
Received: 19 February 2024 | Accepted: 11 June 2024

DOI: 10.1002/jeo2.12110

OR I G I NA L PAPER

Superior load‐to‐failure in an all‐suture anchor system
for all‐inside meniscal repair compared to a PEEK‐cage
anchor system in an experimental cadaveric test setting

Lorenz Pichler1,2 | Gyula Kiss1 | Thomas Sator1 | Andrea Schuller1 |

Sam A. Kandathil3 | Marcus Hofbauer1 | Thomas Koch4 |

Lena Hirtler3 | Thomas Tiefenboeck1

1Department of Orthopaedics and Trauma
Surgery, Medical University of Vienna,
Vienna, Austria

2Center for Musculoskeletal Surgery,
Charité – University Medicine Berlin,
Berlin, Germany

3Center for Anatomy and Cell Biology, Division
of Anatomy, Medical University of Vienna,
Vienna, Austria

4Research Group for Structural Polymers,
Technical University Vienna, Vienna, Austria

Correspondence

Thomas Tiefenboeck, Department of
Orthopaedics and Trauma Surgery, Medical
University of Vienna, Spitalgasse 23, 1090
Vienna, Austria.
Email: thomas.tiefenboeck@meduniwien.ac.at

Funding information
All authors declare that they have not received
any further funding or research grants in the
course of the study, research, or assembly of
the manuscript

Abstract
Purpose: The purpose of this study was to compare the biomechanical
properties of a latest generation all‐suture anchor repair device (ASARD) for
meniscal repair with that of a latest generation PEEK‐cage anchor repair
device (PCARD) in an experimental setting using cadaveric menisci.
Methods: Twenty‐six menisci were obtained from the knees of fresh body
donors. Artificially created meniscal lesions were treated randomly, using a
single stitch with either an ASARD or a PCARD. Cyclic biomechanical
testing, utilising a universal material testing machine and following an
established protocol, was carried out and load‐to‐failure (LTF), displace-
ment, stiffness, and mode‐of‐failure (MOF) reported.
Results: Mean LTF was found to be 61% higher in the ASARD group at
107.10N (standard deviation [SD], 42.34), compared to 65.86N (SD, 27.42) in
the PCARD group with statistical significance (p=0.022). The ASARD exhibited
a trend towards higher stiffness (10.35N; SD, 3.92 versus 7.78N; SD; 3.59) and
higher displacement at cycles one, 100, and 499 (1.64, 3.27, and 4.17mm
versus 0.93, 2.19, and 2.83mm) compared to the PCARD. Cheese wiring was
the most common mode‐of‐failure in both groups (76.9%).
Conclusions: This study demonstrates that an ASARD shows a higher
mean LTF than a PCARD when compared in an experimental bio-
mechanical setting.

Level of evidence: Level III
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INTRODUCTION

Meniscal injuries are among the most common
musculoskeletal injuries and meniscectomy has been
shown to result in higher rates of osteoarthritis when
compared to meniscal repair [6, 9, 14, 17, 20].
Consequently, the number of repair procedures carried
out increased, and their cost‐effectiveness was proven,
leading to the momentum behind the phrase ‘Save the
Meniscus’ [1, 3, 13, 18]. To date, several generations of
meniscal repair devices (MRDs) exist. To minimise the
anchor diameter and potentially reduce soft tissue
irritation, some manufacturers of these devices re-
placed the rigid anchor used for peripheral fixation with
an anchor made of suture material thus naming them
‘all‐suture anchor repair device’ (ASARD) [15, 22].
However, evidence on the biomechanical properties of
ASARDs compared to non‐suture anchor devices is
low. This study compared the biomechanical properties
of an ASARD with those of a PEEK‐cage anchor repair
device (PCARD), both representing the latest genera-
tion of their kind. The hypothesis formulated was that
the ASARD demonstrates a higher load‐to‐failure (LTF)
when compared to the PCARD in an experimental,
biomechanical setting, utilising cadaveric menisci and
an established biomechanical test protocol.

METHODS

The study protocol was approved by the local ethics
committee of (EK‐Nr. 1656/2021) and the study was
conducted in accordance with the Declaration of
Helsinki. Written informed consent was obtained pre‐
mortem from all body donors by the center for anatomy
from which menisci were obtained.

Menisci were obtained from injury‐free knees, of
fresh body donors through anterior arthrotomy, and
dissection of the menisci at their anterior and posterior
roots by an orthopaedic surgery resident. Obtained
menisci were subjected to visual inspection for lesions
and degeneration. Body donor demographics and
mean meniscus size measured as illustrated in
Figure 1 are reported according to sex and device
group in Tables 1 and 2.

Following dissection, menisci were subjected to
preparation and testing. An artificial meniscal lesion
was created through a 10mm longitudinal incision to
the pars intermedia at 3 mm measured from the outer
rim of the meniscus, using an 11‐blade scalpel. Menisci
were randomly assigned for single‐stitch repair by a
specialist for orthopaedics surgery (T.T.) using either an
ASARD (FiberStitch™; Arthrex) or PCARD (FAST‐
FIX™ Flex; Smith & Nephew). After the repair, the
lesions were extended along the longitudinal fibres,
reaching both the anterior and posterior horns. This
process created two segments of the meniscus, an

inner and an outer part, which remained connected
solely by the stitches applied. The inner part of the
anterior horn was then connected to the inner part of
the posterior horn and the outer part of the anterior
horn to the outer part of the anterior horn by a 3‐0 Vicryl
suture (Ethicon Inc.), resulting in a figure‐of‐eight
configuration (Figure 2).

After preparation, testing was carried out by two
residents (G.K. & L.P) and a specialist (T.T.) for
orthopaedics surgery at a laboratory for mechanical
engineering under the guidance of a senior scientist
with more than two decades of experience in material
testing (T.K.). To ensure comparability the testing
protocol applied and the parameters recorded closely
followed the protocol for the testing of meniscal repair
devices established by Bachmaier et al. [2]. A

F IGURE 1 Meniscus measurements.

TABLE 1 Body donor demographics.

Overall ASARD PCARD

Donor age, years, mean 81.8
(range;
68–98)

80.0
(range;
75–88)

81.0
(range;
68–98)

Donor sex Female 17 (65.4%) 9 (69.2%) 8 (61.5%)

Male 9 (34.6%) 4 (30.8%) 5 (38.5%)

Meniscus
side

Lateral 13 (50.0%) 6 (46.1%) 7 (53.8%)

Medial 13 (50.0%) 7 (53.8%) 6 (46.1%)

Abbreviations: ASARD, all‐suture anchor repair device; PCARD, PEEK‐cage
anchor repair device.
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calibrated universal material testing machine (Zwick
Z050; ZwickRoell) equipped with a force sensor was
used. The inner and outer parts of the menisci were
secured inside the machine using vertically aligned
clamps as display in Figure 2 and care was taken to
avoid clamping the applied stitches. Machine data
output was recorded using ZwickRoell firmware.

Testing began with the application of a 20 N preload
to the meniscus. Following this, cyclic testing was
initiated. Following preloading, 500 cycles of relaxation
to 5 N and consecutive re‐tensioning to 20 N at a

frequency of 1 Hz took place. Displacement between
the two parts of the menisci defined as the increase of
distance between clamps gained at each cycle of
tensioning was recorded at cycles 1, 100, and 499
through load‐displacement curves. Following 500
cycles, load to failure was determined by gradually
increasing the pulling force at a rate of 12.5 mm/s. The
load‐to‐failure (LTF) was defined as the force applied at
the moment at which loss of resistance was recorded.
The mode‐of‐failure (MOF) was categorised as either
suture rupture, anchor slippage, or cheese wiring as

TABLE 2 Meniscus size.

Overall Male Female Lateral Medial ASARD PCARD

Anterior‐posterior diameter (a) 39.65 ± 5.68 41.60 ± 5.83 38.62 ± 5.50 37.35 ± 5.37 41.95 ± 5.19 39.07 ± 5.43 40.24 ± 2.36

Inner circumference (b) 55.72 ± 8.36 59.17 ± 10.36 53.90 ± 6.74 55.00 ± 11.03 56.45 ± 4.78 55.84 ± 8.88 55.61 ± 7.47

Radius

Anterior horn (c) 10.27 ± 1.97 10.05 ± 1.72 10.39 ± 2.13 11.20 ± 1.94 9.34 ± 1.56 10.26 ± 1.37 10.28 ± 2.36

Pars intermedia (d) 8.81 ± 1.33 8.99 ± 1.14 8.72 ± 1.44 9.61 ± 0.90 8.01 ± 1.22 8.64 ± 1.15 8.98 ± 1.42

Posterior horn (e) 12.30 ± 2.30 13.15 ± 2.65 11.85 ± 2.02 11.17 ± 1.91 13.42 ± 2.15 12.31 ± 2.23 12.30 ± 2.27

Thickness

Anterior horn (f) 4.94 ± 0.93 5.34 ± 0.83 4.72 ± 0.93 4.84 ± 0.79 5.03 ± 1.08 4.63 ± 0.64 5.24 ± 1.04

Pars intermedia (g) 5.40 ± 1.43 5.21 ± 1.04 5.50 ± 1.61 5.49 ± 1.05 5.31 ± 1.77 5.01 ± 1.54 5.78 ± 1.11

Posterior horn (h) 5.27 ± 1.01 5.18 ± 1.21 5.31 ± 0.92 5.15 ± 1.24 5.38 ± 0.74 5.07 ± 1.06 5.46 ± 0.87

Note: Measurements in millimetres (mm). Values represent means unless stated otherwise ± standard deviation.

Abbreviations: ASARD, all‐suture anchor repair device; PCARD, PEEK‐cage anchor repair device.

F IGURE 2 Meniscus preparation with all‐suture anchor (left). Setup for biomechanical testing, dashed lines depict the outlines of the inner
and outer part of the meniscus (right).

| 3 of 8



illustrated in Figure 3 and reported by two members of
the team independently. Device stiffness (N/mm) was
defined as LTF divided by the displacement recorded at
failure.

Statistical analysis

To ensure methodological quality, the study protocol
adhered to the guidelines outlined in the QUACS
checklist, specifically designed for observational
cadaveric studies [23]. Descriptive analyses of body
donor demographics and meniscal size measurements
were carried out, and mean, median, and standard
deviation reported wherever applicable. A post hoc
power analysis was carried out using G*Power (version
3.1.9.6 [10]) and statistical power was found at 0.5
(two‐tailed t‐test, effect size 0.8, alpha error probability
0.05). Normal distribution was assessed using
Shapiro–Wilk test, and differences in means were
evaluated accordingly, using either Mann–Whitney U,
Fisher's Exact, or students t‐tests. Data were analysed
using SPSS (version 24.0, SPSS Inc.).

RESULTS

Following the exclusion of two menisci bearing signs of
lesions at initial inspection, a total of 26 menisci were
included. No statistically significant differences were found
for body donor age, distribution of sex, and distribution of
meniscus side between groups. The mean LTF for the

ASARD group was reported significantly higher at
107.10N (SD, 42.34) as compared to the PCARD group
at 65.68N (SD, 27.42; p=0.022*; r=0.44; Table 3;
Figure 4). Regarding MOF unanimous reports were
made by the observers in all cases. Cheese wiring was
identified as MOF in 20 cases (76.9%; ASARD 10 cases;
PCARD 10 cases), suture rupture in five cases (19.2%;
ASARD 2 cases; PCARD 3 cases), and anchor slippage in
one case (3.8%, ASARD). Displacement measurements
at cycles one, 100, and 499 showed that the ASARD
group experienced displacements of 1.34mm (SD: 1.29),
2.75mm (SD: 2.41), and 3.53mm (SD: 3.00), respectively.
In comparison, the PCARD group's displacements
were slightly higher at 1.64mm (SD: 1.36; p= 0.072),
3.27mm (SD: 2.04; p= 0.11), and 4.17mm (SD: 2.33;
p= 0.168), respectively. At failure, the ASARD group's
menisci demonstrated a stiffness of 10.35N/mm (SD:
3.92), compared with the PCARD group's stiffness of
7.78N/mm (SD: 3.59; p= 0.94).

DISCUSSION

The main finding of this study is that an ASARD
exhibits a higher LTF when compared to a PCARD in
an experimental cadaveric setting. Therefore, its
hypothesis was accepted. More specifically, the mean
LTF demonstrated by the ASARD evaluated in this
study was 61% higher than that of the PCARD. These
findings are consistent with those of earlier generations
of MRDs tested in the study by Bachmaier et al. who
compared an ASARD to a different PCARD [2].

F IGURE 3 Modes of failure: thread rupture (left), cheese wiring (middle), and anchor slippage (right).
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TABLE 3 Load to failure, displacement, stiffness, and mode of failure.

Overall All‐suture anchor PEEK‐cage anchor p‐Value

Load to failure

Mean 86.48 ± 40.78 107.10 ± 42.34 65.86 ± 27.42 0.022*

Median 79.32 86.61 67.78

Minimum 19.98 62.51 19.98

Maximum 193.27 193.27 110.75

Displacement

Round 1, mean 1.34 ± 1.29 1.64 ± 1.36 0.93 ± 1.18 n.s.

Round 100, mean 2.75 ± 2.41 3.27 ± 2.04 2.19 ± 2.73 n.s.

Round 499, mean 3.53 ± 3.00 4.17 ± 2.33 2.83 ± 3.57 n.s.

Stiffness

Mean 9.06 ± 3.91 10.35 ± 3.92 7.78 ± 3.59 n.s.

Median 8.81 9.49 8.12

Minimum 2.70 5.71 2.70

Maximum 19.11 19.11 14.56

Mode of failure

Thread rupture 2 3

Cheese‐wiring 10 10

Anchor slippage 1 0

Note: Measurements in Newton (N). All values represent means unless stated otherwise ±mean standard deviation; n.s., not significant.

F IGURE 4 Box plots with mean load to failure compared between groups, p = 0.022.
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Notably, the mean LTF reported for the ASARD by
Bachmaier et al. exceeds both the findings of this study
and the manufacturer's reported values (145, 107, and
69 N, respectively). While testing protocols were nearly
identical, variations in the methods employed for the
tensioning of the applied stitch were found. Bachmaier
et al utilised a spring‐loaded tensiometer set to 50 N. In
contrast, in the presented study and in the manufactur-
er's own assessment [7], stitches were tensioned
manually according to the surgical guidelines of the
ASARD. Currently, there is a lack of evidence regarding
the tension force that can be manually applied to the
stitches of an all‐inside MRD, as well as the variability
of this force. Consequently, the impact of a standar-
dised tensioning force on the overall LTF of such
devices remains unclear and should be subject of
further investigations.

Biomechanical evaluations of MRDs often focus on
LTF as the determinant of success and superiority of
devices, though very little evidence exists on the in‐vivo
LTF such devices have to withstand. Kirsch et al. in
their early investigations on the in vivo forces acting on
meniscal sutures reported them to never exceed 10 N
throughout knee flexion up to 114° [11]. However, the
extent to which weight bearing increases these forces
and whether there is a need for more LTF than what
modern all‐inside MRDs currently provide remains
uncertain.

The ASARD tested in this study exhibited its higher
LTF while also showing a trend towards higher ultimate
stiffness when compared to the PCARD. Higher
stiffness in MRDs might be conducive to tissue healing
[4, 5] but was also associated with an increased risk of
cheese‐wiring [16]. Although the sample size of this
study was insufficient to test for significant differences
in MOF between devices, it raises the question of
whether maximum stiffness in MRDs is beneficial, or if
a certain degree of flexibility might offer biomechanical
advantages.

Of note, the ASARD achieved higher LTF and
stiffness but also showed a tendency for higher
displacement amongst all cycles of testing when
compared to the PCARD. Whether the higher displace-
ment found is a result of increased LTF and stiffness
and how these parameters translate to patient outcome
remains unclear. Considering failure rates as high as
11.9% in all‐inside meniscal repairs [19], there is a
critical need for further research to understand how to
harmonise the biomechanical parameters of MRDs to
optimise in‐vivo performance. Ultimately, MRDs have
to be compared with respect to their clinical and
patient‐reported outcomes.

The experimental nature of this study bears
several limitations. While the sample size of the
presented study was limited by the number of lesion‐
free menisci, it was comparable to that of similar
studies [8, 12, 21]. Cadaveric studies inherently depict

a time‐zero scenario, leaving aside the natural healing
process and the ingrowth of implants and sutures.
Furthermore, the test setting applied represents a very
simplified abstraction of forces acting on MRDs in the
knee joint and the age of the body donors in this
study may not be representative of a typical patient
requiring meniscal repair. However, such simplified
biomechanical test settings are essential to identify
parameters with a potential impact on the real‐life
performance of implants and should be followed by
in vivo investigations.

If verified by in vivo investigations, the findings of
this study could significantly contribute to efforts aimed
at ‘saving the meniscus’ and preventing osteoarthritis.

CONCLUSION

In a controlled cadaveric test setting, an all‐suture
anchor repair device designed for all‐inside meniscal
repairs demonstrated superior load‐to‐failure capabili-
ties compared to a PEEK‐cage meniscal repair device.
To optimise the design of meniscal repair devices for
enhanced in‐vivo performance, further studies are
essential to understand how various biomechanical
properties interact within these devices.
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