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Measuring the burden of hundreds of
BioBricks defines an evolutionary limit on
constructability in synthetic biology

Noor Radde1,3, Genevieve A. Mortensen 1,3, Diya Bhat 1, Shireen Shah1,
Joseph J. Clements1, Sean P. Leonard 1, Matthew J. McGuffie1,
Dennis M. Mishler1,2 & Jeffrey E. Barrick 1

Engineered DNA will slow the growth of a host cell if it redirects limiting
resources or otherwise interferes with homeostasis. Escape mutants that
alleviate this burden can rapidly evolve and take over cell populations, making
genetic engineering less reliable and predictable. Synthetic biologists often
use genetic parts encoded on plasmids, but their burden is rarely character-
ized.Wemeasured how 301 BioBrick plasmids affected Escherichia coli growth
and found that 59 (19.6%) were burdensome, primarily because they depleted
the limited gene expression resources of host cells. Overall, no BioBricks
reduced the growth rate of E. coli by >45%, which agreed with a population
geneticmodel that predicts suchplasmids shouldbeunclonable.Wemade this
model available online for education (https://barricklab.org/burden-model)
and added our burden measurements to the iGEM Registry. Our results
establish a fundamental limit on what DNA constructs and genetic modifica-
tions can be successfully engineered into cells.

Synthetic biologists are engineering increasingly sophisticated
functions into cells and deploying these living machines in new and
more challenging environments. For example, cells have been cre-
ated with genetic circuits that perform complex sensing and logic
operations1,2, and bacterial symbionts have been engineered to
improve the productivity and health of their plant and animal
hosts3–5. However, unlike computer code, engineered DNA
sequences in cells can evolve, potentially making their functions
unpredictable and unreliable6,7. Evolutionary failure—when less-
functional or nonfunctional mutants outcompete their ancestor—
can occur rapidly if an engineered function is highly burdensome to
a cell or if the sequences that encode it are especially mutation-
prone8–12. In extreme cases, a population of cells may already
become dominated by escape mutants that have evolved inacti-
vated variants of a designed sequence after the outgrowth of a
single transformed cell into a colony or small laboratory culture,
making that construct essentially unclonable. To improve the

foundations of bioengineering, we need to better understand why
certain DNA constructs are more burdensome to cells than others
and the limits on how much burden a cell can tolerate before
unwanted evolution becomes a barrier.

Because engineered DNA constructs use resources from the cell
to replicate and express genes, these processes are the most common
and predictable sources of burden13. Transcriptional resources (e.g.,
RNA polymerases) or translational resources (e.g., ribosomes, charged
tRNAs) often become limiting when a foreign DNA construct directs
the synthesis of RNAs and proteins that are not native to the cell.
Protein overexpression studies in E. coli generally find that ribosomes
are the most limiting factor. Translating these foreign proteins
decreases the growth rates of cells in proportion to how many ribo-
somes are redirected away from producing host proteins14–18. Usage of
gene expression resources can be monitored using high-throughput
approaches that globally profile RNA abundance and ribosomal
occupancy19,20 or reporter genes with expression levels that reflect the
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depletion of overall cellular capacities for transcription and
translation21.

Burden may also arise due to how specific gene products
expressed from an engineered DNA construct interact with host cells.
Metabolic engineering purposefully funnels precursor molecules
toward a target compound by expressing foreign enzymes, altering
gene regulation, and/or disrupting native pathways. These modifica-
tions will generally slow a cell’s growth, and metabolic products or
intermediates may also accumulate to levels that are detrimental to
cellular physiology22–24. Expressing certain types of proteins, such as
proteases and integral membrane proteins, is also known to be
stressful or toxic to E. coli cells, due either directly to their functions or
to competition with native proteins for secretion machinery25,26. Pro-
teins used for orthogonal control of gene expression, like T7 RNA
polymerase and dCas9, can exhibit excessive activity or off-target
effects that are extremely burdensome27. Finally, unintentional
expression of antisense and frameshifted gene products from cryptic
promoters and ribosome-binding sites has been shown to be an
unexpected source of burden in some constructs9,20.

Sharing of standardized genetic parts has been a cornerstone of
synthetic biology since its inception28,29. The Registry of Standard
Biological Parts is a database of engineered DNA sequences30 that
thousands of teamshave contributed to as part of their participation in
the International Genetically Engineered Machines (iGEM)
competition31,32. Most BioBrick parts are cloned into a small set of
standard vector backbones, which makes these plasmids a useful
common garden for analyzing the properties of inserts encoding dif-
ferent genetic parts and devices. In past studies, BioBricks have been
used to compare standardized measurements of promoter strength33

and fluorescent protein expression34,35 across many labs. It has been
proposed that genetic reliability—in the evolutionary sense of how
many cell doublings it takes for an engineered function to decaywithin
a population—be listed on a data sheet describing a genetic part29, but
this property is rarely characterized in practice. One goal of iGEM is to
improve upon existing parts, andmany BioBrick sequences are reused
by synthetic biology researchers outside of iGEM. Therefore, char-
acterizing which of these parts are evolutionarily unstable and
understanding why this is the case would broadly benefit the field.

Wemeasured the burden of 301 BioBrick plasmids from the iGEM
Registry containing DNA constructs ranging from individual parts to
complex devices. None of these plasmids reduced the growth rate of
their E. coli hosts by >45%, in agreement with stochastic simulations of
evolution that predict a level of burden above this threshold would
make a construct unclonable. We found that 6 BioBrick plasmids had a
burden of >30%, which would be expected to be problematic on the
laboratory scale, and that 19 had a burden of >20%, enough that they
might fail during process scale-up or in other applications in which
cells continue to divide. Several BioBrick plasmids, including two we
used as controls, evolved mutations that likely reduce their burden by
compromising their designed functions. Finally, we determined that
depletion of gene expression resources is sufficient to explain the
burden of most BioBrick plasmids, though some reduce host growth
rates for other, currently unknown reasons. Our work demonstrates
standardized frameworks for measuring burden and simulating the
dynamics of evolutionary failure that can be used to improve the
reliability of bioengineering.

Results
Model of evolutionary failure
Growth of a cell population that has been engineered with a new DNA
construct begins from a single transformed cell. As the population
divides, progeny with mutations in the sequence of the designed DNA
construct will arise. If these mutations alleviate a burden on the cells
caused by the engineeredDNA—most often by lessening or eliminating
a designed function that compromises their growth—then, the mutant

cells will have a competitive advantage. These higher-fitness cells will
outreplicate and displace ancestral cells with the original DNA con-
struct until they dominatewithin the population and functiondeclines.

To put our experimental measurements of burden into context,
wefirst investigated the expected timingof evolutionary failure using a
differential equation model (Fig. 1A). This model has two parameters.
The first is the burden (b) of the engineered DNA, expressed as a
percent reduction in the rate of replication of a cell containing the
genetic construct. The model makes a simplifying assumption that
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Fig. 1 | Evolutionary failure of a population of engineered cells. A Graphical
representation of a differential equation model with one class of failure mutations
that completely alleviates the fitness burden of an engineered DNA construct on a
host cell. B Population dynamics expected from this model. Subpopulations of
failed cells with mutated constructs evolve and outcompete the original engi-
neered cells with functional constructs. Complete failure happens rapidly once the
mutant cells reach a detectable frequency in the population. C Approximate
numbers of cell divisions that occur as a single engineered cell is grown into cul-
tures on different laboratory and industrial scales after its creation (see Supple-
mentary Data 1). Source data are provided with this paper.
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there is one category of mutations that leads to the failure of the
engineered function in away that completely alleviates its burden. The
rate of these failure mutations per cell division (µ) is the second
parameter. The typical dynamics for this model are that broken cells
with a failuremutation are initially very rare but then rapidly take over
a population as their fitness advantage is exponentially compounded
over time (Fig. 1B).

We wanted to understand what magnitude of burden would be
likely to lead to evolutionary failure of an engineered function
during a typical scale-up process starting with a single bacterial cell
picked as a colony isolate after transformation with a newly cloned
plasmid or some other genome editing procedure (Fig. 1C, Sup-
plementary Data 1). We estimate that ~23 cell divisions occur by the
time a single cell produces a normal-sized colony containing ~8
million cells on an agar plate. If this entire colony is placed into ~4ml
of LB in a test tube, it takes an additional ~11 cell divisions to reach
saturation, assuming a final density of ~5 × 109 cells/ml. Growth to a
200mL laboratory scale at a higher cell density (e.g., in terrific broth
for recombinant protein overexpression) brings the total to ~40 cell
divisions. Larger-scale industrial processes can reach even higher
cell densities such that ~56 cell divisions may be needed to saturate
a 1000 L bioreactor.

The rates of mutations leading to the failure of different DNA
constructs can vary widely, so we tested values of this parameter
spanning several orders of magnitude: from 10−4 to 10−8 per genome
per cell division. One factor that affects mutation rates is the infor-
mation content of a sequence, i.e., how many base pairs must be
specified to encode its function. Longer engineered DNA sequences
and those that are less robust to base changes are at a greater risk for
inactivating mutations6,7. The rate of base substitutions in E. coli is
~5 × 10–10 per basepair per generation36,37, andmostmicrobeswithDNA
genomes have similar mutation rates38,39. Thus, if a sequence contains
protein-coding genes that constitute 1000 base pairs and 20% of the
substitutions in these genes lead to a loss of function, the failure rate
will be ~1 × 10–7 per cell division just from base substitutions. This
estimate does not account for the possibility that there are mutational
hotspots in a sequence, such as mononucleotide repeats, that can
cause certain mutations to occur at much higher rates40,41. Further-
more, selfish elements in the host genome usually contribute other
types of mutations that further increase the total rate of failure
mutations. In particular, transposon insertions often inactivate genes
or sequences required for gene expression in engineered DNA
constructs11,42,43.

In the end, empirical measurements generally find a rate of ~10−6

per cell division for mutations that inactivate a single gene that is
located in the chromosome of E. coli or another bacterium42,44. The
effective mutation rate is much higher for engineered constructs
maintained on multicopy plasmids because each copy of the plasmid
in a cell is at risk. If there are 100 copies of a plasmid, the chance of a
plasmid with a certain mutation arising is ~100-fold higher. So, for
example, the rate of mutations reverting a stop codon in a reporter
construct, which can only occur via one or a few single base sub-
stitutions, has been measured as ~10−7 per cell division rather than the
value of ~10−9 expected if this reporter were tested in the
chromosome12. For plasmids that lackpartitioning systems like pBR322
and pUC derivatives commonly used in E. coli, one broken plasmid
copy can rapidly lead to 100% failure of all plasmids in all cells in a
population because progeny that happen to inherit more broken
plasmid copies due to random segregation will outcompete those that
do not. In summary, the effective rate of failure mutations in a high-
copy plasmid is usually much higher than the point mutation rate; it is
expected to be at least on the order of 10−5 and often as high as 10−4 per
cell division. Though mutational hotspots and multicopy plasmid
replication are not explicitly accounted for in our model, they justify
exploring simulations with a wide range of mutation rates.

Previous studies of escape mutations have used the deterministic
results of ordinary differential equation (ODE) models to estimate the
times to failure of engineered cells6,11. This framework assumes that
mutants appear continuously and immediately at the beginning of the
simulation. However, in reality, mutations appear stochastically in
single cells at very low rates, and the dynamics can vary greatly
depending onwhether these events occur early or late in the growth of
a population. Therefore, we compared the deterministic results for our
ODEmodel to stochastic simulations of thismodel to evaluate howand
when the results varied. We found that deterministic simulations
consistently overestimate how unstable a construct will be for a given
combination of parameters compared to stochastic models (Fig. 2).
The discrepancy becomes larger at lower mutation rates where it
mainly reflects the waiting time needed for the rare event that gen-
erates the first mutant cell to appear in a population in the stochastic
simulations, compared to the immediate appearance of thesemutants
in the deterministic simulations. However, there are also occasional
stochastic simulation runs in which failure occurs sooner than it does
in the deterministic model due to jackpot events when a mutation
occurs early in the growth of a population (as seen in the panel for
b = 20%, µ = 10−8).

Because we expect it to better represent the true evolutionary
dynamics, we further examined the results of the stochastic simula-
tions (Fig. 3). They show that at a typical mutation rate of 10−5 per cell
doubling (expected for a plasmid-borne construct) a burden of ≥50%
would lead to takeover of broken mutants in a test-tube culture most
of the time. At a mutation rate of 10−4, constructs with a burden of
≥40% would not survive on this small scale. Since one needs to grow a
single transformed cell into a culture of this size to purify and
sequence a plasmid to verify that it has the designed sequence, the
model predicts that constructs this burdensome will be essentially
unclonable. Even for less-burdensome plasmids or for constructs
experiencing lower mutation rates (for example, single-copy genes in
the chromosome), the model predicts that failure may occur at larger
scales if the burden reaches the 20–30% range.

We created an online version of our model that allows users to
adjust the burden and failure mutation rate parameters (https://
barricklab.org/burden-model). There is an option to use the stochastic
or deterministic version of the model and compare the results. Addi-
tionally, users can change the effective volume and density of their
culture to understand the scale at which a DNA construct with certain
characteristics is likely to fail. This interactivity allows users to explore
a range of parameters and rerun simulations multiple times to see for
themselves how mutations can affect the functional lifetimes of devi-
ces constructed in living, and therefore evolving cells.

Burden of BioBrick parts
To test whether actual engineered DNA sequences obey the evolu-
tionary constraints predicted by our model of escape mutations, we
examined a diverse collection of engineered DNA sequences created
for the iGEM (International Genetically Engineered Machine)
competition31. These BioBricks range in complexity from small DNA
parts, such as promoters and protein tags, to larger devices that con-
sist of multiple genes and operons. Historically, BioBricks in the Reg-
istry of Standard Biological Parts had to be cloned into plasmids in
ways that allowed them to be combined into larger constructs using a
specific assembly standard45. As a consequence, most BioBricks in the
kit distributed to iGEM teams are provided in plasmids pSB1C3,
pSB1A2, or in both of these backbones (Fig. 4A). pSB1C3 and pSB1A2-
share the same high-copy pUC origin of replication and overall orga-
nization, but they are maintained using different antibiotic resistance
genes: chloramphenicol acetyltransferase (cat) which confers chlor-
amphenicol resistance (CamR) for pSB1C3 versus β-lactamase (bla)
which confers resistance to ampicillin and other β-lactams (AmpR) for
pSB1A2. These plasmids also differ in how the expression of the cloned
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BioBrick part is insulated from elements in the plasmid backbone.
pSB1A2 has a transcriptional terminator upstream of the BioBrick
prefix multiple cloning site. pSB1C3 has a terminator at the same site
and an additional terminator downstream of the BioBrick suffix mul-
tiple cloning site.

We measured the growth rates of E. coli DH10B derived cells
transformed with BioBrick plasmids to determine how many of
these genetic parts and devices were burdensome and to what
extent (Supplementary Fig. 1). In eachmicroplate assay, we included
5 pSB1C3-based BioBrick plasmids we constructed with different
promoter and ribosome-binding site combinations driving expres-
sion of blue fluorescent protein (BFP). These plasmids cause dif-
ferent amounts of burden and served as internal controls. We
normalized growth rates between assays to account for plate-to-
plate variation based on results for the BFP controls and an addi-
tional assumption that most parts in each microplate would exhibit
no burden (Supplementary Fig. 2, Supplementary Data 2, and
“Methods” section).

In total, wemeasured the effects of the 5 BFP control plasmids and
301 other BioBricks on E. coli growth (Fig. 4B, Supplementary Data 3).
Of the 301 BioBricks we characterized, we tested 249 in pSB1C3, 40 in
pSB1A2, 9 in both of these plasmid backbones, and 3 housed in other
backbones (pSB1AK3 or pSB3C5). Even though different antibiotics
were added to growth media when testing BioBricks cloned into
pSB1C3 and pSB1A2, there was not a significant effect of the plasmid

backbone on the growth rates measured for the 9 parts tested in both
plasmids (p =0.069, F1,56 = 3.44, two-way ANOVA) (Supplementary
Fig. 3A). We also did not find evidence for any overall difference in the
distributions of growth rates measured for parts tested in pSB1C3
versus the other three backbones (p =0.92, two-sided Kolmogorov-
Smirnov test) (Supplementary Fig. 3B). Therefore, we considered all of
our measurements together, irrespective of the plasmid backbone in
which a BioBrick part was tested, in all further analyses.

Excluding the five BFP control plasmids, which were all burden-
some, 112 of the 301 other BioBrick part plasmids (37.2% of those
tested) significantly decreased E. coli growth rates relative to the
majority of parts that had no burden before correcting for multiple
testing (individual one-tailed t-tests, p <0.05). For 31 BioBricks the
growth rate burden was significantly greater than 10%, for 19 it was
significantly greater than 20%, and for 6 it was significantly greater
than 30% (one-tailed t-tests, p <0.05). In agreement with our popula-
tion genetic model, none of the BioBrick plasmids had a large enough
burden (>45%) that theywould be predicted tomutatewhen growing a
small test-tube culture in the laboratory (one-tailed t-tests, p <0.05).
After accounting for multiple testing using the Benjamini–Hochberg
procedure46 at a 5% false discovery rate (FDR), we can conclude that 59
of the 301 tested BioBrick parts (19.6%) exhibit some level of burden
with high confidence (one-tailed t-tests, adjusted p <0.05). Table 1 lists
the 34 BioBricks that met this criterion and had a mean estimated
burden of >10%.
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BioBricks containing gene expression parts aremore likely to be
burdensome
Only BioBricks that express anRNAorprotein product are expected to
appreciably burden a host cell, as the cost of replicating plasmid DNA
is generally negligible in comparison47. Therefore, we hypothesized
that the 59 BioBricks in the high-confidence burden set would bemore
likely than BioBricks thatwere not burdensome to contain strong gene
expression signals. Series of constitutive promoter parts
(J23100–J23119) and ribosome-binding site (RBS) parts (B0030, B0032,
and B0034) with known relative strengths are commonly reused in
different BioBricks. These promoters and RBS sequences can be divi-
ded into weak, medium, and strong variants on the basis of experi-
mental data reported in the iGEM Registry (Fig. 5A, B)48.

We examinedwhether BioBricks that exhibited burdenweremore
likely to include these common gene expression parts than those that
were not burdensome (Fig. 5C, D). BioBricks that contained any of
these constitutive promoters were 2.9 times as likely to be in the set of
59 burdensome BioBricks compared to those that did not have one of
these promoters (p = 0.00040, Fisher’s exact test), with a trend that
the stronger promoters were even more likely to be associated with
burdensomeBioBricks. Similarly, BioBricks that included the strongest
of the three RBS parts (B0034) were 2.1 times as likely to slow E. coli
growth as BioBricks that included only the two weaker RBS variants or
none of the RBS sequences in this series (p =0.0037, Fisher’s exact
test). None of the BioBricks that contained the medium-strength RBS
also had a constitutive promoter part, which can explain why this

category noticeably deviated from the general trends. Overall, these
results agree with the general expectation that strong, constitutive
gene expression contributes to the burden of many BioBricks.

One case that stood out in examining these results was BioBrick
K880005. It includes the strongest constitutive promoter (J23100) and
RBS (B0034) from these sets, but it does not include a downstream
open reading frame. Nevertheless, K880005 is among the most bur-
densome BioBricks that we measured: it reduces the growth rate of E.
coli by 27.5 ± 8.6% (95% confidence interval) (Table 1). The high burden
of this BioBrick may put it at risk of mutating during laboratory pro-
pagation, even at the test-tube scale (Fig. 3). Its unexpected burden
could result from transcription and/or translation of sequences
downstream of the part in the BioBrick suffix sequence and plasmid
backbone. Even though it was tested in the pSB1C3 backbone that has
flanking rho-independent terminators designed to insulate the Bio-
Brick, there is commonly some level of transcriptional read-through of
these elements49,50.

BioBrick burden is not correlated with organism of origin
Next, we tested whether BioBricks that incorporated genetic part
sequences from certain types of organisms weremore likely to exhibit
burden. We classified BioBricks according to the most divergent
organism fromwhich their sequences originated and examined twelve
classification schemes in which we categorized similar organisms at
different levels of taxonomic resolution, only considered protein-
coding features, and/or omitted fluorescent proteins when assigning a
BioBricks’s organism of origin (“Methods” section, Supplementary
Data 3, Supplementary Fig. 4). We found no variation in the distribu-
tions of normalized growth rates of E. coli strains carrying BioBrick
plasmidswith sequences derived fromdifferent types of organisms for
any of the classification schemes (Kruskal–Wallis tests, p >0.5) (Sup-
plementary Table 1). The chances that a BioBrick was classified in the
high-confidence burden set of 59 BioBricks also did not vary sig-
nificantly with source organism category for eleven of the twelve
classification schemes (likelihood-ratio tests comparing binomial
models, p >0.05) (Supplementary Table 1). The one exception, which
only barely reached statistical significance (p =0.047), found that
BioBricks with sequences from bacteria other than γ-proteobacteria
were more likely to be burdensome compared to sequences from E.
coli, γ-proteobacteria other than E. coli, or eukaryotes (Supplementary
Fig. 4B). Overall, we conclude that organism of origin did not con-
sistently correlatewithwhether a BioBrickwould exhibit burden or the
amount of that burden.

Mutations and variability in strains with BioBrick plasmids
support a burden limit on constructability
To validate the identity and integrity of the plasmids we tested, we
compared whole-plasmid sequencing data for 215 BioBricks plus the 5
BFP controls to the sequences reported in the iGEM Registry (Sup-
plementary Data 4 and “Methods” section). Excluding the controls, we
sequenced 214 of the 301 BioBricks for which we had burden mea-
surements (71.1%). Of these, 8 plasmids were initially misassigned to
the wrong BioBrick and 3 others to the wrong backbone in our results
before we corrected them. For 185 of the 215 sequenced plasmids
(86.0%), our results perfectly matched the expected BioBrick
sequences. Of the 30 others, we found relatively minor discrepancies
between the sequencing data and the reported BioBrick sequences for
23, and the other 7 hadmajor discrepancies, such as large deletions or
transposon insertions.

It is not possible to determine with 100% certainty whether these
discrepancies are due to errors in the designed part sequences that
were submitted to the iGEM Registry ormutations that arose and took
over cell populations because they reduced the BioBrick burden. Most
discrepancies are single base changes or deletions that may have no
effect on genetic part function. However, in the seven cases of major
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discrepancies, we can be reasonably sure that we have observed
unplanned mutations with consequences. Two BioBricks (S03749,
I759016) were inactivated by insertion sequence (IS) elements that
must have transposed into their sequences after construction. Two
BioBricks that were closely related to the second of these (I759019,
I759020) had frameshifting or large deletions. Two other parts related
to one another (K523020, K523022) also contained large deletions,
and the first of these wasmarked as “believed to containmajor errors”
in the iGEM Registry. Finally, most of BioBrick I732920 was deleted,
and its sequence marked as “inconsistent” in the iGEM Registry.

Two of the BFP control BioBrick plasmids, which our own iGEM
team constructed and submitted to the iGEM Registry, demonstrate
that there is a real risk of selecting cells that have mutated copies of
highly burdensome plasmids soon after they are created. We noticed
that there was a discrepancy in the order of the growth rates of strains
carrying these plasmids in our burden assays: the two control plasmids
designed to have the strongest combinations of promoters and
ribosome-binding sites driving BFP expression unexpectedly exhibited
the least burden. Re-testing the frozen cell stocks of the original
transformants of these plasmids demonstrated that the derived stocks
used in the burden assays had picked up mutations that largely alle-
viated the burden of these two plasmids (Supplementary Fig. 5). The
burden was reduced from 45.8% to 17.8% in one case and
from 41.9% to 17.2% in the other. Further supporting the instability of
the twomostburdensomeBFP control plasmids,whenwe shared them
with another iGEM team, they found an insertion of an IS5 element
occurred in thepromoter drivingBFP expression in their transformant,
which reduced but did not eliminate fluorescence.

Even if the original cell giving rise to a colony that is picked after
transforming a plasmid or restreaking from a stock has only intact
copies of a plasmid, it may give rise to a heterogeneous population of
descendant cells as it is cultured, stored as a frozen stock, and revived.
As our simulations show, more burdensome plasmids will be at a
greater risk of having newly evolved mutants begin to take over the
population during these steps. If this type of stochastic, partial

takeover of a cell population with mutants was occurring during our
experiments, more burdensome BioBricks might exhibit greater
variability in their measured growth rates between replicate cultures.
In agreement with this hypothesis, we found a significant trend toward
a higher standard error of the mean for growth rates measured for
BioBrick plasmids that had higher burden (p = 2.0 × 10−11, two-tailed t-
test for a non-zero slope) (Supplementary Fig. 6).

In summary, two lines of evidence support that clonability or
constructability limits for engineered DNA are creating an upper
bound on what plasmids are possible to construct and measure that
might be causing us to underestimate the burden of some BioBrick
designs. First, our BFP control plasmids designed to have the strongest
gene expression mutated during construction, and some of the Bio-
Brick plasmids we characterized also sustained mutations that likely
reduce their burden. Second, we see more variation in our measure-
ments of growth rates formoreburdensomeBioBricks,which could be
at least partially explained by cells withmutations that reduce plasmid
burden arising and beginning to take over during our assays.

Redirecting gene expression capacity to recombinant protein
production causes a proportional reduction in growth rate
The E. coliDH10B-GEMstrain thatweused as a host for testing BioBrick
burden has a constitutively expressed GFP gene integrated into its
chromosome (Fig. 6A). This GFP canbe used tomonitor howmuch the
presenceof a BioBrick plasmid reduces the capacity of an E. coli cell for
expressing its native proteins21,51. If the main source of burden from a
plasmid is due to its use of any cellular resources ormachinery that are
necessary to achieve translation of proteins (e.g., ribosomes), then one
expects that for a given reduction in GFP expression, there will be a
proportional reduction in growth rate. If there is a reduction in growth
rate that is larger than expected relative to the reduction in GFP
expression that is observed, then someorall of theburden comes from
other sources. For example, gene products encoded on the plasmid
may lead to depleting a cellular resource that is not directly related to
gene expression or have a toxic effect that interfereswith homeostasis.
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To establish that the monitoring device worked as expected, we
initially tested two series of plasmids that express other fluorescent
proteins (FPs) at varying levels (Fig. 6B). The first was our set of 5
burdensome BFP control plasmids that have different promoter and
RBS combinations. Here we used stocks of cells with the BFP plasmids
that did not contain the mutations that alleviated the burden noted
above. The second set consisted of 14 plasmids available from the
iGEM Registry that contain constitutive promoters of different
strengths driving the expression of RFP. These RFP constructs were
not included in the prior tests of BioBrick burden because they are
housed in a different plasmid backbone (J61002). In both cases, we
expected that all of the burden exhibited by these plasmids would be

due to recombinant FP expression depleting the translational capacity
of the host cell. FP production does not use any other types of limiting
cellular resources, and these FPs are not expected to be toxic to cells
within the range of concentrations at which they are expressed.

In agreement with this expectation, we found that the growth
rates of these strains were reduced in proportion to how much they
reducedGFP expression (Fig. 6C, Supplementary Fig. 7, Supplementary
Data 5, Supplementary Data 6). The Pearson correlation coefficients for
this linear relationship were 0.93 and 0.81 for the BFP and RFP plasmid
series, respectively. The relationship between growth rate and GFP
expression differed slightly between the BFP and RFP series, but this
was expected because they have different plasmid backbones andwere

Table 1 | Most burdensome BioBricks

BioBricka Seqb Burden (b)c Fraction other burden (bO/b)d Subpartse Functionf

K523022 M 51.7 ± 19.2% n.s. Plac &lacZ’ crtE crtI crtB Carotenoid synthesis (Pantoea ananatis)

K733010 C 46.0 ± 6.2% 0.16–0.71 Ptms &endB Antitoxin gene (Bacillus subtilis)B

J04450 NS 44.4 ± 2.2% n.s. Plac &mRFP1 RFP reporter

K523014 C 39.6 ± 4.7% 1.04–1.98 Plac &lacZ’ bglX Cellobiose degradation

K523020 M, E 38.3 ± 8.7% n.s. Plac &lacZ’ INP+bglX Cellobiose degradation (INP, Pseudomonas syringae)

K608010 C 34.1 ± 7.7% NT PJ23110 &GFP GFP reporter

K515100 C 33.9 ± 15.9% 0.26–0.88 Pveg2 &IaaM &IaaH Indoleacetamide synthesis (Pseudomonas
savastanoi)B

J61000 m 33.4 ± 4.1% 0.21–0.96 Pcat &cat Chloramphenicol resistance

K541526 C 32.9 ± 7.8% n.s. Pveg &reflectin1A Reflectin reporter (Euprymna scolopes)B

K592020 m 31.8 ± 5.0% NT PfixK2 &cI(λ) PcI &amilCP Blue light sensor output (Acropora millepora)

J36335 m 30.2 ± 12.2% n.s. Plac &kaiA Plac &kaiC Circadian rhythm (Synechococcus elongatus)

I759017 C 29.5 ± 8.3% NT Ptet [cis5] &YFP YFP reporter

K346000 C 29.1 ± 10.4% n.s. &RNAP(T3) Phage RNA polymerase (Phage T3)

C0056 C 28.2 ± 3.9% n.s. cI434(λ) Mutant phage repressor (Phage λ)

K880005 C 27.5 ± 8.6% n.s. PJ23100 & Gene expression

C0053 NS 27.2 ± 6.5% n.s. cII(P22) Phage repressor (Phage P22)

K608012 C 27.1 ± 4.7% NT PJ23110 &GFP GFP reporter

I759014 C 26.8 ± 5.8% n.s. Ptet [cis2] &YFP YFP reporter

K541502 C 24.6 ± 3.2% 0.42–1.91 Pveg &lipAsig Gene expression/secretion (Bacillus subtilis)B

K395602 C 20.3 ± 1.9% 0.09–0.38 PT7 &MpAAT1 Apple fragrance generator (Malus pumila)

K733013 C 19.5 ± 3.3% n.s. Pveg &GFP GFP reporterB

K523013 C 18.3 ± 8.8% NT Plac &lacZ’ INP + EYFP EYFP reporter (INP, Pseudomonas syringae)

I761014 C 17.5 ± 5.0% 0.21–1.33 &cinR &cinI Quorum sensing (Rhizobium leguminosarum)

C0051 NS 17.1 ± 8.2% n.s. λ-cI + LVA Phage repressor (Phage λ)

K137018 C 16.8 ± 8.2% NT PL-lacO1 &luxR Plux-R &GFP Quorum sensing receiver (Aliivibrio fischeri)

K1149051 C 15.0 ± 8.4% n.s. PJ23104 &phaC1 phaA phaB1 Polyhydroxybutyrate synthesis (Ralstonia eutropha)

K731721 C 14.8 ± 4.4% n.s. Transcription terminator (Phage T7)

K639003 m 14.8 ± 2.8% n.s. PrrnB-P1 &lacI PL-lacO1 &mCherry Stress sensor

K541501 C 14.4 ± 3.6% n.s. Pveg &sacBsig Gene expression/secretion (Bacillus subtilis)B

K608011 C 13.7 ± 5.4% NT PJ23110 &GFP GFP reporter

K861172 NS 13.4 ± 2.5% n.s. PcstA &cI(λ) Phage repressor (Phage λ)

K617004 C 11.6 ± 1.5% 0.95–2.32 attP(λ) P’OP Phage attachment site (Phage λ)

K325218 m 10.8 ± 7.3% 0.76–1.55 ParaC &luc(orange) Luciferase reporter (Luciola cruciata)

I712669 m 10.1 ± 4.5% NT PCMV GFP GFP reporterM

aBioBrick accession numbers. The 34 parts shown all had an estimated burden that was significantly greater than zero after correcting for multiple testing (one-tailed t-tests, Benjamini–Hochberg
adjusted p < 0.05) and had a mean estimated burden value of >10%.
bResults of sequencing the BioBrick plasmid: C, reported BioBrick sequence was confirmed; Mmajor discrepancies found in BioBrick sequence; mminor discrepancies found in BioBrick sequence;
NS not sequenced; E part is reported to have errors in the iGEM Registry. Full sequencing results are provided in Supplementary Data 4.
cBurden as the percentage reduction in growth rate caused by the BioBrick ± estimated 95% confidence limits.
d95% confidence interval on the fraction of burden from sources other than utilization of the host cell’s gene expression capacity. n.s., valuewas not significantly greater than zero (one-tailed t-tests,
Benjamini–Hochberg adjusted p <0.05). NT not tested because the BioBrick contains a protein that interferes with the measurement of GFP fluorescence.
eRepresentation of gene expression signals and genes in the BioBrick abbreviated as follows: Px, promoter from gene or operon x; &, ribosome-binding site; [y] other regulatory sequence. Other
italicized entries are gene names.
fGeneral description of the designed function of the BioBrick. For BioBricks that contain recombinant DNA encoding genes other than fluorescent proteins, the organism of origin is shown in
parentheses. Superscript B or M, indicates that the gene expression sequences are intended to function in Bacillus subtilis or mammalian cells, respectively.
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tested under different culture conditions (see “Methods” section). The
growth rate reductions seen for RFP series plasmids were roughly in
proportion to the amount of recombinant protein that they expressed.
By contrast, strains with BFP series plasmids that experienced more
gene expression burden did not necessarily produce more BFP. This
discrepancy is likely related to how different combinations of pro-
moter and RBS strengths can lead to translating the same amount of
protein butwithmore or less efficient use of ribosomes21. As for the 301
BioBricks we tested and the unmutated BFP controls, none of the RFP
expression constructs had a burden of >45% in the unclonable range.

Some BioBricks exhibit burden from sources other than gene
expression
All of our measurements of BioBrick burden were conducted in the E.
coli DH10B-GEM host strain that contained the GFP gene expression

capacity monitor (Fig. 6A), so we next examined how GFP production
correlated with the previously characterized growth rates to under-
stand whether the burden of each BioBrick could be attributed partly
or wholly to its use of the host cell’s gene expression resources. If GFP
production was reduced in direct proportion to the growth rate, as it
was in the BFP control plasmids, this would indicate that all of the
BioBrick burden was from gene expression (Fig. 7A). If there was
burden with no or less-than-the-expected reduction in GFP produc-
tion, then it would indicate a BioBrickwas compromising E. coligrowth
for some other reason (Fig. 7B). Of the 301 BioBricks tested, 42 encode
GFP or another protein that is expected to interfere with measuring
GFP fluorescence, so they were excluded from this analysis (see
“Methods” section). We again used the BFP plasmids as internal con-
trols for normalizing GFP production rates between different micro-
plate assays (Supplementary Fig. 8 and “Methods” section).
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Plotting a linear relationship between the BFP plasmid controls,
the no-burden BioBrick plasmids, and the origin yields the expected
trade-off between growth rate and GFP production for the BFP plas-
mids and some of the measured BioBrick plasmids (Fig. 7C). However,
someparts displayed a higherGFPproduction rate thanwhatwould be
expected from the measured growth rate reduction, evidence that
some or all of their burden arises for reasons other than diverting the
host cell’s gene expression resources. Of the 26 BioBrick parts with a
high-confidence prediction of burden and a mean estimated burden
>10% that could be evaluated in this assay, 9 (34.6%) had a significantly
greater reduction in growth rate than predicted from the change in
GFP production (adjusted p <0.05, one-tailed t-tests with
Benjamini–Hochberg correction formultiple testing), indicating that a
component of their burden is due to a source other than reducing the
gene expression capacity of the host cell (Table 1).

Discussion
By measuring the burden of 301 BioBricks and performing computa-
tional simulations, we established an evolutionary limit on the con-
structability of engineered DNA sequences: none of the BioBricks we
tested slowed E. coli growth rates by >45%. Our results are in broad
agreement with other studies that havemade similarmeasurements of
growth defects and the effects of spontaneousmutations that alleviate
the burden of engineered DNA on bacterial cells8,11. For example,
researchers testing a library of plasmids expressing three fluorescent
proteins found that amutant that deleted one of these genes and took
over populations after 30 generations of serial transfer had an 89%

higher exponential growth rate compared to the original engineered
strain10, which corresponds to this mutation reducing burden by 47%.
Similarly, the level of burden under non-inducing conditions topped
out in the 40–60% range for cells containing various constructs in the
study that developed the gene expression capacity monitor we used21.

We found potential mutations in some BioBricks relative to their
designed sequences andmore variation in our measurements of more
burdensome BioBricks. We also discovered that two of the BioBricks
we used as internal controls for our assays unexpectedly mutated
while we were using them in ways that maintained some BFP fluores-
cence yet reduced their burden from near the unclonable threshold
(>40%) down to levels that can be reliably maintained during growth
on a laboratory scale (<20%). These results suggest that we may be
underestimating the burden of some BioBrick designs, either because
their plasmids weremutated before we obtained themor because new
mutants arose and reached appreciable frequencies in our assays.
Some discrepancies are likely due to human errors in the sequences
digitally submitted to the Registry versus the original DNA samples
themselves. For example, researchers might have copied over a por-
tion of a sequence fromaprior plasmidmapor part entry and assumed
it was correct and unchanged without ever empirically validating their
construct. However, there is also both direct and anecdotal evidence
that some Biobricks are prone to mutate.

One such example of evolutionary instability is for the excep-
tionally well-characterized BioBrick F2620 device, which encodes an
inducible luciferase gene29. While not one of the BioBricks we tested,
F2620 was previously noted to reproducibly fail in <100 generations

Relative growth rate

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n 
ca

pa
ci

ty

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n
ca

pa
ci

ty
R

el
at

iv
e 

ge
ne

 e
xp

re
ss

io
n

ca
pa

ci
ty

Other burden (bo)
Not tested
Not significant
Significant

Total burden (b)

BFP control
Not significant
Significant

Relative growth rate

No burden

Burden (b)

Gene
expression

burden
(bGE)

Other
burden

(bO)

I761014

J61000

K325218

K395602

K515100

K523014

K541502
K617004

K733010

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.41.0 1.2

1.2

0.8

0.8

0.6

0.6

0.4

0.4

1.0

1.2

0.8

0.6

0.4

1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

CA

B

No burden

b = 30%

bO/b = 1.0
b = 20%

bO/b = 0.6

bGE

b = 30%

b = 20%

Fig. 7 | Some BioBricks exhibit burden from sources other than gene expres-
sion. A Examples of expected results for two BioBricks that exhibit burden (b) that
is wholly due to utilizing the gene expression capacity of the host cell. The
reduction in growth rate is proportional to the reduction in GFP production
according to a linear relationship (dashed line) that is established from measure-
ments of control strains. B Examples of expected results for two BioBricks that
exhibit burden from sources other than gene expression. CMean growth rates and
GFP production rates measured for 259 BioBricks that do not contain fluorescent
proteins that are expected to interfere with measuring GFP fluorescence in the E.
coli host strain containing the gene expression capacity monitor. Points for each

BioBrick are colored based on whether the burden (reduction in growth rate) was
significantly greater than zero (one-tailed t-tests, Benjamini–Hochberg adjusted
p <0.05). Symbols indicate whether the null hypothesis that all burden was due to
utilizing the gene expression capacity of the host cell could be rejected (one-tailed
t-tests, Benjamini–Hochberg adjusted p <0.05). Only the 26 BioBricks with burden
significantly greater than zero, amean estimated burden >10%, and no interference
fromotherfluorescent proteinswere tested. BioBrickswith significant burden from
sources other than gene expression are labeled with their accession numbers.
Estimates of bo/b for these BioBricks are shown in Table 1. Source data are provided
with this paper.

Article https://doi.org/10.1038/s41467-024-50639-9

Nature Communications |         (2024) 15:6242 10



due to deletions between two 143-bp repeats introduced by re-use of
the B0015 double terminator part. The creators confirmed that this
failure consistently occurred due to mutations that happened after
plasmid transformation. Our model shows how you can get determi-
nistic failures like this if the mutation rate is sufficiently high, as it can
be for repeat-mediated deletions40. We discovered inactivating dele-
tions or transposon insertions in seven BioBrick plasmids, which likely
indicates that they are also especially prone tomutational failure. As an
example, the Registry page for BioBrick K523020—one of the most
burdensome plasmids that we measured—contains a warning, “Part
submitted to Registry is believed to contain major errors,” which is
probably more typical of how a user of an unstable part would
understand rapid evolutionary failure due to mutations that are
relieving the burden.

Future work could clarify whether the cases of sequence dis-
crepancies we encountered are already mutated BioBricks or design
errors by reverting the putative mutations to the designed sequences
and, if successful (i.e., the change does notmake them so burdensome
that they are unclonable), measuring their burden. Alternatively, deep-
sequencing populations of plasmids isolated from laboratory-scale
cultures could be used to characterize whether they consist of mix-
tures of mutated and unmutated plasmids11,52. Surveys of plasmids in
other repositories have also found that some acquire inactivating
transposon insertions53. Our findings support calls for researchers to
report the full sequences of plasmids they create and submit to
repositories such as the iGEM Registry54,55 and caution that one should
also verify the sequences of plasmid stocks obtained from reposi-
tories. This information will make it possible to recognize when evo-
lution is undermining DNA constructs and experimental results.

The GFP gene expression monitor that we used responds to
changes in a cell’s global capacity for protein expression. For any one
construct, this could theoretically represent depletion of factors as
diverse as the availability of RNA polymerases, ribosomes, initiation
factors, charged tRNAs, amino acids, or nucleotides. However, we
expect that ribosomeavailability is the limiting factor in all or nearly all
BioBricks we tested, based on studies of recombinant protein over-
expression in E. coli14–18. While we were able to establish overall trends
that plasmids containing strong constitutive promoters and ribosome-
binding sites had a higher chance of exhibiting burden, it was not
possible to predict the gene expression component of burden a priori
on this set of sequences.With the limited set of BioBrickswe tested, we
were also unable to examine whether the burden of individual genetic
parts can be used to predict the burden of complex devices con-
structed from combinations of these parts. Ongoing improvements in
tools for predicting transcription and translation initiation rates and
expanding databases of high-throughput measurements56,57 may
eventually make these types of predictions possible. Our finding that
the type of organism fromwhich a BioBrick’s sequence originated was
not consistently correlated with its burden agrees with a high-
throughput study of horizontal gene transfer from 79 prokaryotic
genomes to E. coli58. It concluded that differences in gene expression
were more important than the source organism’s relatedness to E. coli
in explaining why plasmids containing certain genes could not be
cloned in this host.

Burden can also arise for diverse reasons other than gene
expression, anytime engineered DNA taxes a cellular resource to the
extent that it becomes a bottleneck for cell growth. For example,
genetic engineering can overwhelm protein export pathways or the
capacities of different subcellular compartments25,26. Further case
studies of the burdensome plasmids with costs not associated with
gene expression could reveal the origins of these costs. It would be
particularly useful to create other types of burden monitors, e.g., of
protein secretion, membrane occupancy59, or different metabolic
bottlenecks so that the relevant limiting factors could be rapidly
diagnosed and systems redesigned accordingly to make them more

stable. This more refined information will likely be needed to predict
how the burden of a composite part or device depends on the burden
of each of the genetic parts from which it is constructed. If multiple
components use gene expression resources, then one might expect
them to have additive effects on the burden, but if they use orthogonal
(i.e., distinct) limiting resources, then one may find that the combi-
nation is no more burdensome than the more burdensome of the two
on its own.

Wemeasured burden as a decrease in the exponential growth rate
of E. coli host cells. While this was convenient for making replicated,
high-throughput measurements in a microplate reader, it does not
fully reflect how a DNA construct impacts the evolutionary fitness of a
cell. For example, it is possible that engineering a cell changes the lag
time before growth begins60, survival during stationary phase, colony
growth on agar, or survival of cryopreservation. Furthermore, our
approach can only be applied to understand genetic stability under
laboratory conditions, not in environmental contexts or host-
associated microbiomes. Co-culture competition assays between a
strain of interest and a reference strain could be used to measure
fitness in a way that captures all components of fitness in any
environment61. To make these measurements high-throughput, host
strains with unique sequence barcodes in their chromosomes and
transformed with different engineered plasmids or DNA constructs
could be simultaneously competed all-against-one-another in bulk
competitive fitness assays62,63. Our experiments were all in a cloning
strainof E. coli. Itwould be interesting to examine howburden varies in
strains optimized for other applications, such as recombinant protein
production.

Researchers can take actions to improve the constructability and
stability of especially burdensome engineered DNA sequences. Most
obviously, using low- or medium-copy plasmids rather than high-copy
ones or integrating single-copy constructs into the chromosome of a
bacterium will often reduce the burden into the cloneable and stable
ranges10. Systems have also been engineered for controlling plasmid
copy number, so that DNA parts can be maintained in cells at a low
copy number and then amplified on demand47,64. Similarly, reducing
the burden of a construct can be achieved by altering promoter and
ribosome-binding site strengths or by using inducible promoters, as
long as these changes are compatiblewith device function10,21. Systems
that regulate expression in response to the growth rate of a cell65,66 or
that couple continued functioning of the engineered DNA to cell
survival67 can more directly buffer against evolutionary failure.
Another category of more ambitious approaches is to introduce
orthogonal polymerases68 or ribosomes69,70 into a cell to prevent syn-
thetic constructs from competingwith native gene expression, though
the requirement that a cell produce the necessarymachinerymay itself
be burdensome. Next, aspects of the growth environment can some-
times be changed. For example, supplementingmediawith vitamins or
altering salt concentrations has been reported to stabilize certain
constructs11,22. A final category of approaches seeks to reduce the
chances of mutations to improve the evolutionary stability of genetic
constructs7,71. For example, cells with lower mutation rates can be
created by deleting or repressing transposons9,72 or by altering cellular
processes that affect point mutation rates12,73.

We created an interactive model of failure mutations in a cell
population that can be used to explore how tuningmutation rates and
construct burden affect whether a DNA construct is likely to remain
intact within cell populations that are grown to typical laboratory and
production scales. Similar deterministic6,11 and stochastic74,75 models
have been developed by others.Models that include individual steps in
gene expression and RNA and protein degradation are also beginning
to be used to examine evolutionary stability21,76. Our model and these
others still do not consider or fully take into account several
complications71. First, rather than one category of mutation leading to
complete failure, there are typically multiple categories of mutations,
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some of which only partially alleviate the burden, occurring at differ-
ent rates in real systems10,11. Second, burden, plasmid copy number,
and mutation rates are not necessarily independent parameters and
may exhibit cell-to-cell variation. For example, overexpression of
recombinant proteins can activate stress responses and increase
mutation rates73. Third, plasmids are multicopy within cells so the fit-
ness benefit of a mutation can take several generations to fully man-
ifest and depends on how plasmids segregate between daughter cells.
These intricacies of plasmid evolutionhave been tackled by a variety of
more complexmodels that could be applied to engineered plasmids77.
Finally, models that take into account different phases of cellular
growth could be used to further refine these dynamics78.

Modeling cellular function over time in a way that takes evolution
into account is important for making synthetic biology more reliable
and predictable. This random, self-reinforcing failure mode does not
have a direct parallel in traditional engineering fields. Researchers
designing engineered cells should be aware of when they are nearing a
danger zone of evolutionary stability where DNA designs may become
unconstructable. They shouldalso recognize that the stochastic nature
of evolutionary failuremay lead to large variation in their experimental
results, failure during process scale-up, or loss of function when cells
are deployed for long periods of time in complex environments out-
side of the lab, such as in animal and plant microbiomes. Our inter-
active model (https://barricklab.org/burden-model) can be used for
educating both new and practicing synthetic biologists about evolu-
tionary constraints. In the long term, it is critical that we improve our
understanding of what synthetic DNA constructs exhibit burden and
why. Our results from measuring the burden of many BioBricks con-
tribute to this goal. The overarching conclusion of our study can be
summarized as a rule of thumb: to avoid the specter of unwanted
evolution, don’t attempt to engineer amicrobial cell in away that slows
its growth rate by >30%.

Methods
Model of evolutionary failure
We implemented a model in R that is similar to one used by Rugbjerg
et al. to predict loss of production from an engineered cell population
due to escape mutations11. We parameterized our model such that
failed (i.e., mutated) cells, F, have a relative growth rate of one. Engi-
neered cells, E, have a growth rate that is this value minus the burden,
b, of the engineered construct. The corresponding equations for how
the numbers of engineered cells, E(t), and failed cells, F(t), change over
time are:

dE tð Þ
dt

= 1� bð ÞE tð Þ � μ 1� bð ÞE tð Þ ð1Þ

dF tð Þ
dt

= F tð Þ+μ 1� bð ÞE tð Þ ð2Þ

Growth of cells in batch culture typically continues until a certain
number of total cell doublings occurs that exhausts the provided
resources rather than for a certain fixed period of time. Therefore, we
chose to plot the dynamics of engineered and failed cell populations
versus the number of cell doublings,D(t), that have occurred at a given
time:

D tð Þ= log2½E tð Þ+ F tð Þ� ð3Þ

For stochastic simulations of this model, we used the adaptivetau
R package79. We also created an online version (https://barricklab.org/
shiny/burden-model) that can perform deterministic and stochastic
simulations of this model using the Shiny R package80.

Media and growth conditions
E. coli was cultured at 37 °C in Lysogeny Broth (LB) (10 g tryptone, 5 g
yeast extract, 10 g NaCl per liter) with 16 g/L agar added for solid
media. Unless otherwise indicated, liquid cultures were grown in
18mm× 150mmglass test tubes with orbital shaking at 200 r.p.m over
a 1-inch diameter. Antibiotics were added at the following concentra-
tions: carbenicillin (100 µg/ml), chloramphenicol (20 µg/ml), kanamy-
cin (50 µg/ml).

Gene expression monitor strain construction
E. coliDH10B-GEM (JEB1203), the host strain used in the burden assays,
was created using plasmids and methods described in Haldimann
et al.81 and Ceroni et al.21. Briefly, we inserted the constitutive GFP
expression cassette cloned into pAH63 (Addgene #66073) into the E.
coli chromosome at the λ integration site by electroporating this
plasmid into DH10B cells containing the helper plasmid pInt-ts
(Addgene #66076) and selecting for kanamycin-resistant colonies.
pAH63 has a pir-dependent R6K origin, so it does not replicate in the
recipient cells. pInt-ts hasapSC101ts origin andwascuredby screening
colonies after further growth at the restrictive temperature of 42 °C to
create DH10B-GEM. We also obtained and characterized E. coli
DH10GFP (Addgene #109392), a strain constructed in the same way in
the prior study of burden by Ceroni et al.21.

We isolated genomic DNA from cultures of DH10B-GEM and
DH10GFP using a PureLink Genomic DNA Mini Kit (Invitrogen). Then,
we prepared Illumina libraries using 10 µg of DNA as input into a 2 S
Turbo DNA Library kit (Swift Biosciences) using 50% reaction volumes
and a final PCR stepwith customadapters that addeddual 6-bp sample
barcodes. Sequencing was carried out on a HiSeq X Ten by Psomagen.
Readswere compared to E. coliDH10B genome (GenBank: NC_010473)
and pAH63 plasmid sequences using breseq82,83. Split-read mappings
(new junction evidence) between plasmid and chromosomal sequen-
ces verified that the GFP cassette was integrated at the expected site in
both strains. Therewere two shared differences, a single base insertion
in an intergenic region and a synonymous base substitution, between
both strains and the DH10B reference genome. DH10GFP also had two
additional mutations, a nonsynonymous mutation in uspF and an IS4
element insertion in mdtL.

Transformation of BioBrick plasmids
We made DH10B-GEM competent cells as follows. A 10ml liquid cul-
ture of cells was grown overnight in a 50mL Erlenmeyer flask from an
aliquot of the glycerol stock. The entire culture was then added to
500ml of LB in a 2 L Erlenmeyer flask. This culture was incubated until
reaching the mid-exponential phase (an OD600 between 0.4 and 0.6).
At this point, itwasdivided into 35ml aliquots and centrifuged at room
temperature for 10min at 3400× g. Then, the supernatant was
removed and all cell pellets were combined by resuspended (via vor-
texing) in a total of 150ml of a 10% (v/v) glycerol + 100mM CaCl2
solution chilled on ice. Next, 30ml fractions of the cells were cen-
trifuged again at room temperature for 10min at 3400× g. Again, the
pellets were combined, resuspending in a total of 20ml of chilled
glycerol-CaCl2 this time. After incubating this mixture on ice for
25min, 200 µl aliquotswere snap-frozen in liquid nitrogen. Competent
cells were stored at –80 °C.

Heat shock was used to transform BioBrick plasmids from the
iGEM 2018 DNADistribution Kit into DH10B-GEM. This transformation
method entailed transferring 2 µl of a miniprep of the plasmid of
interest into 50 µl of competent cells and incubating on ice for 1 h.
After this, the mixture was placed in a 42 °C heat bath for 30 seconds
and then immediately placed back on ice for another 30min. Next, we
added 950 µl of SOC media and incubated at 37 °C in a shaker incu-
bator for at least an hour. After SOC recovery, we pelleted the cells and
decanted 800 µl of the supernatant. We resuspended the pellet in the
remaining 200 µl of supernatant and then plated this onto an LB agar
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plate with the appropriate antibiotic. After overnight incubation at
37 °C, we picked a colony, grew an overnight culture in liquid LB
media, added glycerol to 15% (v/v), and froze a stock at –80 °C.

BFP plasmid construction
Five control plasmids expressing different levels of mTagBFP were
created by assembling BioBrick parts from the iGEM registry. The
mTagBFP insert was frompart plasmid K592100. It was combined with
five promoter + RBS composite parts (K608002, K608003, K608004,
K608006, and K608007), by using each of their pSB1C3 part plasmids
as the vector backbone in a separate postfixing BioBrick assembly
reaction45,84. For cloning, we used enzymes from New England Biolabs
under standard conditions. Briefly, K592100 was double digested
using XbaI and SpeI restriction enzymes in CutSmart buffer. Sepa-
rately, each of the vector backbones was double digested using SpeI
and PstI-HF restriction enzymes in CutSmart buffer followed by incu-
bation with calf intestinal alkaline phosphatase for 1 h. Digested pro-
ducts were then gel extracted and purified using a QIAquick Gel
Extraction Kit before being ligated together using T4 DNA ligase.
Ligated products were purified using butanol precipitation and then
electroporated into competent TOP10 E. coli cells. Transformed cells
were recovered in SOC for 1 h at 37 °C, followed by plating on LB agar
containing chloramphenicol. After incubation at 37 °C for 18 h, we
inoculated isolated colonies into fresh LB liquid media containing
chloramphenicol and grew these cultures at 37 °C for 18 h. The five
resulting composite BioBrick parts were deposited in the iGEM Reg-
istry as K3174002, K3174003, K3174004, K3174006, and K3174007.

Plasmid sequencing
We sequenced BioBrick plasmids isolated from the DH10B-GEM cell
stocks that were used for burden assays. In addition, we sequenced
plasmids isolated from the TOP10 cell stocks into which the BFP con-
trolswerefirst transformed. PlasmidDNAwaspurified using aQIAprep
Spin Miniprep Kit (QIAGEN) or a PureLink Quick Plasmid Miniprep Kit
(Invitrogen). We performed Sanger sequencing on multiple stocks of
the BFP control plasmids, in-house Illumina sequencing on these and
the other plasmid samples, and outsourced Nanopore sequencing on
additional plasmid samples. For Illumina sequencing, up to 10 ng of
plasmid DNA was used as input for sequencing library preparation
using the 2 S Turbo DNA Library kit (Swift Biosciences) with 20%
reaction volumes. Custom adapters containing dual 6-bp sample bar-
codes were incorporated during the final PCR step. The resulting DNA
libraries were pooled and sequenced on an iSeq 100 instrument.
Nanopore data was obtained from Plasmidsaurus. Porechop85 and
fastp86 were used to trim adaptors from sequencing reads.

To analyze sequencing results, we first reconstructed the expec-
ted BioBrick plasmid sequences from information available on the
iGEM Registry webpages (part sequences, vector sequences, and
compatibility with different assembly standards). Then, we analyzed
Illumina and Nanopore sequencing data in two ways. First, we com-
pared reads to the expected plasmid sequences using breseq82 to see if
there were any discrepancies. Second, we performed de novo assem-
bly of reads using either Unicycler87 or flye88, annotated the resulting
assemblies with pLannotate89, and examined them for matches to the
expected parts using blastn searches90 against a database of all Bio-
Brick parts included in the 2018 iGEM distribution kit.

BioBrick plasmid burden assays
We performed burden assays largely as described previously21. Strains
were revived by adding aliquots of −80 °C freezer stocks to test tubes
containing LB with the antibiotic for maintaining their respective
BioBrick plasmids. After overnight growth (12–18 h), we vortexed each
culture for three seconds and loaded 5 µl into a Nunc MicroWell 96-
well optical-bottom plate (ThermoScientific Cat. No. 265301) in tripli-
cate. Every plate included the five control strains (JEB1204-1208), each

also loaded in 5 µl in triplicate, and 12 blank wells (LB only). This
arrangement allowed for a total of 23 strains to be tested per plate. To
start the assay, amultichannel pipette was used to add 195 µl of LB pre-
warmed to 37 °C to every well with pipetting up and down several
times to mix. Using a Tecan Infinite Pro M200 Plate Reader, optical
density at 600 nm and GFP fluorescence (excitation: 485 nm; emission
528nm) were recorded every 10min with 7min of orbital shaking
during each cycle. Each plate was run for a minimum of 6 h.

RFP and BFP plasmid burden assays
For the series of plasmids expressing RFP under the control of differ-
ent promoters, we performed burden assays using the normal proce-
dure plus an additional measurement of RFP fluorescence (excitation:
585 nm; emission: 610 nm). For correlating BFP expression in the
control strains to reduced GFP expression, we added a measurement
of BFP fluorescence (excitation: 405 nm; emission: 453nm). The extra
fluorescence reads for the RFP and BFP experiments reduced the
proportion of shaking time in each measurement cycle, resulting in
slower maximum growth rates than were observed with the standard
burden assay procedure. RFP samples were measured every 10min
with 6.5min of shaking during each cycle. BFP samples weremeasured
every 10min with 7min of shaking during each cycle. For the RFP
series, we also monitored cell density using OD660 instead of OD600
to avoid interference from RFP absorbance91.

Burden analysis
To analyze the burden assay data for one plate, we first subtracted the
average values of all media blanks from the OD and fluorescence
measurements. Next, to deal with well-to-well variation in background
levels, we shifted the values to force the means of the points over the
first hourofmeasurements for each strain tomatch thegrandmean for
those data points over all replicates of that strain. We then fit growth
rates using nonlinear least-squares regression to an exponential
model: C(t) =C0 ert. We assumed that OD is directly proportional to the
number of cells at a given time, C(t). C0 is the initial number of cells,
and r is the specific growth rate. We fit C0 and r for all sets of nine
consecutive measurements (a 90-min window in the standard assay)
after the OD exceeded 0.03 and recorded the largest value of r as the
maximum specific growth rate for that strain. To determine the
fluorescent protein (e.g., GFP) production rate per cell, p, we repeated
this procedure while fitting fluorescence values to the equation:
F(t) = F0 +C0 (p/r) (ert − 1). F0 is the initial fluorescence and F(t) is the
fluorescence at time t. This equation is derived by integrating the
relationship dF/dt = p C(t). We fit F0 and p in this model to the data
while keeping C0 and r fixed to the values determined from the OD
curve fit for the corresponding time window. Again, we recorded the
largest value of p across all time points as the maximum fluorescent
protein production rate.

To account for plate-to-plate variation in growth and GFP pro-
duction rate estimates (Supplementary Figs. 2A, and 8A), we normal-
ized measurements made on different plates. In our experimental
design, a majority of the plasmids tested in each plate are expected to
exhibit negligible burden. This let us estimate the growth and GFP
production rates corresponding to ‘no-burden’ for a given plate by
examining the distributions of values measured. Specifically, we cal-
culated the density distributions of growth and GFP production rates
using a Gaussian kernel function with bandwidths of 0.014 and 300,
respectively, for all non-control strains. To account for multimodal
distributions, we took the no-burden value as the highest value among
all peaks in the density distribution thatwere at least 50% as high as the
highest peak. Then, we normalized all rate estimates by dividing them
by the corresponding no-burden value for that plate (Supplementary
Figs. 2B, and 8B). The final distributions of the mean values for each
BioBrick plasmid have a major peak at the no-burden value with a
noticeable shoulder of strains with a slightly decreased growth rate or
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GFP production rate, in addition to some strains with much lower
values (Supplementary Figs. 2C, and 8C).

Some BioBricks encode proteins that interfere with measuring
GFP fluorescence. Therefore, for the analysis of gene expression
capacity and burden, we disregarded all BioBricks described as
including GFP; YFP, which has overlapping fluorescence; or the amilCP
blue chromoprotein, which strongly absorbs at the wavelength mon-
itored for GFP emission92. For the 26 remaining BioBricks that also had
growth rate reductions that were statistically significant and mean
estimated burdens >10%, we determined whether the observed GFP
production rate was compatible with the null hypothesis that all of the
burden was due to the BioBrick utilizing the gene expression capacity
of the host cells. We determined the expected relationship between
growth rate and GFP production rate for purely gene expression bur-
den from measurements of the BFP control plasmids across all plates.
Specifically, we used Deming regression to fit this linear relationship,
which takes into accountmeasurement errors in both dimensions, and
we further required that the fit pass through the no-burden values (i.e.,
a normalized growth rate of 1.0 andnormalizedGFPproduction rate of
1.0). Then, we determined the chance that each BioBrick was located
above the BFP regression using a two-dimensional probability dis-
tribution of each assuming maximum likelihood t-distributions for
growth rate and GFP production rate. We took one-half of this value to
estimate a one-tailedp-value for rejecting the null hypothesis that all of
a plasmid’s burden was from utilizing the host cell’s gene expression
resources.

BioBrick source organism analysis
We classified BioBricks into eight categories depending on the
organisms in which their sequences originated (E. coli, other Enter-
obacterales, other γ-proteobacterium, other proteobacterium, other
bacterium, fungus, plant, animal, or synthetic) (Supplementary
Data 3). BioBricks with multiple parts were classified according to the
most divergent category. Virus- and phage-derived sequences were
classified with their host species, and codon-optimized constructs
were counted with the species in which the amino acid sequence ori-
ginated. We considered two additional categorization schemes that
reduced the number of organism categories to four or two, plus four
variants of each of the three categorization schemes in which we did
not include features that were not protein-coding genes or did not
include fluorescent proteins in assigning the organism of origin to a
BioBrick (Supplementary Fig. 4). For all twelve overall classification
schemes, we examined whether there were any trends in burden with
respect to source organism in two ways. First, we performed a
Kruskal–Wallis test to determine whether BioBricks with different
categories of source organisms had systematic differences in their
normalized growth rates. Second, we determinedwhether the chances
that BioBricks were in the set of 59 burdensome BioBricks differed
across organism categories by comparing binomial regression models
with and without this factor using likelihood-ratio tests. P-values for all
twenty-four statistical tests are provided in Supplementary Table 1.

Statistics & reproducibility
BioBrick plasmids from the iGEM DNA Distribution Kit were trans-
formed based on their locations in these microplates without first
examining their sequences or functions. Outlier measurements in the
burden assayswere identified bymanually examining growth curve fits
and omitted from the analysis, as documented in the raw data files93.
No statistical method was used to predetermine the sample size. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data files and plasmid assemblies are available in a
GitHub repository that has been archived in Zenodo (https://doi.org/
10.5281/zenodo.11528027)93. Raw plasmid and genome sequencing
data are available from the NCBI Sequence Read Archive (Accession:
PRJNA1090925). Source data are provided with this paper.

Code availability
Simulation code and analysis scripts are available in the associated
GitHub repository93.
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