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Development and validation 
of a predictive model based 
on β‑Klotho for head and neck 
squamous cell carcinoma
XiangXiu Wang 1,2,5, HongWei Liu 3,5, Gang Wu 4, Yan Lu 2 & Ying Cui 2*

Head and neck epithelial tissue tumors may be identified as head and neck squamous cell carcinoma 
(HNSC). Numerous malignancies are encouraged by dysregulation of the FGF19‑β‑Klotho (KLB) 
axis in the tumor microenvironment. Using protein databases and RT‑qPCR, we examined KLB 
expression in HNSC. In HNSC, higher KLB expression was linked to longer survival times and better 
prognoses. Furthermore, variations in drug susceptibility and immunological infiltration were noted 
according to KLB expression levels. These results underscore the importance of KLB in the course and 
management of HNSC by indicating that it may function as a possible prognostic marker and influence 
immunological and therapeutic responses in these individuals. Further study on HNSC is necessary to 
investigate KLB’s potential as a therapeutic target and prognostic indicator.

Head and neck squamous cell carcinoma (HNSC) originates from the mucosal epithelial cells of the oral cavity, 
pharynx, larynx, and  sinuses1. It is a highly aggressive and heterogeneous tumor. Most patients diagnosed with 
HNSC had no history of premalignant  lesions2. HNSC had 870,000 cases and 440,000 new deaths worldwide in 
 20203. Although immune checkpoint inhibitors have been approved by the US Food and Drug Administration 
for the treatment of cisplatin-refractory relapsed or metastatic  HNSC4, to overcome the barriers of targeted 
therapy and prolong the survival of patients, further studies on detailed molecular characterization and prog-
nostic signatures are still needed.

Over the past decades, research has emphasized the tumor microenvironment’s important role in develop-
ing head and neck cancer progression. The tumor microenvironment of HNSC consists of complex cellular and 
non-cellular components. The cellular features include cancer-associated fibroblasts, endothelial cells, adipocytes, 
immune cells, etc., and the noncellular components include ECM proteins and physicochemical  indicators5. 
Extracellular matrix (ECM) is an essential component of the tumor microenvironment, and its interaction with 
the tumor microenvironment influences tumor  progression6. Previous studies have shown that dysregulated 
FGF/FGFR signaling is associated with a non-T-cell inflammatory phenotype in tumors.

In contrast, inhibition of FGFR signaling in HNSC upregulates IFN-gamma in the TME, thereby promoting 
T-cell  differentiation7. The KL gene family was initially identified as being associated with anti-aging8 and is 
strongly associated with aging-related diseases. β-klotho (KLB) is a single transmembrane protein. KLB binds to 
FGFR1c to form the receptor for  FGF219, and KLB binds to FGFR4 to form the receptor for  FGF1910. It has been 
shown that the Klotho-FGF endocrine axis is closely associated with aging-related diseases, including  tumors11,12. 
However, KLB’s role in the HNSC tumor microenvironment remains to be further investigated.

We examined the transcriptome data of HNSC in the TCGA. We discovered a significant trend of decreasing 
KLB expression levels in tumor samples compared to standard samples, as well as that patients with high KLB 
expression in tumor samples had more prolonged survival than patients with low KLB expression. As a result, 
the current work aims to investigate the particular role of KLB in the HNSC tumor microenvironment and to 
correlate it with clinical indicators to predict the prognosis of HNSC patients and the effect of immunotherapy 
based on KLB and its related gene expression levels.
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Results
KLB is lowly expressed in tumor tissue
Figure 1 illustrates the study flow. To determine whether KLB plays a role in human cancers, we first examined 
the expression of the KLB gene in different cancers in the Cancer Genome Atlas (TCGA) database through the 
database TIMER 2.0. As shown in Fig. 2A, KLB is lowly expressed in 15 epithelial-type tumors compared to 
standard samples, including Breast invasive carcinoma, Cholangio carcinoma, Colon adenocarcinoma, Glioblas-
toma multiforme, Thyroid carcinoma, Kidney chromophobe, Kidney renal clear cell carcinoma, Kidney renal 
papillary cell carcinoma, Liver hepatocellular carcinoma, Lung adenocarcinoma, Lung squamous cell carcinoma, 
Prostate adenocarcinoma, Rectum adenocarcinoma, Stomach adenocarcinoma, and Head and Neck Squamous 
Cell Carcinoma. We compared the expression of KLB in HNSC with that of normal samples, and the results in 
Fig. 2B,C show that KLB is lower expressed in HNSC. In addition, Fig. 2E–H shows the immunohistochemical 
staining results of the HNSC tumor and paraneoplastic tissues, with KLB expressed at low levels in tumor tissue.

To validate the results of bioinformatics analysis, we selected pathological specimens of cancerous (n = 8) and 
paraneoplastic (n = 8) tissues from patients with squamous cell carcinoma of the head and neck and extracted 
total tissue RNA. We analyzed the relative expression of KLB in cancerous and paraneoplastic tissues using the 
RT-qPCR method. The outcomes showed that the word of KLB was significantly lower in cancer tissues than in 
the paraneoplastic tissues, consistent with the bioinformatics analysis (Fig. 2D).

KLB expression correlates with immune infiltration
Next, we assessed the relationship between KLB expression and immune infiltration using the CIBERSORT 
algorithm. As shown in Fig. 3A–H, the transcriptional expression of KLB was negatively correlated with Mast 
cells activated, Macrophages M2, Macrophages M0, and NK cells resting, and positively correlated with T cells 
regulatory (Tregs), T cells follicular helper, T cells CD8, Plasma cells and B cells naïve. On the other hand, KLB 
highly expressing HNSC patients with B cells naive, Plasma cells, T cells follicular helper and T cells regulatory 
(Tregs) high infiltration and NK cells resting, Macrophages M0 and Macrophages M2 low infiltration (Fig. 3I).

Figure 1.  The whole analytical process of the study.
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Figure2.  Differences in KLB expression between tumor and paraneoplastic tissues. (A) KLB expression in 
pan-cancer. (B) KLB expression was lower in tumor tissues than in paraneoplastic tissues in TCGA-HNSC data. 
(C) Lower KLB expression in tumor tissues than paraneoplastic tissues in paired samples of TCGA-HNSC data. 
(D) In collected clinical samples, there was a higher KLB expression in paraneoplastic tissues (N = 8) than in 
tumor tissues (N = 8). (E–H) Immunohistochemical staining of head and neck tissues against KLB expression 
levels in the HPA database. (F) and (H) are from different parts of sections from the same patient, and (E) and 
(G) are from different patients’ normal mucosal epithelial tissues of the head and neck. (E) Specimen number 
HPA021136, site: head and neck normal tissue, patient id: 3362, (F) Specimen number HPA021136, site: head 
and neck, squamous carcinoma tissue, patient id: 2547, (G) Specimen number HPA021136, site: head and neck, 
normal nasopharyngeal tissue, patient id: 3402, (H) Specimen number HPA021136, site: head and neck, head 
and neck, squamous carcinoma tissue, patient id: 2547).
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Correlation of KLB expression with the prognosis of HNSC patients
To investigate the prognostic value of KLB in HNSC, we used the Kaplan–Meier Plotter to predict the relationship 

Figure 3.  Relationship between KLB expression level and immune infiltration. (A–H) The transcriptional 
expression of KLB was negatively correlated with Mast cells activated, Macrophages M2, Macrophages M0, and 
NK cells resting, and positively correlated with T cells regulatory (Tregs), T cells follicular helper, T cells CD8, 
Plasma cells and B cells naïve. (I) Differences in immune cell infiltration between KLB high and low expression 
groups.
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between KLB expression and the overall survival of HNSC patients. Figure 4A showed a significant difference 
between the high and low KLB expression groups. Median survival was higher in the high KLB expression group 
than in the low KLB expression group, which indicated that KLB expression might be associated with a better 
prognosis for HNSC patients. In addition, we compared the impact of KLB on overall survival in male and female 
patients separately. The overall survival rate was higher in male patients with higher KLB expression than in 
patients with lower KLB expression. In contrast, there was no statistically significant difference in the effect of 
KLB on overall survival in female patients (Fig. 4B,C).

To further investigate the prognostic value of KLB, we merged HNSC transcriptomic and clinical data from 
TCGA (normal = 44, tumor = 500) and a GEO dataset containing HNSC transcriptomic expression data and 
survival time and survival status (GSE65858, n = 270). We divided the 772 HNSC samples into a KLB high-
expression group and a KLB low-expression group. We found the differential genes between the two groups, with 
the screening criteria of P < 0.05 and Log FC > 1 (Fig. 4D). We found 2798 genes that differed between groups 
and used the R package “Consensus Cluster Plus” to cluster all HNSC samples based on the expression patterns 
of the differential genes. The clustering was best when all samples were divided into three subtypes with good 
intra-subtype stability. We named the KLB subtypes A–C, with KLB cluster A containing 281 illustrations, KLB 
cluster B containing 409 samples, and KLB cluster C collecting 82 samples. Survival analysis showed that samples 
in cluster C had a better prognosis than those in clusters A and B (Fig. 4E). In addition, we used GSEA analysis to 
explore the internal characteristics of the three subtypes. We obtained enrichment analysis results showing that 
C subtypes are associated with immune activation, such as the Fc epsilon RI signaling pathway, B cell receptor 
signaling pathway, T cell receptor signaling pathway, the intestinal immune network for Ig A production, and 
natural killer cell-mediated cytotoxicity. In contrast, the B subtype is associated with pathways that promote 
tumor progression, such as the Wnt signaling pathway (Fig. 4F,G). In addition, immune cell infiltration-related 
pathways, such as the B cell receptor signaling pathway, T cell receptor signaling pathway, and natural killer 
cell-mediated cytotoxicity, were up-regulated in the A subtype compared to the B subtype.

Prognostic risk assessment of HNSC patients using differential genes grouped by KLB 
expression
To assess the prognostic risk of HNSC patients, we performed unifactorial Cox analysis on differential 
genes grouped by KLB expression to find prognosis-related genes; all samples were randomly divided into 
a training set and a test set and then performed lasso regression analysis and multifactorial Cox regression 
analysis on these prognosis-related genes to finally obtain 16 genes for assessing the KLB-Related Prognos-
tic Risk Score (KRPRS) of HNSC patients. Eight of these positive factors were: ODF4, FAM187B, RAB37, 
CALN1, SRY, PLA2G2D, PIWIL2, CALML5 and eight negative factors were: TRIML2, KIF1A, SRPX, 
DPY19L2P1, CDKL2, RLN2, TMEFF2, C4BPB. The KLB-Related Prognostic Risk Score = expression level of 
ODF4*(− 1.135722681) + FAM187B*(-1.12696817) + RAB37*(− 0.494219462) + CALN1*(− 0.364682077) + SRY*(-
0.324556358) + PLA2G2D*(− 0.220799715) + PIWIL2*(− 0.175252875) + CALML5*(− 0.060812431) + TRIML
2*0.141813192 + KIF1A*0.16220514 + SRPX*0.178929297 + DPY19L2P1*0.428554182 + CDKL2*0.43678682
9 + RLN2*0.703418091 + TMEFF2*0.779739064 + C4BPB*1.317576808.Taking the median KRPRS as the cutoff 
value, in both the training and validation sets, the high KLB-Related Prognostic Risk Score group had a poorer 
prognosis than the low KRPRS group. We also analyzed the difference in KLB expression between the high-risk 
and low-risk groups. We showed that KLB expression was lower in the high-risk group (Fig. 5A), suggesting 
that lower KLB expression predicted a higher risk score and a worse prognosis. The results of the ROC analysis 
show that the area under the curve at 1, 3, and 5 years is above 0.65 (Fig. 5B). The conclusions we obtained in 
the training and test sets are consistent.

The low‑risk score group had higher PD‑L1 expression and immune cell infiltration
To explore the differences between the high and low-risk score groups, we compared the differences in immune 
cell infiltration between the high and low-risk groups. Previous accumulating evidence suggests that high tumor 
mutation load implies durable anti-PD-1/PD-L1 immunotherapy; we compared the differences in PD-1 and 
PD-L1 expression between the high-risk and low-risk groups and showed that PD-L1 expression was higher 
in the low-risk group compared to the high-risk group (Fig. 5C,D). Therefore, the above results indirectly 
demonstrate that risk scores predict clinical response to anti-PD-1/PD-L1 immunotherapy. In addition, the 
results showed that the high-risk score group had higher Macrophages M0, Mast cells activated, and T cells 
CD4 memory resting infiltration. The low-risk score group had higher Macrophages M1, T cells CD4 memory 
started, T cells CD8, T cells follicular helper, T cells gamma delta, T cells regulatory (Tregs), and B cells naïve 
infiltration (Fig. 5E). Next, we analyzed high- and low-risk scores for tumor mutations in the TCGA-HNSC 
cohort using the map tools package. Figure 5F,G shows that the high-risk score group predicted a higher tumor 
mutation load than the low-risk score.

Evaluation of response to drug candidates in patients at high and low risk of HNSC
To calculate drug sensitivity for each sample of patients in the high-risk and low-risk groups, we used the R pack-
age pRRophetic to identify 73 compounds that differed between the high-risk and low-risk scoring groups. The 
five drugs with the strongest positive correlation between risk score and drug sensitivity were ATRA(R = 0.49), 
THZ-2-49(R = 0.47), KIN001-102(R = 0.45), GSK690693(R = 0.36), MK-2206(R = 0.36) (Fig. 6A–J). Of these, 
ATRA (trans-retinoic acid), THZ-2-49 (selective CDK7 inhibitor), KIN001 (a patented drug combination of 
Pamapimod and pioglitazone, two active ingredients of an oral drug), GSK690693 (Pan-Akt inhibitor), and 
MK-2206, a selective Akt1/2/3 inhibitor. To predict the responsiveness of different risk groups to immune check-
point inhibitor therapy, TIDE scores and the proportion of samples expected to be “responders” in various risk 
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Figure 4.  KLB expression levels correlate with survival in HNSC patients. (A–C). K–M plotter plotted survival 
curves for HNSC patients, with more prolonged survival in the high KLB expression group in overall and male 
patients and no statistically significant difference in survival between high and low KLB expression in female 
patients. (A). Survival of different KLB expression subgroups in the overall situation. (B) survival of different 
KLB expression subgroups when sex is female. survival of different KLB expression subgroups when sex is 
male). (D) Differential genes between high and low KLB expression groups. (E) Survival differences between 
the three subtypes. (F) and (G) Enrichment analysis between the three subtypes. (F) Comparative results of 
enrichment analysis between subtype B and subtype C. Twenty differentially expressed pathways between the 
two isoforms are illustrated in the figure. (G) Comparative results of enrichment analysis between subtype A 
and subtype B. Twenty differentially expressed pathways between the two isoforms are illustrated in the figure).
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Figure 5.  Construction of a prognostic risk score for HNSC patients based on differential genes between 
the three subtypes. (A) Survival differences between high and low-risk groups. (B) Accuracy of AUC curves 
to assess prognostic modeling. (C) and (D) Difference in expression of KLB, PD-L1 between high and low-
risk groups. (E) Difference in immune infiltration between high and low-risk groups. (F) and (G) Mutation 
differences in transcription factors associated with tumor progression between high and low-risk groups. (F. 
Waterfall plot of gene mutations in the low-risk group. G. Waterfall plot of gene mutations in high-risk group).
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groups were compared between the high-risk and low-risk groups. The TIDE scores of the low-risk group were 
significantly lower than those of the high-risk group, and the proportion of “responder” samples in the low-risk 

Figure 6.  Drug sensitivity analysis between high and low-risk groups. ( A–E) Risk Scores were positively 
correlated with IC50 for ATRA (R = 0.49), THZ-2-49 (R = 0.47), KIN001-102 (R = 0.45), GSK690693 (R = 0.36), 
and MK-2206 (R = 0.36).  F–J) HNSC patients in the low-risk group had higher drug sensitivity to ATRA, THZ-
2-49, KIN001-102, GSK690693, and MK-2206. K–L. TIDE score for assessing immune checkpoint inhibitor 
therapy responsiveness in individual tumor patients. (K) Percentage of Responder and Non-responder in high 
and low Risk groups. (L) Difference in TIDE scores between high- and low-risk groups).
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group was higher than that in the high-risk group (Fig. 6K–L). This suggests that the samples in the low-risk 
group have a better response to immune checkpoint inhibitors.

Discussion
This study found that head and neck squamous cell carcinoma tumor samples had lower KLB expression levels 
than paraneoplastic tissues. Prognostic models and risk scores for patients with head and neck squamous cell 
carcinoma were constructed on this basis. KLB expression was low in the high-risk group and high in the low-
risk group. Significant differences in the level of immune infiltration, drug sensitivity, and responsiveness to 
immune checkpoint inhibitor therapy between the high-risk and low-risk groups. In addition, the expression 
of PD-L1 in the high-risk group was lower than in the low-risk group. The above results suggest that KLB can 
be used as a prognostic marker and potential target for patients with head and neck squamous cell carcinoma, 
and the prognostic model constructed with 16 related genes identified with KLB as the core gene can predict the 
prognosis and immunotherapy effect of patients.

Studies have consistently shown that the expression level of KLB is closely associated with tumor 
 progression13,14. Mechanistically, it may be related to the regulatory role of KLB with fibroblast growth factor 
in the tumor extracellular  stroma15. KLB as a co-receptor of FGFR4 is involved in the metabolic homeostasis 
of bile acids, glucose, and lipids in the  organism16, and when the expression level of KLB is decreased in tumor 
patients, the dynamic equilibrium of the FGFR4-KLB axis of the organism is disrupted, which further activates 
the pro-cancer effect of FGF19-FGFR4. In addition, it has been demonstrated that KLB overexpression promotes 
macrophage infiltration by decreasing CSF-1 expression, and macrophage infiltration inhibits the progression 
of endometrial  cancer17. In terms of the interaction between tumor cells and immune cells, since CD8+ T-cell 
infiltration was significantly increased in the low-risk group of HNSC, we hypothesized that high KLB expres-
sion could up-regulate the surface antigens of tumors and thus promote the recognition of antigens by CD8+ 
T-cells and the killing of tumor  cells18. Differences in immune cell infiltration and corresponding immune cell 
functions according to the high-risk and low-risk groups are shown in Supplementary Table S1019. However, 
high expression of KLB showed a protective effect in lung cancer and a risk factor in hepatocellular  carcinoma20, 
which may be related to the different roles of fibroblast growth factors in the tumor microenvironment of dif-
ferent tumor  types21.

This study found that HNSC patients with high KLB expression had a good prognosis, more prolonged 
survival, and more substantial immune infiltration. Patients with high PD-L1 expression have been shown to 
have better immunotherapy  outcomes22. In our study, patients with low prognostic risk scores had high levels of 
KLB expression concomitant with high PD-L1 expression, suggesting that immunotherapy was more effective 
in patients in the low-risk group. However, analysis of the correlation between the expression levels of KLB and 
PD-L1 revealed that there was no significant linear correlation between the two (Supplementary Figure. S1), 
which may be due to the high heterogeneity of patients with head and neck tumors or the correlation between 
the expression levels of the two was nonlinear. PD-L1 expression is only predictive of immunotherapy efficacy 
in a subset of tumor patients, not all of them, so other predictors must be  consulted23. Therefore, this experi-
ment used the TIDE score to predict the responsiveness of individual samples to immunotherapy. Higher TIDE 
scores represent patients with poorer responsiveness to immune checkpoint inhibitors. The TIDE score of the 
low-risk group was significantly lower than that of the high-risk group, suggesting that the low-risk group had 
better responsiveness to immunotherapy. In addition, a lower TIDE score also represents a more extended sur-
vival period after immunotherapy in this  sample24. However, the specific mechanism of KLB’s role in the tumor 
microenvironment and its effect on immune infiltration require further experimental studies.

HNSC is the seventh most common tumor type in the world, with high heterogeneity and poor prognosis. 
Immunotherapy is effective for some patients, but still, some patients are poorly treated or develop drug resist-
ance. Our study provides references for finding new targets or adjuvant immunotherapy for treating head and 
neck tumors. In the following analysis, we will explore what role KLB plays in the tumor microenvironment, 
probe how KLB affects immune infiltration, and further explain why KLB overexpression prolongs the survival 
of patients with head and neck tumors.

Methods
Data collection and organization
Gene expression data for HNSC were retrieved from the TCGA-HNSC (including 500 tumor samples and 44 
normal samples) and GEO (GSE65858) databases (including 270 tumor samples). The gene expression matrix 
of the GEO database was collated using platform and probe files. Regions with the same gene name correspond-
ing to different probes were averaged. To obtain the gene expression matrix of the merged HNSC samples, the 
TCGA-HNSC data and the GSE65858 data were merged using the SVA package.

Analysing differences in KLB expression
Based on the expression data of TCGA-HNSC, we used the LIMMA package to analyze the expression difference 
of KLB in normal and tumor samples. Paired samples were extracted for difference analysis, and statistical plots 
were produced using the ggplot2 package.

Immune infiltration analysis
To calculate the immune microenvironment for immune cell infiltration and disease, we used CIBERSORT and 
performed it 1000 times. The analysis results were visualized using the ggplot2 package and the related extension 
package ggExtra. Gene expression and immune cell infiltration correlations were performed using Spearman’s 
test. The calculated immune infiltration results are in Supplementary Table S1.
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Confirmation of differential genes between groups based on KLB expression
The median value of KLB expression was used to divide into two groups of high and low KLB expression, and 
the LIMMA package was used to confirm the differential genes between the two groups, with the filtering condi-
tion of |log2FC|> 1; P < 0.05. All the differential genes between the groups are listed in Supplementary Table S2.

Genotyping using intergroup differences and identifying subtype characteristics
Unsupervised cluster typing was done using the Consensus Cluster Plus package, and functional annotation 
was done for each subtype using GSVA with the functionally annotated gene set from the MsigDB database. 
The results of the enrichment analyses are presented in Supplementary Tables 3–5. Differences were considered 
significant at a corrected p-value of < 0.05. Survival analyses were done for the three subtypes using the Survival 
package, statistical results were visualized using the Survminer package, and differences between survival curves 
were analyzed using the log-rank test.

Construction of risk assessment models
Lasso regression was done using the GLMNET package to fit a COX proportional risk model to the expression 
data of the KLB subgroups of the differential genes with the survival data, and the area under the ROC curve was 
calculated. Candidate genes were selected using multivariate Cox analysis to establish a prognostic risk score in 
the training set. The prediction time was chosen to be the third year, and the results were output when the train-
ing set AUC > 0.65 and the validation set AUC > 0.63. The risk  score25 was calculated as follows:

Coefi and Expi denote each gene’s risk coefficient and expression, respectively. Risk scores for all samples are 
presented in Supplementary Table 6. The median value of the risk score was used to differentiate the samples into 
high- and low-risk groups, ssGSEA was used to assess the immune cell infiltration, and the Spearmen’s test was 
used to analyze the differences between the high- and low-risk groups. The results of the immune infiltration 
analysis are presented in Supplementary Table 7.

Chemical reagent
Animal Total RNA Isolation Kit (RE-03011) was purchased from Foregene Co. Chengdu, China; reverse tran-
scription kit (AU341-02) was purchased from Beijing Transgen Biotechnology Co., RT-qPCR MIX (11203ES03) 
was purchased from Yasen Biotech Co. Wuhan, China.

RT‑qPCR
Tissue samples of head and neck tumors were obtained from the Department of Otorhinolaryngology of Jinzhou 
Medical University, and the experimental procedures complied with the requirements of the Ethics Committee 
of the First Affiliated Hospital of Jinzhou Medical University, and all experiments were conducted according to 
the requirements of the Ethics Committee of Jinzhou Medical University. All the participating patients signed 
informed consent. For RNA extraction, RNA was extracted from 50 mg specimens for reverse transcription and 
RT-qPCR on a single instrument (ABI QuantStudio 3, USA) according to the manufacturer’s instructions. We 
used GAPDH as an internal reference, 2-ΔΔCt to calculate relative gene expression levels, and GraphPad 9.0 to 
visualize the data. The primer sequences used are listed in Supplementary Table 8.

Online Database
We used TIMER 2.0 (http:// timer. cistr ome. org/)26 to analyze the immune infiltration, and HPA, Human Protein 
Atlas (proteinatlas. org)27 to find immunohistochemistry section data of KLB in healthy versus head and neck 
tumor tissues, K–M Plotter ( kmplot.com)28 to find survival data of HNSC patients associated with KLB expres-
sion. For all of the above databases, the search term for the disease is HNSC, and the search term for the gene 
is KLB. To assess predicting responsiveness to immunosuppressive therapy in individual patients, TIDE scores 
were calculated for individual samples using the TIDE database (Tumor Immune Dysfunction and Exclusion, 
tide.dfci.harvard.edu)29, and input transcriptomic data were normalized according to the website’s requirements, 
TIDE scores for each patient are displayed in Supplementary Table S9.

Data sources
RNA-seq data for HNSC patients from TCGA (https:// tcga- data. nci. nih. gov/ tcga/) and GEO (GSE65858). KEGG 
enrichment analysis was performed via https:// www. genome. jp/ kegg/.

Statistical analysis
Data from RT-qPCR were analyzed using the student’s t-test, the Willcox test was used in the R. Kaplan–Meier 
survival analysis, and log-rank tests were applied to conduct univariate survival analysis. Multivariate survival 
analyses were performed using Cox regression models. P values < 0.05 were considered statistically significant. 
The statistical analyses in this study were generated by R-4.2.1.

Data availability
The databases used in this study are all publicly available and can be found in the TCGA database (https:// portal. 
gdc. cancer. gov/) and the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) database.

Risk score = �(Expi ∗ Coefi)

http://timer.cistrome.org/)
https://tcga-data.nci.nih.gov/tcga/
https://www.genome.jp/kegg/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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