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Abstract

Patients with obstructive sleep apnea (OSA) experience insulin resistance and its clinical consequences, including hypertriglyceridemia,
reduced high density lipoprotein-associated cholesterol (HDL-c), visceral adiposity, hepatic steatosis, increased epicardial fat thickness,
essential hypertension, glucose intolerance, increased risk for type 2 diabetes, chronic kidney disease, subclinical vascular damage, and
increased risk for cardiovascular events. Obesity is a major contributor to OSA. The prevalence of OSA is almost universal among pa-
tients with severe obesity undergoing bariatric surgery. However, insulin resistance and its clinical complications occur in OSA patients
irrespective of general obesity (body mass index). In OSA patients, apnea episodes during sleep induce oxyhemoglobin desaturation
and tissue hypoxia. Insulin resistance is an adaptive response to tissue hypoxia and develops in conditions with limited tissue oxygen
supply, including healthy subjects exposed to hypobaric hypoxia (high altitude) and OSA patients. Indicators of oxyhemoglobin desat-
uration have been robustly and independently linked to insulin resistance and its clinical manifestations in patients with OSA. Insulin
resistance mediates the elevated rate of type 2 diabetes, chronic kidney disease, and cardiovascular disease unexplained with traditional
cardiovascular risk factors present in OSA patients. Pathophysiological processes underlying hypoxia-induced insulin resistance involve
hypoxia inducible factor-1 upregulation and peroxisome proliferator-activated receptor-gamma (PPAR-γ) downregulation. In human
adipose tissue, PPAR-γ activity promotes glucose transport into adipocytes, lipid droplet biogenesis, and whole-body insulin sensitivity.
Silencing of PPAR-γ in the adipose tissue reduces glucose uptake and fat accumulation into adipocytes and promotes insulin resistance.
In conclusion, tissue hypoxia drives insulin resistance and its clinical consequences in patients with OSA, regardless of body mass index.
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1. Introduction
Patients with obstructive sleep apnea (OSA) typi-

cally suffer from insulin resistance and its clinical man-
ifestations, such as metabolic syndrome, impaired glu-
cose tolerance, reduced cholesterol associated with high
density lipoprotein (HDL-c), hypertriglyceridemia, vis-
ceral adiposity, non-alcoholic fatty liver disease (NAFLD),
increased epicardial fat thickness, subclinical vascular
damage including arterial stiffening and increased arte-
rial intima-media thickness (IMT), essential hypertension,
glomerulomegaly, and albuminuria. Eventually, clinical
complications of insulin resistance may develop, such as
type 2 diabetes (T2D), cardiovascular disease (CVD), and
chronic kidney disease (CKD) [1–5]. Obesity is a ma-
jor determinant of OSA occurrence. OSA prevalence in
obese patients undergoing bariatric surgery is strikingly
high, having been reported to be 81.1% [6] and 90.07%
[7]. However, insulin resistance and its clinical conse-
quences develop in OSA patients irrespective of general
obesity. Insulin resistance in OSA patients is an adap-
tive response to oxyhemoglobin desaturation and tissue hy-

poxia due to nocturnal apnea episodes. Oxyhemoglobin
desaturation has been strongly and independently associ-
ated with insulin resistance and its complications in pa-
tients with OSA. Both obese and non-obese OSA pa-
tients develop this metabolic adaptation (Fig. 1). Molec-
ular mechanisms underlying hypoxia-induced insulin re-
sistance in OSA patients involve hypoxia inducible factor
(HIF) upregulation and peroxisome proliferator-activated
receptor-gamma (PPAR-γ) downregulation, which reduces
glucose uptake into adipocytes, suppresses adipogenesis,
and causes whole-body insulin resistance [1,2,8–11].

Information on the connection between hypoxia-
induced insulin resistance and its clinical consequences (in-
cluding CVD, CKD, and T2D) in patients with OSA may
help improve the prevention and clinical management of
these common conditions in clinical practice. A recent sys-
tematic review and meta-analysis that included 9 random-
ized studies reveals that nocturnal oxygen therapy reduces
OSA severity compared to sham, suggesting that this ther-
apy may facilitate the prevention of OSA complications
[12].
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Fig. 1. Obstructive sleep apnea induces oxyhemoglobin desaturation and tissue hypoxia. Insulin resistance develops as an adaptive
process due to tissue hypoxia. Obesity contributes to obstructive sleep apnea, but insulin resistance and its complications (the metabolic
syndrome and its components, type 2 diabetes, cardiovascular disease, and kidney disease) occur in patients with obstructive sleep apnea
irrespective of general obesity. HDL-c, high density lipoprotein-associated cholesterol.

2. Objectives
Short term exposure to hypobaric hypoxia (high alti-

tude) induces adaptive insulin resistance and a metabolic
adjustment that matches reduced oxygen delivery to mi-
tochondrial oxygen consumption. As patients with OSA
experience chronic nocturnal oxyhemoglobin desaturation
and tissue hypoxia, we investigated the metabolic adapta-
tion that takes place among these patients and its clinical
consequences.

3. Methods
This is a comprehensive narrative review pertaining

to insulin resistance in patients with OSA. A thorough and
exhaustive search of published literature on this topic was
performed by using the PubMed database from its incep-
tion to February 2024. Only articles written in English and
concerning human beings were included. Authors MAA,
ADM, ECQ, and RFC contributed to the literature search.
MAA approved the final list of included studies.

4. Obstructive Sleep Apnea is Associated
with Insulin Resistance, its Clinical
Manifestations, and its Clinical
Complications
4.1 Obstructive Sleep Apnea is Associated with Insulin
Resistance

Compared to control subjects, both children and adults
with OSA experience insulin resistance, assessed by a va-
riety of procedures including hyperinsulinemic euglycemic
clamps. The prevalence of insulin resistance among OSA
patients has been reported to be 64.3% [13]. Cross-
sectional studies have observed an independent associa-
tion between OSA and elevated homeostasis model as-
sessment of insulin resistance (HOMA-IR) values [2–5,
7,13–25], fasting hyperinsulinemia [2–4,14,19,21,26–28],
the triglyceride-glucose index, calculated as: In [fasting
triglycerides (mg/dL)× fasting glucose (mg/dL)/2] [10,11],
and insulin resistance determined by intravenous glucose
tolerance tests [29] or steady-state plasma glucose and in-
sulin levels [27,30]. The cross-sectional association be-
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tween OSA and insulin resistance is independent of body
mass index (BMI) and other confounding factors. OSA pa-
tients endure more severe insulin resistance compared to
control individuals with comparable BMI. In addition, there
is a positive correlation between OSA severity and inten-
sity of insulin resistance (HOMA-IR index). Likewise, the
prevalence of insulin resistance (evaluated by the HOMA-
IR index and fasting insulin level) is higher among women
with polycystic ovary syndrome and OSA compared to
women with polycystic ovary syndrome without OSA, af-
ter controlling for BMI and other factors. OSA severity
is highly correlated with the degree of insulin resistance
among these patients [31]. Longitudinal trials establish that
OSA precedes the development of insulin resistance. In a
prospective community-based study that followed 141 non-
diabetic patients with OSA for a mean period of 11 years, a
diagnosis of OSA at baseline was independently related to
the development of new-onset insulin resistance (evaluated
by the HOMA-IR index and oral glucose tolerance tests) at
follow-up, after controlling for BMI and other confounders.
OSA independently increases the risk of insulin resistance
[32]. Systematic reviews and meta-analyses confirm an as-
sociation between OSA and insulin resistance determined
via an elevated HOMA-IR [33] or the atherogenic index
of plasma, calculated according to the formula: log (serum
triglyceride level/serum HDL-c level) [34]. Compared to
usual care, OSA therapy with continuous positive airway
pressure (CPAP) [35–40] or implantation of a mandibular
advancement device [41], improves insulin resistance with-
out changing BMI, supporting a role for tissue hypoxia in
the pathogenesis of insulin resistance.

4.2 Obstructive Sleep Apnea is Associated with the
Metabolic Syndrome and its Components

Correspondingly with the greater degree of insulin
resistance, OSA is independently associated with clinical
manifestations of thismetabolic adaptation to hypoxia, such
as metabolic syndrome and its components.

4.2.1 Obstructive Sleep Apnea is Associated with the
Metabolic Syndrome

Observational studies [4,14,16–18,22,42–57] and a
systematic review and meta-analysis [58] Consistently re-
veal that the prevalence of metabolic syndrome is increased
in OSA patients, compared to control subjects, indepen-
dently of BMI and other covariates. Metabolic syndrome is
approximately 9 times more likely to occur in patients with
OSA compared to control subjects. The number of features
of metabolic syndrome increases with an increase in OSA
severity, regardless of BMI.

4.2.2 Obstructive Sleep Apnea is Associated with
Increased Visceral Fat

OSA patients (children and adults) suffer frommarked
visceral adiposity compared to control subjects, regardless
of general obesity (BMI). The excess of visceral fat in OSA

patients is determined by ultrasonography, magnetic reso-
nance imaging, bioimpedance analysis, increased waist/hip
ratio, widened waist circumference, or the visceral adipos-
ity index (calculated with a formula that includes waist cir-
cumference, BMI, triglycerides, and HDL-c). Irrespective
of body weight or BMI, OSA patients exhibit increased
visceral adipose tissue, reflecting insulin resistance. In
addition, OSA severity is strongly predictive of the vis-
ceral fat depot, unlike BMI, total fat, or subcutaneous fat
[20,22,28,43,45,50–52,55–57,59–67].

4.2.3 Obstructive Sleep Apnea is Associated with
Non-Alcoholic Fatty Liver Disease

NAFLD is a clinical expression of insulin resistance.
Therefore, the prevalence of NAFLD is higher in OSA pa-
tients compared to control subjects, independent of BMI
and other confounding variables. Even in the absence of
obesity, the prevalence of NAFLD is increased in OSA pa-
tients [7,15,68–70]. NAFLD is present in 81.8% of un-
selected OSA patients and 96.0% of patients with severe
OSA undergoing bariatric surgery [69]. Patients with se-
vere OSA are approximately 53 times more likely to have
NAFLD compared to control subjects. There is a posi-
tive correlation between the severity of OSA and the de-
gree of hepatic steatosis [70]. Systematic reviews andmeta-
analyses reveal that OSA is independently related to the de-
velopment and progression of NAFLD determined by ele-
vated liver enzymes and histological alterations including
hepatic fibrosis, both in children and adults [71–74].

4.2.4 Obstructive Sleep Apnea is Associated with
Increased Epicardial Fat Thickness

Increased epicardial fat thickness is an indicator of ex-
cessive visceral fat and consequently reflects the presence
of insulin resistance. OSA patients show broader epicardial
fat thickness compared to control subjects, independent of
general obesity (BMI). Both non-obese and obese OSA pa-
tients have thicker epicardial fat compared to control indi-
viduals. In addition, OSA severity correlates with the mag-
nitude of epicardial fat expansion [50,54,75–77]. These
findings are confirmed in a systematic review and meta-
analysis that included 9 studies and 1178 subjects [78].

4.2.5 Obstructive Sleep Apnea is Associated with Insulin
Resistance-Associated Dyslipidemia

Cross-sectional investigations show an association be-
tween OSA and insulin resistance-related dyslipidemia (hy-
pertriglyceridemia and reduced HDL-c). Both adults and
children with OSA endure a greater prevalence of hyper-
triglyceridemia and decreased HDL-c compared to control
subjects, after controlling for covariates. Consequently, the
triglyceride/HDL-c ratio and its logarithmic transformation
(the atherogenic index of plasma) are higher in OSA pa-
tients, compared to control subjects. The association of
OSA and insulin resistance-mediated dyslipidemia is in-
dependent of BMI and therefore occurs in non-obese as
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well as obese OSA patients. OSA severity is associated
with worse lipid abnormalities (decreased HDL-c and in-
creased triglyceride levels) [4,5,14,20,21,25,46,54,79–83].
In contrast, no independent association between OSA and
serum levels of total cholesterol or low densitiy lipoprotein-
associated choleserol (LDL-c) has been observed [79].
These findings are confirmed in a systematic review that
pooled 25 studies for meta-analysis [84].

4.3 Obstructive Sleep Apnea is Associated with Subclinical
Vascular Injury and Clinical Cardiovascular Events

It has long been known that patients with OSA endure
a high cardiovascular risk that cannot be justified by con-
ventional cardiovascular risk factors. OSA is independently
associated with subclinical vascular injury (increased arte-
rial stiffness, left ventricular hypertrophy, increased intima-
media thickness, and reduced flow-mediated vasodilation),
essential hypertension, and clinical cardiovascular events
(coronary artery disease, congestive heart failure, periph-
eral artery disease, and stroke). Subclinical vascular in-
jury and elevated cardiovascular risk in OSA patients have
been regularly associated with insulin resistance, similar
to subjects from the general population and other popula-
tion groups, such as patients with diabetes and patients with
CKD.

4.3.1 Obstructive Sleep Apnea is Associated with
Increased Arterial Stiffness

Longitudinal trials have shown that increased arterial
stiffness (reduced arterial distensibility) precedes the devel-
opment of essential hypertension and predicts future cardio-
vascular events among normotensive community-dwelling
individuals. Asymptomatic arterial stiffening is an indepen-
dent risk factor for essential hypertension and CVD. Insulin
resistance has consistently been associated with increased
arterial stiffness in a number of population groups, includ-
ing the general population, patients with CKD, and patients
with diabetes, independently of other vascular risk factors
[85–90]. Cross-sectional investigations associate OSAwith
increased arterial stiffness on different arterial areas, eval-
uated by a variety of procedures, including pulse wave ve-
locity (carotid-femoral, brachial-ankle, or central), the aug-
mentation index, the cardio-ankle vascular index, aortic dis-
tensibility calculated from the aortic diameters measured by
echocardiography, ultrasound speckle-tracking-based anal-
ysis of carotid artery, and cardiovascular magnetic reso-
nance of the aorta and carotid arteries. The association be-
tween OSA and arterial stiffening is independent of clas-
sical cardiovascular risk factors, such as systemic hyper-
tension and general obesity (BMI). Increased arterial stiff-
ness has been detected in normotensive patients with min-
imally symptomatic OSA, suggesting that subclinical vas-
cular damage affects OSA patients from the onset of the
disorder and precedes the development of arterial hyperten-
sion. In addition, OSA severity correlates with the degree of
arterial stiffening [51,53,91–108]. Systematic reviews and

meta-analyses confirm that OSA is a risk factor for reduced
arterial distensibility, independent of conventional cardio-
vascular factors [109–111]. Interventional studies show
that therapy with positive air pressure (either continuous or
autoadaptive) improves arterial stiffening in OSA patients
compared to baseline values, ineffective CPAP or conser-
vative therapy, supporting a role for tissue hypoxia in ar-
terial stiffening. The improvement in arterial stiffness oc-
curs early after the initiation of CPAP and reverts quickly
with CPAP withdrawal [99,112–118]. Systematic reviews
and meta-analyses confirm that CPAP therapy reduces ar-
terial stiffening in patients with OSA [109,110,119]. Like-
wise, OSA therapy with the implantation of a mandibular
advancement device improves insulin resistance and arte-
rial stiffening compared with baseline values [41].

4.3.2 Obstructive Sleep Apnea is Associated with
Essential Hypertension

The prevalence of essential hypertension is higher in
patients with OSA (both children and adults) compared to
control subjects, regardless of BMI and other risk factors.
Further, OSA is associated with poorer blood pressure con-
trol among hypertensive patients. In addition, systolic and
diastolic blood pressure values increase with OSA severity
[4,14,26,42,43,45–47,49,53,54,57,60,80,120–122]. Longi-
tudinal surveys on the general population [123] and the el-
derly [124] reveal that OSA precedes the development of
systemic hypertension. Patients with OSA at baseline are
at increased risk for developing essential hypertension at
follow-up compared to control subjects without baseline
OSA. In a systematic review andmeta-analysis, pooled data
from 6 studies show that OSA patients experience an in-
creased risk for resistant hypertension compared to control
subjects, after adjustment for traditional risk factors [125].

Notwithstanding the association between OSA and ar-
terial hypertension, systematic reviews and meta-analyses
of placebo-controlled randomized trials show that CPAP
therapy reduces only slightly blood pressure values in OSA
patients, the effect being more intense in patients with re-
sistant hypertension [126–137]. Similarly to CPAP, the im-
plantation of mandibular advancement devices mildly re-
duces systolic and diastolic blood pressure [138].

4.3.3 Obstructive Sleep Apnea is Associated with Left
Ventricular Hypertrophy and Left Ventricular Dysfunction

In 1990, a case-control investigation revealed that left
ventricular hypertrophy (LVH) was more frequent in nor-
motensive patients with OSA compared to control sub-
jects without OSA. Both the left ventricular mass and
the left ventricular mass index (left ventricular mass/body
surface area) were larger among normotensive OSA pa-
tients, after adjustment for weight, suggesting that OSA is
a risk factor for LVH even in normotensive patients [139].
Subsequent cross-sectional studies [50,93,140–146] and a
meta-analysis [147] reveal that OSA patients (children and
adults) are at increased risk for LVH, after controlling the
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confounding effects of hypertension, general obesity, and
other factors. The prevalence of LVH in the pooled OSA
population was 45% [147] while LVH has been reported in
88% of patients with severe OSA. Decreased aortic disten-
sibility present in OSA patients increases left ventricular af-
terload and may contribute to an increase in left ventricular
mass [141]. CPAP therapy in patients with OSA has been
reported to reduce LVH compared to usual care [141,148].

In addition to LVH, both children and adults with OSA
may exhibit other echocardiographic abnormalities, includ-
ing increased left ventricular diameters (diastolic and sys-
tolic), decreased left ventricular ejection fraction [149], sys-
tolic and diastolic left ventricular dysfunction (assessed by
the left ventricle myocardial performance index) [150], left
atrial enlargement [97,141], right atrial enlargement, and
right ventricular hypertrophy [140,141].

4.3.4 Obstructive Sleep Apnea is Associated with
Increased Arterial Intima-Media Thickness

Cross-sectional and case-control trials show that OSA
patients exhibit increased carotid IMT compared to con-
trol individuals. The severity of OSA correlates positively
with carotid IMT. Increased carotid IMT is present in OSA
patients without hypertension, diabetes or CVD, indicating
that subclinical vascular injury occurs early in the evolution
of the disorder, independent of traditional risk factors [50,
52,64,92,98,100,151–156]. A population-based, prospec-
tive cohort study that followed 790 randomly selected Wis-
consin residents from a polysomnogram to a carotid ultra-
sound (average of 13.5 years) determined that OSA pre-
cedes thickening of the carotid artery. Baseline OSA pre-
dicted future increased carotid IMT independent of conven-
tional cardiovascular risk factors [157]. In a systematic re-
view and meta-analysis that included 18 studies, OSA was
a risk factor for increased carotid IMT, after adjustment for
major confounders. OSA patients had a higher carotid IMT
compared to healthy controls [158]. CPAP therapy [159] or
nasal surgery and uvulo-palato-pharyngoplasty (in OSA pa-
tients with narrowing at the nasal cavity and retropalatal air-
ways) [160] have been reported to reduce carotid IMT com-
pared to conservative treatment. However, no change of
carotid IMT after CPAP treatment was observed in a meta-
analysis that included 7 studies, although carotid IMT was
decreased in patients with severe OSA who received CPAP
≥6 months [161].

4.3.5 Obstructive Sleep Apnea is Associated with Reduced
Endothelial Vasodilation

Cross-sectional and case-control investigations show
that flow-mediated vasodilation and the reactive hyperemia
index are reduced in OSA patients compared to control
subjects, suggesting that OSA patients experience asymp-
tomatic vascular damage [92,95,96,115,156]. In a sys-
tematic review and meta-analysis that included 18 articles,
flow-mediated vasodilation in patients with OSAwas lower
compared to control subjects [111].

4.3.6 Obstructive Sleep Apnea is Associated with
Increased Clinical Cardiovascular Events

Cross-sectional [17,42,103,162,163] and longitudinal
[164–168] studies reveal that the rate of clinical cardiovas-
cular events (coronary artery disease, heart failure, periph-
eral artery disease, and stroke) is increased in OSA patients
compared to control subjects. Longitudinal surveys have
established that OSA precedes CVD. The diagnosis of OSA
at baseline is a predictor of CVD independent of conven-
tional cardiovascular risk factors [164–168]. Systematic re-
views and meta-analyses consistently confirm that OSA is
associated with increased cardiovascular risk [169–176]. A
beneficial effect of CPAP on cardiovascular outcomes com-
pared to usual care has not been consistently found among
OSA patients, particularly in randomized controlled clini-
cal trials. In a recent systematic review and meta-analysis
that included 11 studies (5 randomized controlled trials and
6 observational studies), CPAP therapy was associated with
a modest risk reduction in cardiovascular events among pa-
tients with OSA and concomitant coronary artery disease.
In addition, CPAP reduced the risk of all-cause and cardio-
vascular death by 23%. Subgroup analysis revealed that a
CPAP adherence time ≥4 hours/night had a greater benefit
on preventing cardiovascular events [137].

4.4 Obstructive Sleep Apnea is Associated with Impaired
Glucose Tolerance and Increased Risk for Type 2 Diabetes

In OSA patients, insulin resistance causes impaired
glucose tolerance and predisposes them to T2D. The
prevalence of glucose intolerance is higher in OSA pa-
tients compared to control subjects, independent of BMI.
Non-diabetic patients with OSA have increased levels of
fasting glucose, postprandial glucose, and glycosylated
hemoglobin, compared to control subjects, after adjustment
for confounding factors [1,21,45,46,52,60,66,80,177,178].
Likewise, cross-sectional [1,43,179,180] and longitudinal
[181–183] studies reveal an independent association be-
tween OSA and T2D. The prevalence of T2D is greater
in OSA patients compared to control subjects, regardless
of general obesity and other risk factors. Longitudinal
investigations establish that OSA precedes T2D. Patients
with OSA at baseline have a 30% higher risk of develop-
ing new-onset T2D at follow-up compared to control in-
dividuals, independent of age, race, gender, baseline fast-
ing glucose, and BMI. A meta-analysis of 6 prospective co-
hort studies and 5953 participants confirms that OSA is an
independent risk factor for the development of new-onset
T2D, compared with the absence of OSA, over follow-up
periods from 2.7 years to 16 years [184]. Longitudinal
observational studies show that therapy with positive air-
way pressure [181,185] or upper airway surgery [185] re-
duces the risk of new-onset T2D in OSA patients compared
to conservative therapy, independent of confounding fac-
tors. Supporting the presence of more severe insulin re-
sistance, T2D patients with OSA endure worse glycemic
control compared to T2D patients without OSA, regard-
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less of BMI. Even mild OSA has a negative influence on
glycemic control among T2D patients [186–188]. Investi-
gations on the effect of CPAP on glycemic control (glycosy-
lated hemoglobin) in OSA patients with T2D have yielded
inconsistent results. An association between hours of CPAP
usage and glycosylated hemoglobin reduction has been ob-
served, such that better adherence to CPAP is associated
with greater improvements in glycemic control [189,190].

4.5 Obstructive Sleep Apnea is Associated with Kidney
Disease (Albuminuria, Glomerulomegaly, and Chronic
Kidney Disease)

OSA-related insulin resistance has been associated
with albuminuria, glomerulomegaly, CKD, and accelerated
loss of kidney function toward end-stage kidney disease.

4.5.1 Obstructive Sleep Apnea is Associated with
Albuminuria

In 1984, a patient with severe OSA was noted to
develop nephrotic syndrome [191]. Subsequent cross-
sectional surveys showed that the prevalence of proteinuria
(sometimes in nephrotic range) is higher in both children
and adults with OSA compared to control subjects, after ad-
justment for confounding factors. Even OSA patients with-
out diabetes or hypertension experience a higher risk of de-
veloping albuminuria (urinary albumin excretion rate or uri-
nary albumin/creatinine ratio) compared to control subjects
[192–201]. In addition, an association between OSA sever-
ity and the degree of albuminuria has been observed [202,
203]. Systematic reviews and meta-analyses confirm that
OSA is independently associated with higher urinary albu-
min excretion rate compared to control subjects [204,205].
Therapy with positive airway pressure reduces albuminuria
in OSA patients, either non-diabetic [192,206,207] or pa-
tients with diabetic kidney disease [208,209]. CPAP effect
on albuminuria is more profound in patients with more se-
vere OSA [197].

4.5.2 Obstructive Sleep Apnea is Associated with
Glomerulomegaly and Focal Segmental
Glomerulosclerosis

OSA patients with proteinuria exhibit a kidney
histopathological picture consistent with insulin resistance,
namely glomerulomegaly, focal segmental glomeruloscle-
rosis, and prominent involvement of kidney arterial vessels
(hyaline sclerosis of arterioles and fibroelastic thickening
of artery walls). The histopathological findings in OSA pa-
tients replicate those observed in other conditions associ-
ated with tissue hypoxia (and adaptive insulin resistance),
such as high-altitude maladaptation, sickle cell disease, and
cyanotic congenital heart disease, suggesting a causative
role for hypoxia-related insulin resistance in the kidney le-
sion [206,210,211]. On light microscopy, glomeruli are
markedly enlarged and focal segmental glomerulosclero-
sis is observed. Mesangial matrix and mesangial cellular-
ity are usually increased. Arterial involvement is conspic-

uous with marked arteriolar hyalinosis and arterial intima-
media thickening. Correspondingly with arterial damage,
focal areas of tubular atrophy and interstitial fibrosis are
identified. Immunofluorescence staining is usually nega-
tive. Electron microscopy reveals effacement of podocyte
foot processes. No subendothelial, mesangial or subepithe-
lial immune complex deposits are noted [206,210,211].

4.5.3 Obstructive Sleep Apnea is Associated with Chronic
Kidney Disease

OSA-related insulin resistance is an independent risk
factor for CKD and accelerated progression to end-stage
kidney disease [212]. The prevalence of CKD, de-
fined as estimated glomerular filtration rate (GFR) <60
mL/min/1.73 m2, is higher among OSA patients compared
to control subjects, after adjustment for BMI and other con-
founders. GFR estimation was assessed with the MDRD
(modification of diet in renal disease) equation, the CKD-
EPI (CKD Epidemiology Collaboration) equation, or the
Cockcroft-Gault formula, the prevalence of CKD remains
higher in OSA patients without essential hypertension or
T2D. A positive correlation between OSA severity and
worse kidney function has been found [200–202,213–219].
Longitudinal studies show that OSA is associated with an
increased risk for CKD and end-stage kidney disease com-
pared with the general population, independent of con-
ventional risk factors [212,220–222]. In addition, cross-
sectional [219] and longitudinal [223,224] investigations
show that OSA patients experience accelerated loss of kid-
ney function, compared to control subjects, after adjustment
of risk factors such as age, BMI, diabetes and heart failure.
The loss of kidney function is faster in participants with
OSA over the follow-up period. Systematic reviews and
meta-analyses confirm that OSA patients endure a higher
risk of CKD (lower estimated GFR), compared to control
subjects. Accordingly, the serum level of cystatin C is in-
creased in OSA patients compared to control individuals,
independent of hypertension and diabetes [204,205]. Like-
wise, OSA is associated with diabetic kidney disease in
T2D patients [225]. Investigations concerning the effect of
CPAP therapy on kidney function have rendered conflict-
ing results. Some studies show a slower rate of progression
among OSA patients treated with CPAP [226–228] whereas
a systematic review and meta-analysis found no clinically
relevant effect of CPAP on estimated GFR [229].

5. Oxyhemoglobin Desaturation (Leading to
Tissue Hypoxia) Induces Insulin Resistance
in Patients with Obstructive Sleep Apnea

In humans, insulin resistance is an adaptive response
to normobaric hypoxia [230–234] and hypobaric hypoxia
(exposure to high altitude) [235–237]. Likewise, oxyhe-
moglobin desaturation (leading to tissue hypoxia) has been
consistently linked to insulin resistance and its clinical con-
sequences in OSA patients. The severity of oxygen desat-
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uration in these patients may be expressed in a variety of
ways, such as the average nocturnal oxygen saturation, the
lowest oxygen saturation, the percentage of time spent be-
low 90% oxygen saturation during sleep, and the oxyhe-
moglobin desaturation index, defined as the average num-
ber of desaturation episodes occurring per hour. A desat-
uration episode is a reduction in oxyhemoglobin saturation
≥3% that lasts ≥10 seconds. Oxyhemoglobin saturation is
the percentage of hemoglobin bound to oxygen.

5.1 Oxyhemoglobin Desaturation is Independently
Associated with Insulin Resistance in Patients with
Obstructive Sleep Apnea

Cross-sectional studies show that oxyhemoglobin de-
saturation is strongly and independently associated with
insulin resistance in children and adults with OSA [1–
4,6,8–11,23,56,62,177,238–241]. Likewise, a prospective
community-based study with a mean follow-up period of 11
years reveals that more severe oxygen desaturation at base-
line is independently associated with more profound insulin
resistance at follow-up (evaluated by the HOMA-IR index
and the insulin sensitivity index) [32].

5.2 Oxyhemoglobin Desaturation is Independently
Associated with the Metabolic Syndrome and its
Components in Patients with Obstructive Sleep Apnea

OSA patients with lower oxyhemoglobin saturation
experience clinical manifestations of insulin resistance, re-
gardless of BMI and other risk factors. A variety of oxy-
gen desaturation estimates (oxyhemoglobin desaturation in-
dex, minimum arterial oxygen saturation, and mean noc-
turnal oxygen saturation) are independently and robustly
associated with metabolic syndrome [49], visceral adipos-
ity [55,59,62], non-alcoholic fatty liver disease [242], epi-
cardial fat thickness [77], and dyslipidemia (hypertriglyc-
eridemia and decreased HDL-c) [4,25,48,55,80,82] among
both obese and non-obese OSA patients.

5.3 Oxyhemoglobin Desaturation is Independently
Associated with Cardiovascular Disease in Patients with
Obstructive Sleep Apnea

In OSA patients, the hypoxia burden is correlated with
subclinical vascular damage. The lowest oxygen satura-
tion, the average oxygen saturation, the oxyhemoglobin
desaturation index, and the percentage of time spent be-
low 90% oxygen saturation during sleep, are robustly
and independently associated with increased arterial stiff-
ness [96,243,244], elevated blood pressure [4,48,49,120,
245], increased carotid IMT [98,152,153,155,246], and
left ventricular dysfunction [146,245,247–249]. Unlike
the apnea hypopnea index, oxyhemoglobin desaturation
strongly predicts asymptomatic vascular injury and my-
ocardial performance in OSA patients, after adjustment
for conventional cardiovascular risk factors. Accordingly,
the improvement in oxygen saturation after uvulo-palato-
pharyngoplasty showed a correlation with a reduction of
arterial IMT [160].

5.4 Oxyhemoglobin Desaturation is Associated with
Impaired Glucose Tolerance, Worse Glycemic Control,
and Increased Risk of Type 2 Diabetes in Patients with
Obstructive Sleep Apnea

OSA patients with more severe nocturnal hypoxemia
(assessed by the oxyhemoglobin desaturation index) show
an increased risk of T2D [187] and more elevated fast-
ing glucose levels [48,80], after adjustment for obesity
and other confounding factors. In addition, OSA patients
with T2D and more pronounced hypoxemia endure worse
metabolic control. The percentage of time spent under 90%
oxygen saturation and the minimum oxygen saturation are
associated with higher glycosylated hemoglobin (HbA1c),
independent of general adiposity and other confounders.
There is a positive relationship between nocturnal hypox-
emia and deficient glycemic control in OSA patients with
T2D. Every 10% reduction in minimum oxygen saturation
is associated with a 0.3% increase in HbA1c whereas a
10% increase in the percentage of time spent under 90%
oxygen saturation is associated with a 0.2% increase in
HbA1c [186–188,250]. Longitudinal studies reveal that de-
creased oxygen saturation at baseline predicts incident T2D
at follow-up in OSA patients, after adjustment for BMI and
other risk factors, suggesting that more severe hypoxemia
drives insulin resistance and predisposes to T2D. Unlike the
apnea-hypopnea index, the time spent with oxygen satura-
tion of less than 90% is associated with incident diabetes in
adjusted models [1,32,56,181–183].

5.5 Oxyhemoglobin Desaturation is Independently
Associated with Kidney Disease in Patients with
Obstructive Sleep Apnea

In OSA patients, a more severe hypoxia burden has
been consistently associated with increased albuminuria
and worse kidney function. Children and adults with more
pronounced nocturnal hypoxemia (assessed by the lowest
oxygen saturation, the length of sleep time spent at oxygen
saturation below 90%, and the desaturation index) expe-
rience more severe albuminuria, independent of BMI and
other confounders [195–198,200,214,251,252]. Accord-
ingly, proteinuria falls after improvement of oxygen satu-
ration with CPAP [252,253]. The prevalence of CKD (es-
timated GFR <60 mL/min/1.73 m2) is higher in OSA pa-
tients with more severe hypoxia burden, after adjusting for
confounders. Profounder nocturnal hypoxemia (evaluated
by the time spent under 90% oxygen saturation, the mean
oxygen saturation, and the lowest nocturnal oxygen satu-
ration) is inversely correlated with estimated GFR, such
that OSA patients with more severe hypoxia burden expe-
rience worse kidney function (lower estimated GFR). Fur-
thermore, the minimum oxygen saturation is an indepen-
dent predictor of CKD, indicating that severe hypoxemia,
even for a short period of time, is a risk factor for kid-
ney dysfunction [200,216,217,227]. Retrospective cohort
trials reveal that oxyhemoglobin desaturation is indepen-
dently associated with an increased risk for accelerated loss
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of kidney function and progression to end-stage kidney dis-
ease. Patients with more severe hypoxemia experience a
faster loss of kidney function [223,224]. Likewise, more
profound nocturnal hypoxemia (time spent under 90% oxy-
gen saturation) is associated with diabetic kidney disease
and worse kidney function, after adjusting for confounding
variables in patients with OSA and T2D [225,254]. Accord-
ingly, CPAP therapy improves oxyhemoglobin desaturation
and decelerates the rate of CKD progression in patients with
CKD andOSA [227]. In OSApatients with advanced CKD,
more severe hypoxemia (higher sleep time with oxygen sat-
uration below 90% and lower mean oxygen saturation) is
associated with higher mortality over the follow-up period
(9 years) [255].

6. Pathophysiological Processes Underlying
Insulin Resistance in Patients with
Obstructive Sleep Apnea

Pathogenic mechanisms leading to adaptive insulin re-
sistance due to tissue hypoxia in OSA patients involve the
upregulation of HIFs and downregulation of PPAR-γ. Si-
lencing of PPAR-γ in adipocytes reduces glucose uptake,
impairs lipid droplet biogenesis, and induces whole-body
insulin resistance [234].

6.1 Hypoxia Induces HIF-1α Upregulation and
Subsequent PPAR-γ Downregulation in Patients with
Obstructive Sleep Apnea

HIFs are transcription factors that regulate the tran-
scription of target genes by binding to specific DNA se-
quences named hypoxia response elements. HIFs are het-
erodimeric proteins that possess two subunits, α and β.
Three isoforms of the α subunit have been identified (HIF-
1α, HIF-2α, and HIF-3α) whereas only one β subunit has
been reported to exist in humans. Each isoform of the α

subunit may dimerize with the β subunit to generate the
corresponding HIF (HIF-1, HIF-2, or HIF-3). Formation of
human HIFs can only be completed when the oxygen sup-
ply to tissues is limited, because, under normoxia, HIF-α
is continuously degraded and unavailable for dimerization
with HIF-β. Degradation of HIF-α requires initial hydrox-
ylation (catalyzed by prolyl hydroxylase isoenzymes) and
subsequent binding to the von Hippel Lindau protein. The
hydroxylation of specific proline residues in HIF-α permits
the binding to the von Hippel Lindau protein. In turn, at-
tachment to the von Hippel Lindau protein labels hydrox-
ylated HIF-α to be destroyed [256,257]. Therefore, in-
hibition of HIF-α prolyl hydroxylases and/or a defective
von Hippel Lindau protein block the degradation of HIF-
α and enable the formation of functional HIFs in humans
[258]. HIF-α prolyl hydroxylase isoenzymes require oxy-
gen, 2-oxoglutarate, iron, and ascorbate for activity. Con-
sequently, deficiency of either one of them inhibits the hy-
droxylation of HIF-α, blocks its degradation, and allows the
dimerization of intact HIF-α with the β subunit to produce
operative HIFs [256,257] (Fig. 2). Oxygen deprivation (hy-

poxia) inhibits the activity of prolyl-hydroxylases, promot-
ing the formation of HIFs. In vitro studies using a variety
of human cell lines show that HIF-1α expression increases
during hypoxia exposure [259–264]. Similarly to oxygen
shortage, the deficiency of 2-oxoglutarate [265], iron [266],
and ascorbate [267] suppresses HIF-α prolyl hydroxylases
and generates HIFs. Once activated, HIFs modulate the
transcription of target genes to orchestrate the response to
hypoxia or other conditions. ThePPARG gene, which codes
for PPAR-γ, has been identified as a target gene for HIF-1 in
human cells, including adipocytes. In response to hypoxia,
HIF-1 reduces PPARG expression (mRNA and protein) and
inhibits PPAR-γ activity [259,260,263,268–271].

Fig. 2. In humans, formation of human hypoxia-inducible fac-
tors (HIFs) can occur only under hypoxia. Under normal con-
ditions (normoxia), HIF-α is continuously degraded and cannot
dimerize with HIF-β. Breakdown of HIF-α requires the action
of prolyl hydroxylase isoenzymes and the subsequent attachment
to the von Hippel Lindau protein, which labels HIF-α for degra-
dation. HIF-α prolyl hydroxylase isoenzymes require oxygen to
catalyze HIF-α hydroxylation. Therefore, hypoxia inhibits this
reaction, impedes HIF-α degradation and allows the formation of
functional HIF-1. Once activated, HIF-1α downregulates the ex-
pression of PPARG gene, which codes for peroxisome prolifera-
toractivated receptor gamma (PPAR-γ) and suppresses PPAR-γ
activity.

6.2 Patients with Obstructive Sleep Apnea Exhibit HIF1A
Upregulation and PPARG Downregulation in the Adipose
Tissue

In OSA patients, increased expression of the HIF1A
gene (which encodes HIF-1α) and downregulation of
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Fig. 3. In humans, normal PPAR-γ activity in adipocytes involves glucose uptakemediated by the glucose transporter-4 (GLUT-4)
and fat accumulation in the subcutaneous adipose tissue while enhancing whole-body insulin sensitivity. PPAR-γ silencing during
hypoxic conditions induces the opposite effects, namely reduction of GLUT-4-mediated glucose transport into adipocytes, suppression
of fat deposition, and whole-body insulin resistance. PPAR-γ, peroxisome proliferatoractivated receptor gamma.

PPARG have been observed in the subcutaneous adipose
tissue, compared to control subjects, independent of BMI
[5,272]. Additionally, OSA patients demonstrate higher
serum levels of HIF-1α compared with control subjects.
Further, serum HIF-1α level correlates with the number of
desaturations during sleep [273].

6.3 PPAR-γ Silencing Causes Insulin Resistance Due to
Defective Glucose Uptake into Adipocytes Leading to
Suppression of Adipogenesis

In humans, glucose uptake into adipocytes by the glu-
cose transporter-4 (GLUT-4) facilitates lipid droplet bio-
genesis, fat accumulation in the subcutaneous adipose tis-
sue, and whole-body insulin sensitivity. These processes
are accomplished by normal PPAR-γ activity. Thiazo-
lidinediones (exogenous PPAR-γ agonists) replicate PPAR-
γ effects whereas PPAR-γ silencing (such as occurs due
to hypoxia-induced HIF-1α activation) mediates the oppo-
site effects, namely reduction of GLUT-4-mediated glucose
transport into adipocytes, suppression of fat deposition and
lipid droplet formation in the subcutaneous adipose tissue,
and whole-body insulin resistance (Fig. 3).

6.3.1 Glucose Uptake into Adipocytes Promotes
Adipocyte Differentiation and Defines Whole-Body
Insulin Sensitivity in Normal Humans

6.3.1.1 Glucose Uptake into Adipocytes Mediated by the
Glucose Transporter-4 Promotes Lipid Droplet Formation
and Fat Deposition in the Adipose Tissue. In normal hu-
mans, GLUT-4 proteins carry glucose into adipocytes. The
quantity of GLUT-4 declines markedly when adipocytes
enlarge due to fat deposition, regardless of BMI and de-
gree of insulin sensitivity, such that large adipocytes con-
tain strikingly fewer GLUT-4 molecules compared to small
adipocytes in lean individuals, obese subjects, and T2D
patients. Correspondingly, GLUT-4 conveys glucose into
small adipocytes while no relevant transport is detected on
large cells from human omental and subcutaneous adipose
tissue, suggesting that glucose uptake into small adipocytes
has a crucial effect on triacylglycerol deposition and subse-
quent adipocyte enlargement, that is no longer required in
large adipocytes [274–277].

6.3.1.2 The Expression of Glucose Transporter-4 in
Adipocytes Correlates with Whole-Body Insulin Sensitiv-
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ity. The amount of GLUT-4 in small adipocytes corre-
lates with whole-body insulin sensitivity, measured by
euglycemic hyperinsulinemic clamps, such that subjects
with enhanced insulin sensitivity possess more GLUT-4
whereas patients with insulin resistance possess markedly
diminished GLUT-4 (mRNA and protein) levels in small
adipocytes. Correspondingly, GLUT-4-mediated glucose
uptake into subcutaneous adipocytes is markedly reduced in
patients with insulin resistance (including T2D), suggesting
that defective glucose uptake into subcutaneous adipocytes
contributes to cause whole-body insulin resistance [276–
283].

Similarly to other subjects with insulin resistance,
patients with gestational diabetes [284,285] or polycystic
ovary syndrome [286–288] display reduced GLUT-4 ex-
pression and impaired glucose uptake into adipocytes com-
pared to control subjects, independent of obesity. The
amount of GLUT-4 in adipocytes is highly correlated with
the degree of insulin sensitivity among these patients, such
that abundance of GLUT-4 is associated with enhanced
insulin sensitivity while scarcity of GLUT-4 is observed
in patients with insulin resistance (assessed by insulin-
mediated glucose disposal or HOMA-IR index). In a sys-
tematic review of the literature, decreased GLUT-4 content
in adipocytes (and subsequent impaired glucose transport)
is a consistent abnormality in patients with polycystic ovary
syndrome, regardless of general adiposity [288].

6.3.1.3 A Reduced Amount of GLUT-4 in Adipocytes and
Reduced Fat Accumulation in the Subcutaneous Adipose
Tissue Occur at the Onset of Insulin Resistance. Subjects
with normal weight, glucose tolerance, and fasting triglyc-
eride level, but with a genetic predisposition for T2D (first-
degree relatives of T2D patients) demonstrate a profound
reduction of GLUT-4 (mRNA and protein) in adipocytes
[282,289]. The magnitude of GLUT-4 reduction in subcu-
taneous adipocytes among these subjects is quantitatively
similar to that observed in patients with T2D or impaired
glucose tolerance [280]. In addition, healthy first-degree
relatives of T2D patients exhibit a markedly diminished ca-
pability to store fat in the subcutaneous adipose tissue lead-
ing to an inappropriate expansion of the adipose cells. In
these subjects, insulin resistance is identified by euglycemic
hyperinsulinemic clamps [282,289]. Therefore, reduced
GLUT-4 in adipocytes and an impaired ability to store fat
in the subcutaneous adipose tissue precedes any other clini-
cal manifestation of insulin resistance, suggesting that these
metabolic abnormalities occur at the onset of this metabolic
adaptation [289].

6.3.1.4 In vitro Studies Indicate that Glucose Uptake into
Adipocytes is Required for Fat Accumulation and Lipid
Droplet Biogenesis. The link between glucose uptake into
adipocytes and the ability to accumulate fat is further sup-
ported by in vitro studies using primary human adipocytes.
Silencing of an endoplasmic reticulum protein involved in

lipid droplet biogenesis (fat storage-inducing transmem-
brane protein-2) in primary human adipocytes reduces
both glucose uptake and triacylglycerol accumulation, com-
pared with control cells suggests that glucose transport into
adipocytes is required for fat accumulation [290]. Consis-
tently, fat storage-inducing transmembrane protein-2 is less
abundant in the subcutaneous and omental adipocytes from
T2D patients, compared to control subjects [290].

6.3.2 Human PPAR-γ Facilitates Glucose Uptake into
Adipocytes, Subcutaneous Fat Deposition, and Insulin
Sensitivity while PPAR-γ Inhibition has the Converse
Effect

In normal humans, PPAR-γ normally promotes glu-
cose uptake into adipocytes and triglyceride deposition on
the subcutaneous adipose tissue while enhancing insulin
sensitivity. PPAR-γ activity is essential for the process
of subcutaneous fat deposition and adipocyte differentia-
tion, but is not required for maintenance of the differen-
tiated state. Depletion of PPAR-γ prevents fat deposition
inside subcutaneous adipocytes but does not induce dedif-
ferentiation of mature adipocytes once full differentiation
has taken place. In OSA patients, PPAR-γ suppression is
associated with decreased glucose uptake into adipocytes,
reduced fat accumulation in the subcutaneous adipose tis-
sue, and whole-body insulin resistance [291–293]. Thia-
zolidinediones (such as pioglitazone and rosiglitazone) are
exogenous PPAR-γ ligands that activate PPAR-γ and re-
produce its effects. In non-diabetic patients with insulin
resistance (and therefore low GLUT-4 protein in adipose
cells), pioglitazone therapy increasesGLUT-4 expression in
subcutaneous adipose tissue (mRNA and protein) and im-
proves insulin resistance (assessed by euglycemic hyperin-
sulinemic clamps), strengthening the existence of a mecha-
nistic link between reduced GLUT-4 protein in adipocytes
and whole-body insulin resistance [282].

The study’s strengths include a meticulous and unbi-
ased literature search attempting to retrieve all relevant arti-
cles on the connection between insulin resistance and OSA.
However, some limitations need to be acknowledged. First,
we searched only the PubMed database and restricted our
search to articles published in English. As a result, some de-
gree of selection bias may have occurred. Second, included
studies were heterogenous in terms of study design, classifi-
cations for the severity of OSA, population groups, duration
of follow-up, and the method of assessing complications
of insulin resistance (for instance, blood pressure record-
ings, arterial stiffness, and kidney function). In addition,
except for articles concerning OSA therapy, included inves-
tigations were mostly observational, limiting their ability to
demonstrate causality.

7. Conclusions
Patients with obstructive sleep apnea experience ap-

nea episodes that induce oxyhemoglobin desaturation and
subsequent tissue hypoxia. In turn, tissue hypoxia induces
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adaptive insulin resistance. In patients with obstructive
sleep apnea, oxyhemoglobin desaturation has been con-
sistently associated with insulin resistance and its clinical
consequences, independent of body mass index and other
confounding factors. Patients with obstructive sleep ap-
nea typically manifest metabolic syndrome, essential hy-
pertension, hypertriglyceridemia, reduced HDL-c, visceral
adiposity, non-alcoholic fatty liver disease, increased epi-
cardial fat, subclinical vascular injury (such as reduced ar-
terial distensibility, left ventricular hypertrophy, and in-
creased arterial intima-media thickness), elevated cardio-
vascular risk, impaired glucose tolerance, predisposition to
type 2 diabetes, and kidney disease (glomerulomegaly, al-
buminuria, and chronic kidney failure). In patients with ob-
structive sleep apnea, tissue hypoxia upregulates hypoxia-
inducible factor-1, which induces peroxisome proliferator-
activated receptor-gamma downregulation in the adipose
tissue. Attenuation of peroxisome proliferator-activated
receptor-gamma reduces glucose transport into adipocytes,
impairs fat deposition in the subcutaneous adipose tissue
and causes whole-body insulin resistance. Obesity is a ma-
jor causative factor for obstructive sleep apnea, but insulin
resistance develops in these patients irrespective of general
adiposity (body mass index). Tissue hypoxia drives insulin
resistance in patients with obstructive sleep apnea.
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