O8 THF 51

14 n-Bu4NI K2S2O8 DMF 23

15 n-Bu4NI K2S2O8 DMSO NR

16[f] n-Bu4NI K2S2O8 CH3CN 50

[a]
General procedure: The catalyst (0.1 mmol, 10 mol%), peroxide (2.0 mmol, 2.0 equiv), acetamide (59.0 mg, 1.0 mmol, 1.0 equiv), benzaldehyde 

(127.2 mg, 1.2 mmol, 1.2 equiv), and solvent (7 mL) were added in a 20 mL glass vial. The reaction mixture was sealed with a pressure relief cap, 
and stirred at 80 °C for 20 h.

[b]
Isolated yields after column chromatography.

[c]
One equiv. of 18-crown-6 (264.3 mg, 1.0 mmol, 1.0 equiv) was added.

[d]
No 1a was detected in the reaction mixture, and benzoic acid was obtained.

[e]
The reaction was carried out at 60 °C.

[f]
20 mol% of n-Bu4NI was added instead of 10 mol%.
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Table 2:

n-Bu4NI/K2S2O8-Mediated transformylation from electron-rich aromatic aldehydes to benzamide.[a]

Entry R Yield[%][b]

1 80

2 78

3 57

4 22

5 13

6 26

[a]
General procedure: n-Bu4NI (73.8 mg, 0.2 mmol, 20 mol%), K2S2O8 (540.6 mg, 2.0 mmol, 2.0 equiv), benzamide (121.1 mg, 1.0 mmol, 1.0 

equiv), aldehyde (1.2 mmol, 1.2 equiv), and CH3CN (7 mL) were added in a 20 mL glass vial. The reaction mixture was sealed with a pressure 

relief cap and stirred at 80 °C for 24 h.

[b]
Isolated yields after column chromatography.
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Table 3:

n-Bu4NI/K2S2O8-Mediated cross dehydrogenative coupling between amides and aldehydes.[a,b]

[a]
General procedure: n-Bu4NI (36.9 mg, 0.1 mmol, 10 mol%), K2S2O8 (540.0 mg, 2.0 mmol, 2.0 equiv), amide (1.0 mmol, 1.0 equiv), aldehyde 

(1.2 mmol, 1.2 equiv), and CH3CN (7 mL) were added to a 20 mL glass vial. The reaction mixture was sealed with a pressure relief cap, and stirred 

at 80 °C for 20 h.
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[b]
Isolated yields after column chromatography.

[c]
A trace amount of transformylation product (less than 10%) was observed by analysis of the crude 1H NMR spectra but was not isolated and 

characterized.

[d]
3-Phenylpropanamide (149.2 mg, 1.0 mmol) and benzaldehyde (106.1 mg, 1.2 mmol) were added.

[e]
Product 2 was isolated in an 8% yield together with 1j.

[f]
Product 2 was isolated in a 16% yield together with 1k.

[g]
Benzamide (121.1 mg, 1.0 mmol) and 3-phenylpropanal (134.2 mg, 1.2 mmol) were added.
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Table 4:

n-Bu4NI/K2S2O8-Mediated synthesis of quinazolin-4(3H)-ones from aldehydes and 2-aminobenzamide.[a,b]

[a]
General procedure: n-Bu4NI (36.9 mg, 0.1 mmol, 10 mol%), K2S2O8 (540.0 mg, 2.0 mmol, 2.0 equiv), 2-aminobenzamide (136.2 mg, 1.0 

mmol, 1.0 equiv), aldehyde (1.0 mmol, 1.0 equiv), and CH3CN (7 mL) were added in a 20 mL glass vial. The reaction mixture was sealed with a 

pressure relief cap, and stirred at 80 °C for 20 h.
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[b]
Isolated yields after column chromatography.
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