
RESEARCH

Journal of Neuro-Oncology (2024) 169:175–185
https://doi.org/10.1007/s11060-024-04715-1

	
 Patrick H. Luckett
luckett.patrick@wustl.edu

1	 Department of Neurological Surgery, Washington University 
School of Medicine, St. Louis, MO, USA

2	 Center for Health Sciences, Oklahoma State University, 
Tulsa, OK, USA

3	 Mallinckrodt Institute of Radiology, Washington University 
School of Medicine, St. Louis, MO, USA

4	 Department of Neurology, Washington University School of 
Medicine, St. Louis, MO, USA

5	 Department of Biomedical Engineering, Washington 
University in Saint Louis, St. Louis, MO, USA

6	 Department of Neuroscience, Washington University School 
of Medicine, St. Louis, MO, USA

7	 Department of Mechanical Engineering and Materials 
Science, Washington University in Saint Louis, St. Louis, 
MO, USA

8	 Center for Innovation in Neuroscience and Technology, 
Washington University School of Medicine, St. Louis, MO, 
USA

9	 Brain Laser Center, Washington University School of 
Medicine, St. Louis, MO, USA

10	 National Center for Adaptive Neurotechnologies, Albany, 
NY, USA

Abstract
Purpose  High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The 
current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The 
aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating 
improved disease management and informed patient care.
Methods  Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Cen-
ter were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to 
surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to 
train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70).
Results  The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The 
strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. 
Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong 
predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor.
Conclusion  The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in 
HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor’s location in relation to specific 
networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to 
individual patients.
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Introduction

High-grade gliomas (HGG) account for 60–70% of new 
cases of brain tumors [1]. The efficacy of therapeutic inter-
ventions has been limited by various factors, such as genetic 
heterogeneity, accelerated cellular proliferation, and treat-
ment-resistant cells [1–4]. Consequently, the median sur-
vival rate for patients afflicted with HGGs remains low, with 
a median survival of merely 14 months. Standard clinical 
practice typically entails gross total resection of the tumor, 
followed by radiation and adjuvant chemoradiotherapy [2]. 
However, surgical resection of the tumor carries the risk of 
causing or exacerbating functional impairment, a significant 
concern for the clinician, as postsurgical functional pres-
ervation (e.g., quality of life) is known to correlate with 
overall patient outcomes [5–9]. To that end, the capability 
to forecast postsurgical functional outcomes from the initial 
diagnosis could prove advantageous in surgical planning 
and for better-informing patients of their likely treatment 
outcomes.

Structural (e.g., T1-weighted pre and post-contrast, 
T2-weighted, and diffusion tensor images (DTI)) and func-
tional (e.g., blood oxygen level-dependent task or resting 
state fMRI) MRI data are routinely acquired in the pre-
surgical setting. The former assesses tumor size and loca-
tion, while the latter helps evaluate a planned resection’s 
functional and cognitive implications. Using the various 
MRI modalities as a guide, the surgeon faces the challenge 
of achieving maximal resection of infiltrative tissue while 
minimizing functional morbidity. These competing inter-
ests, long-term survival through maximum resection versus 
quality of life through functional preservation, significantly 
impact overall patient outcomes, and finding the optimal 
balance between the two is an ongoing challenge [5–8].

Task fMRI (T-fMRI) has traditionally been the conven-
tional non-invasive approach for mapping functional brain 
networks before surgical intervention. However, T-fMRI 
has limitations that can constrain clinical utility [10]. For 
example, the need for patients to engage in specific cog-
nitive or motor tasks during the scan can pose challenges 
and may even be impractical for certain individuals. Alter-
natively, resting state fMRI (RS-fMRI) allows research-
ers to examine the intrinsic functional connectivity of the 
brain and the associated interactions between different 
networks without the confounding effects of task perfor-
mance [11]. Importantly, resting state functional mapping 
can be achieved under sedation and multiple networks can 
be mapped simultaneously, leading to a lower failure rate 
than T-fMRI [12]. Numerous studies have demonstrated the 
clinical utility of RS-fMRI in multiple disease categories, 
including brain tumors [7, 13–16].

Machine learning (ML) is a field of artificial intelligence 
that extracts patterns from data to build models with wide-
ranging applications in medical research, including brain 
tumors [17]. Deep learning models have advanced image 
segmentation, enabling accurate classification of brain tis-
sue categories (e.g., healthy, edema, necrotic/non-enhancing 
core, enhancing core) and brain network mapping [7, 18, 
19]. MRI radiomic features have also proven valuable for 
predicting genetic features, identifying both pseudo and true 
tumor progression, and classifying transcriptome subtypes 
[20–22]. Given this information, we hypothesize that ML 
can extract and leverage pertinent features from RS-fMRI 
data to preoperatively predict HGG patients’ post-operative 
functional outcomes before surgical resection accurately.

This research aims to utilize ML and RS-fMRI to 
develop models capable of predicting functional outcomes 
in adult HGG patients. Specifically, random forest models 
were trained to classify HGG patients (n = 102) into posi-
tive functional outcomes (KPS ≥ 70) or negative functional 
outcomes (KPS < 70). Input to the models included age, 
measures of resting state functional network connectivity 
(FC), the tumor’s degree of overlap with each RSN, and 
tumor volume. Autoencoders were used for dimensional-
ity reduction, and permutation feature importance identified 
the strongest predictors of functional outcomes. Our results 
indicate that these models can accurately predict postopera-
tive functional outcomes at the time of initial diagnosis.

Materials and methods

Patients

One hundred two patients diagnosed with intracranial pri-
mary HGG were retrospectively recruited from the neu-
rosurgery brain tumor service at Washington University 
Medical Center. All subjects were diagnosed with HGG on 
pathological examination of biopsy and resection-acquired 
brain samples at the Division of Neuropathology between 
May 2012 and September 2020. Definitive diagnosis was 
achieved based on histomorphological and immunohis-
tochemical characteristics supportive of HGG using the 
appropriate WHO guidelines [23]. These findings include 
the presence of tumor cells with astrocytic-like appearance, 
microvascular proliferation, palisading necrosis, pleomor-
phic hyperchromatic nuclei, and frequent mitoses. Our 
cohort consists of 85 patients with the diagnosis of GBM 
IDH wildtype and 17 patients with GBM IDH mutant. 
Under the recent WHO 2021 guidelines, the 17 IDH mutant 
patients would be classified as Grade IV Astrocytoma, IDH 
mutant based on the advanced role of molecular diagnos-
tics in CNS tumor taxonomy. Inclusion criteria included 
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a new diagnosis of brain tumor (first occurrence), biopsy 
or surgical treatment, and the availability of pre-surgical 
structural and functional MRI. Exclusion criteria included 
patients younger than age 18 and patients who were lost to 
follow-up. The Washington University in St. Louis Institu-
tional Review Board approved this study. The requirement 
for informed consent was waived by the IRB.

Clinical characteristics

Noted clinical characteristics are summarized in Supple-
mental Tables 1	  and include survival duration (the differ-
ence between the first clinical visit and the date of death), 
the extent of resection (gross total resection (GTR) or sub-
total resection (STR)), O6-Methylguanine-DNA methyl-
transferase (MGMT) methylation status, epidermal growth 
factor receptor (EGFR) amplification status, telomerase 
reverse transcriptase (TERT) mutation status, isocitrate 
dehydrogenase 1 (IDH1) mutation status, and phosphatase 
and tensin homolog (PTEN) mutation status. Genetic data 
were assayed by the Foundation Medicine commercial labo-
ratory (www.foundationmedicine.com). History (Hx) noted 
included alcohol use disorder, tobacco use, hypertension, 
hyperlipidemia, chronic kidney disease (CKD), cardiac 
issues, deep vein thrombosis or pulmonary embolism (DVT/
PE), psychiatric disorders, visual deficits, stroke, weakness, 
and/or migraine/tension/cluster headaches. Presentation 
symptoms (Pw) noted included weakness, visual changes, 
hydrocephalus, confusion, headache, memory impairment, 
seizures, obesity (BMI > 30), and diabetes.

For each patient, the Karnofsky Performance Score was 
acquired from the electronic medical record. An Oncolo-
gist or Radiation Oncologist evaluated each KPS at the first 
(post-operative, pre-radiotherapy, or pre-chemotherapy) 
clinical visit. The methodology for the KPS followed stan-
dard research and clinical guidelines from the neuro-oncol-
ogy literature [24, 25].

MRI acquisition

All neuroimaging was performed on a Siemens Trio or Skyra 
3T MRI scanner. Structural images included T1-weighted 
(T1w) magnetization prepared rapid acquisition gradient 
echo (MPRAGE: TE = 2.53ms, TR = 1900ms, TI = 900ms, 
256 × 256 acquisition matrix, 0.976 × 0.976 × 1  mm vox-
els), fluid attenuated inversion recovery (FLAIR: 2D, slice 
thickness 5 mm, gap 1 mm, 256 × 256 matrix 0.9 × 0.9 mm 
pixel size, TE = 129ms, TR = 8500ms, TI = 2440ms, flip 
angle 130), and T2-weighted (T2w) fast spin-echo (FSE: 
TE = 93ms, TR = 5600ms, 256 × 256 acquisition matrix, 
1.093 × 1.093 × 2 mm voxels). RS-fMRI was acquired using 
a blood oxygenation level-dependent (BOLD) sensitive 

echo planar imaging sequence (voxel size 3mm3 isotro-
pic; echo time = 27ms; repetition time = 2.2–2.9 s; field of 
view = 256 mm; flip angle = 90). Details on MRI processing 
and automated tumor segmentation can be found in Supple-
mental material Sect. 1.1.

RS-fMRI measures

Our analysis included two measures of RS-fMRI, con-
nectivity and spatial overlap of the tumor with each RSN. 
The networks include dorsal somatomotor (SMD), inferior 
somatomotor (SMI), cinguloopercular (CON), auditory 
(AUD), default mode (DMN), parietal memory (PMN), 
visual (VIS), frontoparietal (FPN), salience (SAL), ventral 
attention (VAN), dorsal attention (DAN), medial temporal 
(MET), reward (REW), thalamus (THA), and basal gan-
glia (BGA). Distance correlation [26] was used to calculate 
network similarity, resulting in 120 measures. For spatial 
features, the dot product between the tumor segmentation 
maps and publicly available RSN probability maps [27] 
was calculated for each network described above. Further 
details for network similarity and spatial overlap features 
are described in Supplemental material Sect. 1.2.

Machine learning and statistical analysis

Analyses were performed in MATLAB R2022b. Functional 
status was classified utilizing Random Forest models, an 
ensemble methodology comprising multiple decision trees 
[28]. Before training, dimensionality reduction via an auto-
encoder with a single hidden layer was used to reduce the 
FC feature space to 11 components labeled as FC1, FC2,…
FC11. Model inputs included age, the encoded FC features, 
the spatial tumor features, and tumor volume. The model 
was trained to classify patients into two groups based on 
their Karnofsky Performance Status (KPS) score: KPS < 70 
(negative functional outcome) and KPS ≥ 70 (positive 
functional outcome). All models were trained with 10-fold 
nested cross-validation (CV). Weighted classification was 
used during training to correct for class imbalance.

The autoencoder was trained on 80% of the FC data, with 
20% reserved for validation termination. Permutation fea-
ture importance [28, 29] was used to identify the strongest 
predictive model features. Average network feature weights 
were generated by averaging all within and between-net-
work feature weights for each network. Then, voxel-wise 
feature maps were generated by multiplying the average 
feature weights with publicly available FC probability maps 
[27]. Further analysis details are described in Supplemental 
material Sect. 1.3. The functional outcomes prediction pipe-
line and methods are summarized in Fig. 1.
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Figure 2A shows the regions exhibiting the most significant 
tumor presence, determined by averaging the tumor seg-
mentation maps for all data and partitioned based on func-
tional outcome group. Figure 2B shows the average degree 
of tumor overlap per RSN calculated by taking the dot prod-
uct of the tumor frequency maps with published RSN proba-
bility maps [27] and normalized by the size of each RSN for 
KPS < 70. The most significant overlap was in AUD, BGA, 
and SMI networks. Similarly, Fig.  2C shows the overlap 
with KPS ≥ 70. Here, BGA was much more involved and 
AUD slightly less involved compared to KPS < 70.

Figure 3 shows the model results. The final cross-vali-
dation accuracy in classifying KPS was 94.1% (true nega-
tive rate = 95.2%, true positive rate = 93.8%, Fig. 3A), with 
an AUC of 0.97 (Fig. 3B). Figure 4A describes the stron-
gest predictive features identified by the model. Surpris-
ingly, tumor volume was only a moderate predictor, but 
reveals the importance of tumor location for meaningful 
performance outcomes. However, age was among the top 

Results

Supplemental Table 1 describes patient characteristics, 
encompassing demographics, survival rates, classifications 
of surgical resections, identified genetic mutations, medical 
histories, and the symptoms at the time of diagnosis. Age 
at diagnosis and survival duration showed significant group 
differences (p <.02) between the positive and negative 
functional outcome groups, such that older age and lower 
survival duration were associated with poor functional 
outcomes. Similarly, a history of elevated incidence rates 
of hypertension and hyperlipidemia was associated with 
poorer functional outcomes (p <.01). Regarding presenta-
tion symptoms, higher rates of seizures were observed with 
poor functional outcomes (p =.02). The incident rate of pre-
senting with headaches was approximately two-fold greater 
in the positive functional outcome group (p =.06). The 
median number of days between initial surgery and KPS 
was 25 days with median absolute deviation of 145 days. 

Fig. 1  Functional outcome prediction pipeline. (a) Resting-state func-
tional MRI (RS-fMRI) is collected at the time of diagnosis. Connectiv-
ity between network ROIs is calculated and passed through an auto-
encoder for dimensionality reduction (b–d). The tumor is segmented 
(e), and the segmentation is used to calculate the degree of overlap 

between the tumor and each RSN (e–g). The connectivity and spatial 
features are used to train a random forest to classify patients based 
on postoperative functional outcome status (KPS < 70, KPS ≥ 70, h–i). 
Feature selection is then used to identify the relevant RSN in the con-
text of both connectivity and spatial location of the tumor (j–k)
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Fig. 3  Model results. (a) The model achieved a nested cross-validation accuracy of 94.1%, with a minimum class specific accuracy of 93.8%. (b) 
The model achieved an AUC of 0.97

 

Fig. 2  (a) Spatial tumor frequency maps for KPS < 70 and KPS ≥ 70. (b) Average degree of tumor overlap per RSNs for KPS < 70. (c) Average 
degree of tumor overlap per RSNs for KPS ≥ 70
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connectivity with sensory and motor networks. Connectiv-
ity involving VAN, THA, and BGA were not strong predic-
tors. Based on the tumor’s location in reference to a given 
RSN, DAN, CON, and BGA were strong predictors of KPS 
(Fig. 4A). Figure 5A shows the results of mapping the rank 
of the average network connectivity feature weights (rank of 
means of columns in Fig. 4B) onto the published FC prob-
ability maps. The primary networks involved in the context 

predictors. In the context of encoded network connectivity 
features, FC1, FC2, and FC11 were the strongest predictors. 
Permutation feature importance on the top encoded FC fea-
tures (FC1, FC2, and FC11) showed primary involvement 
with networks associated with sensory and motor processes 
(SMD, SMI, VIS, and AUD, Fig. 4B and C). Some asso-
ciation networks (DMN, PMN, and DAN) showed mod-
erate involvement, but these were primarily inter-RSN 

Fig. 4  Top model features. (a) The strongest model predictors included 
encoded network connectivity features (FC1, FC2, and FC11). Based 
on location, tumors in dorsal attention, cingulo-opercular, and basal 
ganglia were strong predictors of KPS. Age was also a strong predic-
tor. (b) Strongest resting state network connectivity features (rank) 
derived from permutation feature importance from FC1, FC2, and 

FC11 and grouped based on network functionality (sensory/motor, 
subcortical, and association). Overall, connectivity involving sensory 
and motor networks was the strongest predictor of KPS. (c) Top con-
nectivity patterns (> 0.75) associated with the strongest resting state 
network correlation features in b
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particularly for informed decision-making in HGG patient 
management.

Predicting KPS in brain tumor patients prior to treat-
ment can serve as a foundational tool for tailoring indi-
vidualized treatment plans. First, it guides preoperative 
planning by helping surgeons choose the appropriate surgi-
cal approaches, balancing long-term survival with recovery 
and potential complications. Second, it informs the need 
for rehabilitation and support services, allowing healthcare 
teams to arrange personalized rehabilitation programs such 
as physical, occupational, or speech therapy for those with 
lower predicted KPS, while also coordinating supportive 
care services, including home care, mental health support, 
or community resources. Additionally, it helps create indi-
vidualized monitoring and follow-up plans, determine the 
frequency of follow-up visits, and integrate quality of life 
assessments to monitor any changes in KPS. Furthermore, 
the predictive model can guide psychosocial support inter-
ventions, facilitating mental health interventions and family 
counseling services to manage the care responsibilities and 
emotional stress associated with HGG. Lastly, by providing 

of connectivity were motor, vision, auditory, and reward. 
Similarly, Fig. 5B shows the mapping of the features that 
were the strongest spatial predictors in reference to the 
tumor’s location (e.g., rank of spatial features in Fig. 4A: 
DAN, CON, BGA,…).

Discussion

The study highlights the potential of machine learning in 
accurately classifying postsurgical functional outcomes 
among HGG patients. These findings indicate the feasibility 
of achieving classification accuracy exceeding 90% before 
surgical intervention, using basic demographics, tumor 
volume, and RS-fMRI measures. Further, these results 
were achieved despite substantial heterogeneity present 
in the patient data, encompassing diverse demographics, 
tumor characteristics, medical histories, and initial symp-
toms (Supplemental Table 1). This underscores the poten-
tial of integrating machine learning into clinical settings, 

Fig. 5  (a) Results of mapping 
the average network connectiv-
ity feature weights onto the 
published FC probability maps. 
The top regions include motor, 
auditory, and visual networks. 
(b) Results of mapping the 
spatial feature weights onto the 
published FC probability maps. 
These regions are associated with 
DAN, CON, BGA, and SAL 
networks
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Our findings show a distinct dichotomy between the ana-
tomical location of the tumor and functional connectivity 
(FC) changes, specifically concerning their predictive ability 
for KPS. Interestingly, while the tumor location in reference 
to DAN and CON were strong predictors of KPS, changes 
involving SMD and VIS networks were the top connectivity 
predictors. This apparent dissociation may be due to several 
potential mechanisms. Prior works underscore the impor-
tance of control regions in executive control, including CON 
and DAN [37, 38]. Importantly, CON is closely associated 
with somatomotor networks [39, 40], a relationship further 
elucidated by the recent dual-system model of the primary 
motor cortex (M1) proposed by Gordon and colleagues [40]. 
This model presents M1 as comprising not only effector-
specific regions for fine motor control but also the somato-
cognitive action system (SCAN), which integrates controls, 
physiology, and body movement. Notably, the M1 SCAN 
region is functionally connected to CON. Viewed from this 
perspective, damage to CON could impact the M1 SCAN 
regions, potentially contributing to functional impairments 
observed in patients.

Additionally, numerous studies have reported lesion-
induced disruptions of FC and associated these changes 
with behavioral deficits in clinical populations [41–43]. 
Although these studies have primarily focused on stroke, 
a condition with distinct etiology and lesion characteris-
tics compared to HGG, the underlying principle linking 
lesion-induced disruption in the functional connectome to 
functional deficits remains pertinent. Moreover, focal brain 
lesions have been observed to exert far-reaching effects via 
damage to direct/indirect white matter structural connec-
tions, subsequently disrupting FC [44]. Other complications 
may also play a role in functional outcomes. For example, 
presenting with seizures was a significant indicator of poor 
functional outcomes (Supplemental Table 1). Seizures are 
common among HGG patients, and regardless of the cause, 
severe seizures are known to damage brain cells, possibly 
confounding the effects of HGGs on functional status [45, 
46]. A history of hypertension was also strongly associated 
with poor functional outcomes. This is no surprise, as life-
style factors, encompassing dietary habits, physical activ-
ity, stress management, and substance use, significantly 
contribute to the onset and progression of various diseases. 
Taken together, multiple parallel processes could potentially 
be responsible for FC disruption and associated functional 
impairment: damage to gray matter regions with specific 
functional network affiliations, the disruption of direct/
indirect connections mediated by white matter damage, and 
overall health. While further research is warranted, specifi-
cally studies involving RSNs and white matter tractography, 
these results suggest the underlying mechanisms governing 

patients with a clearer understanding of their likely out-
comes, such models enhance the process of informed 
consent, allowing patients to make better decisions for 
themselves regarding their treatment options.

Ours is among the first to use RS-fMRI to predict func-
tional outcomes in HGG directly. Historically, neuroimag-
ing predictors of functional outcomes, survival, recurrence, 
and other clinically relevant determinants have been pre-
dominantly structural measures [14, 30, 31]. This preference 
for structural measures is partly due to the invasive nature 
of HGGs, which can be more readily visualized through 
structural imaging techniques. In contrast, task and resting 
state fMRI generally involve ROI-based analyses, which 
can have limited clinical utility. However, recent advance-
ments at our and other institutions have leveraged deep 
learning and other emerging techniques to generate whole-
brain RS-fMRI functional maps at both the individual and 
group levels, with group averages spanning thousands 
of individuals [13, 27, 32]. These techniques extend well 
beyond the simple mapping of language and motor func-
tions. They account for many functional networks, offering 
a more nuanced evaluation of the cognitive, behavioral, 
and emotional impacts that a planned resection might have. 
This shift towards a functional approach provides a more 
comprehensive assessment of brain tumors, moving beyond 
the limitations of traditional structural anatomical loca-
tion. Consequently, these advancements have opened new 
avenues for the research and clinical community to evalu-
ate brain network connectivity in the context of brain tumor 
management. While further research is required, given the 
accuracy of our models and the context of predicting func-
tional outcomes, functional MRI could potentially serve as 
a superior predictor compared to its structural counterparts 
for some outcome measures.

From a neurosurgical standpoint, the long-term survival 
of patients with HGGs is a balancing act between the extent 
of surgical resection of the lesion and functional preserva-
tion [5, 6, 33, 34]. While substantial research exists regard-
ing survival prediction in relation to the extent of resection, 
investigations focusing on functional outcome predic-
tions remain relatively limited and pose significant chal-
lenges [35]. Previous studies have identified factors such as 
tumor size, cranial nerve manipulation, major brain vessel 
manipulation, posterior fossa location, and eloquent cor-
tex involvement as significant determinants of postopera-
tive deterioration in KPS [36]. Our results indicate tumor 
volume was only a moderate predictor (Fig. 4A) of KPS, 
which might initially appear counterintuitive. However, this 
finding underscores the critical point that tumor location in 
relation to functional networks could have a more signifi-
cant influence on functional outcomes than the size of the 
tumor alone.
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functional outcomes involve highly complex interactions 
between RSNs and their communication pathways.

Several limitations exist in the current work. Primarily, 
the data procured for this study were sourced from a single 
institution. In addition, the relatively small size of our data 
set limited the degree of validation we were able to per-
form (e.g., hold-out validation). Future work will involve 
prospective validation at our and other institutions, includ-
ing comparison with experienced clinicians. Future work 
should also consider the inclusion of additional variables. 
We intentionally withheld numerous variables that could be 
clinically relevant to functional outcome prediction (e.g., 
genetics, medical history, etc.). This allowed us to focus 
more specifically on the utility of RS-fMRI to predict out-
comes. Still, the inclusion of additional relevant variables 
could likely improve performance and offer a more holis-
tic predictive model. Multimodal neuroimaging studies 
could expand our understanding of the complex interplay 
described above. Specifically, the combination of RS-fMRI 
with white matter measures, such as DTI, could shed further 
light on the relationship between the tumor’s spatial loca-
tion, its effect on connectivity, and how the combination of 
the two manifests in the context of HGG. Lastly, pre-sur-
gical KPS was not available for this study, which restricts 
our ability to assess baseline functional status. Despite this, 
predicting post-surgical KPS remains beneficial. Identifying 
cases where KPS does not change post-surgery can be as 
informative as detecting declines or improvements. Future 
studies should aim to include both pre- and post-surgical 
assessments to further validate and refine these predictions. 
Future work should also examine the influence of individual 
variables on postoperative KPS, including analyses that can 
separate the effects of variables, such as age and hyperten-
sion, from their potential relationship with preoperative 
KPS.

Conclusion

This research demonstrates how machine learning can accu-
rately classify functional outcomes in HGG patients prior 
to surgical, chemical, or radiotherapy treatments. These 
results were achieved using only age, tumor location, RS-
fMRI measures, and tumor size. By incorporating these 
models into clinical practice, we stand to enhance patient 
care, enabling personalized treatment plans that balance 
quality of life with survival. Such models can drive a more 
nuanced approach to HGG patient management, prioritizing 
both longevity and post-treatment quality of life.
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