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Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and
limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these “mixed representations” are
suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might
occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial “shell”
layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find
that the activity of individual shell IC neurons jointly reflects auditory cues, mice’s actions, and behavioral trial outcomes, such that
trajectories of neural population activity diverge depending on mice’s behavioral choice. Consequently, simple classifier models
trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity
occurring prior to mice’s instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code
that reflects a joint representation of sound, actions, and task-dependent variables.
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Significance Statement

Neurons in superficial “shell” layers of the inferior colliculus (IC) preferentially project to higher-order thalamic nuclei that
are strongly activated by sounds and their consequences, thereby combining sensory and task-dependent information. This
sensory–behavior integration is thought critical for a variety of behaviorally relevant functions, such as establishing learned
sound valence. However, whether such “mixed representations” reflect unique properties of thalamocortical networks, or
rather are present in other areas, is unclear. We show that in behaving mice, many shell IC neurons are modulated by sounds
and mice’s actions. Consequently, shell IC population activity suffices to predict trial outcomes prior to the rewarded action.
Our data thus establish shell IC nuclei as a novel locus of behaviorally relevant mixed representations.

Introduction
Choosing the appropriate behavioral response to appetitive or
aversive stimuli confers a survival advantage. To achieve this,
neural circuits must be capable of linking external sensations,
instrumental actions, and their behaviorally relevant conse-
quences. One solution is for distinct sensory and behaviorally
relevant pathways to converge upon a common target region,
thereby enabling postsynaptic ensembles to jointly encode

sensations and their consequences such as reward, punishment,
or goal-directed actions. Indeed, such “mixed selectivity” to
sensory and behavioral variables is well documented in the
thalamus (Ryugo and Weinberger, 1978; Komura et al., 2001;
Hu, 2003; Jaramillo et al., 2014; L. Chen et al., 2019; Gilad et al.,
2020) and neo-cortex and might contribute to the computational
power of these high-level circuits (Rigotti et al., 2013; Naud and
Sprekeler, 2018; Stringer et al., 2019; Parker et al., 2020; Saxena
et al., 2022). However, whether such joint representations reflect
unique integrative computations of the thalamocortical system,
or can be inherited from afferent inputs, is unknown.

The inferior colliculus (IC) is a midbrain hub that transmits
most auditory signals to the forebrain (Aitkin et al., 1981; Aitkin
and Phillips, 1984; LeDoux et al., 1985; Coleman and Clerici,
1987; LeDoux et al., 1987). It is subdivided into primary central
and surrounding dorsomedial and lateral “shell” nuclei whose
neurons preferentially project to the primary and higher-order
medial geniculate body (MGB) of the thalamus, respectively
(Winer et al., 2002; Mellott et al., 2014; C. Chen et al., 2018).
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Interestingly, lesions to the shell IC or their afferent inputs do
not cause central deafness but rather seemingly impair certain
forms of learned auditory associations (Jane et al., 1965; Bajo et
al., 2010). In tandem with their anatomical connectivity to non-
lemniscal thalamic regions, these results suggest that shell IC neu-
rons may be involved in higher-order auditory processing and
learned sound valence.

Accordingly, prior studies show that neurons across many IC
subregions respond differently to sound depending on task
engagement (A. Ryan and Miller, 1977; A. F. Ryan et al., 1984;
Slee and David, 2015; De Franceschi and Barkat, 2021;
Shaheen et al., 2021), locomotion (C. Chen and Song, 2019;
Yang et al., 2020), eye position (Groh et al., 2001; Porter et al.,
2006), and expectation of appetitive or aversive reinforcers
(Halas et al., 1970; Olds et al., 1972; Disterhoft and Stuart,
1976, 1977; Kettner and Thompson, 1985; Gao and Suga, 1998;
Metzger et al., 2006; Lockmann et al., 2017). One possible expla-
nation is that these prior results largely reflect a nonspecific,
arousal-mediated scaling of acoustic responses owing to task
engagement, movement, or behavioral sensitization (Ji and
Suga, 2009; Saderi et al., 2021). An alternative hypothesis is
that such modulation instead reflects the integration of sound
cues with task-dependent signals related to behavioral outcomes
or goal-directed actions. Interestingly, higher-order MGB neu-
rons jointly encode combined sound and behavioral outcome
signals, which may serve important learning-related functions
(Ryugo and Weinberger, 1978; Mogenson et al., 1980; Edeline
and Weinberger, 1992; McEchron et al., 1995; Schultz et al.,
2003; Taylor et al., 2021). However, whether such joint coding
of acoustic and task-dependent signals is also present in afferent
inputs from shell IC neurons is unknown.

Here, we test the hypothesis that shell IC neurons integrate
acoustic and task-dependent signals, thereby transmitting informa-
tion that predicts the outcome of behavioral trials. To this end, we
recorded from shell IC neuron populations using two-photon Ca2+

imaging, as head-fixedmice engaged in a challenging, psychometric
auditory Go/No-Go task. We report that shell IC neurons jointly
encode sound- and trial outcome–dependent information, thereby
generating population activity patterns that predict mice’s instru-
mental choice on a trial-to-trial basis. Thus, the auditory midbrain
broadcasts a powerful mixed representation of sound and outcome
signals, which could support some of the integrative, sensory-
guided decisions often attributed to the thalamocortical system.

Materials and Methods
Animal subjects and handling. All procedures were approved by the

University of Michigan’s Institutional Animal Care and Use Committee
and conducted in accordance with the NIH’s guide for the care and use of
laboratory animals and the Declaration of Helsinki. Adult CBA/CaJ x
C57BL/6J mice were used in this study (n= 11, 5 females, 70–84 d post-
natal at the time of surgery). These hybrids do not share the Cdh23muta-
tion that results in early-onset presbycusis in regular C57BL/6 mice
(K. R. Johnson et al., 1997; Frisina et al., 2011; Kane et al., 2012).
Following surgery, mice were single-housed to control water deprivation
and to avoid damage to surgical implants. Cages were enriched (running
wheels, nest building material) and kept in a temperature-controlled
environment (24.4°C, 38.5% humidity) under an inverted light-dark
cycle (12 h/12 h), and mice had olfactory and visual contact with the
neighboring cages. Three mice entered the experiment after having spent
three prior sessions where they were passively exposed to different sound
stimuli than those employed in the current study (Shi et al., 2024).

Surgery. Mice were anesthetized in an induction chamber with 5%
isoflurane vaporized in O2, transferred onto a stereotaxic frame

(M1430, Kopf Instruments), and injected with carprofen as a presurgical
analgesic (Rimadyl; 5 mg/kg, s.c.). During surgery, mice were maintained
under deep anesthesia via continuous volatile administration of 1–2%
isoflurane. Body temperature was kept near 37.0°C via a closed loop heat-
ing system (M55 Harvard Apparatus), and anesthesia was periodically
confirmed by the absence of leg withdrawal reflex upon toe pinch. The
skin above the parietal skull was removed, and a local anesthetic was
applied (lidocaine HCl, Akorn). The skull was balanced by leveling the
vertical difference between lambda and bregma coordinates, and a
2.25–2.5-mm-diameter circular craniotomy was carefully drilled above
the left IC at lambda−900 μm (AP)/−1,000 μm (LM). The skull overlying
the IC was removed, and pAAV.Syn.GCaMP6f.WPRE.SV40 (AAV1, titer
order of magnitude 10−12, Addgene) was injected 200 μm below the dura
at four different sites (25 nl each; 100 nl total) across the mediolateral axis
of the IC using an automated injection system (Nanoject III, Drummond
Scientific). In three cases, pAAV.syn.jGCaMP8s.WPRE (AAV1, titer
order of magnitude 10−12, Addgene) was injected. A custom-made cranial
window insert, consisting of three circular 2 mm glass coverslips stacked
and affixed to a 4-mm-diameter glass outer window, was then inserted
in the craniotomy. The cranial window was affixed to the skull and
sealed with cyanoacrylate glue (Loctite), and a titanium head bar was
mounted on the skull with dental cement (Ortho-Jet). Mice received a
postsurgical subcutaneous injection of buprenorphine (0.03 mg/kg, s.c.,
Par Pharmaceutical). Mice received carprofen injections (5 mg/kg, s.c.,
Spring Meds) 24 and 48 h following surgery.

Behavior protocol. After a minimum of 14 d recovery from surgery,
mice were water restricted (1–1.5 ml/d) and maintained at >75% initial
body weight. Mice were habituated to the experimenter, the experimental
chamber, and the head fixation. During the habituation and experimen-
tal sessions, mice sat in an acrylic glass tube in a dark, acoustically
shielded chamber with their heads exposed and fixed and a lick spout
in comfortable reach. Following 7 d of water restriction and acclimation,
mice were trained daily in a reward-based, operant Go/No-Go paradigm
(Fig. 1A–C), controlled by a Bpod State Machine (Sanworks) run with
Matlab (version 2016b, MathWorks). Sounds were generated in
Matlab at a sampling frequency of 100 kHz and played back via the
Bpod output module. A sound was presented from a calibrated speaker
(XT25SC90-04, Peerless by Tymphany) positioned 30 cm away from the
mouse’s right ear (1 s duration, 10 ms cosine-ramped at on and offset,
70 dB SPL). Calibration was performed with broadband noise (BBN)
using a spectral band peak analysis and a 1/4′′ pressure-field microphone
(Brüel & Kjaer). All unmodulated and modulated sounds were presented
using this calibration, and peak energy was equal (3.9 ± 0.16 rms),
while overall energy modestly decreased at higher modulation depths
(0%, 0.27 ± 0.01 rms; 100%, 0.18 ± 0.01 rms). Licking behavior was
recorded for the entire trial time using a light gate in front of the spout,
sampled down to 7.3 Hz (C57BL/6J lick frequency, Boughter et al., 2007),
and binarized offline. During go trials, licking a waterspout during a 1 s
“answer period” following sound offset resulted in the delivery of a
reward (10% sucrose–water droplet gated through a solenoid valve
housed outside the sound-attenuating microscope chamber). During
No-Go trials, mice had to withhold licking during the answer period,
and false alarms were punished with an increased intertrial interval
(“time-out”). Licking at any other point in the trial had no consequence.
Thus, intertrial intervals were 13–15 s following all Go and correctly
answered No-Go trials and 18–20 s for incorrectly answered No-Go
trials. Intertrial intervals were kept this long to avoid photobleaching
and laser damage to the tissue, while approximately balancing the laser
on time (8 s) and laser off time (5–12 s).

All mice were trained according to the same protocol: In the first
stage, only Go stimuli were presented, and rewards were manually trig-
gered by the experimenter so that mice learned to associate the Go stimu-
lus with a water reward (shaping, usually continuously for the first 10
trials, followed by slowly decreasing manual reward delivery until trial
50 during initial Go-only sessions). This procedure was repeated over
multiple sessions until an association was present, determined by reach-
ing a criterion of 80% response rate without shaping in two consecutive
sessions. Next, the No-Go stimulus was introduced. In this stage, the
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number of No-Go presentations gradually increased from 20 to 33 to
50% if mice responded correctly on 80% of trials during a session. A
typical session contained ∼200 trials and lasted for up to 1 h. For n= 8
mice, the Go stimulus was a broadband noise burst (BBN, 4–16 kHz),
and the No-Go stimulus was an amplitude-modulated BBN modulated
at 100% depth at a frequency of 15 Hz [sinusoidal amplitude modulation
(sAM), 4–16 kHz BBN carrier]. To ensure that mice attend to the tem-
poral envelope modulation of the stimulus, a subgroup of n= 3 mice
was trained on the opposite stimulus contingency, with the sAM sound
functioning as the Go stimulus. Althoughmice’s discrimination behavior
differed slightly across the two training contingencies (Fig. 1), we
observed no differences in physiological results between the two groups,
and the data were pooled for analyses (see Results).

After reaching 80% correct in the 50/50 Go/No-Go stage for two
consecutive sessions, we varied the amplitude modulation (AM) depth
(No-Go stimulus for Group 1, Go stimulus for Group 2) from 20 to
100% in 20% steps. Mice performed 6–7 sessions in this paradigm,
with a typical session containing ∼350 trials and lasting for up to
1.5 h. If a mouse that had learned the task produced misses for six Go
trials in a row, the session was terminated since these trials were indica-
tive of a lack of motivation and licking. Due to the pseudorandomized
trial order, this criterion was reached over a maximum of 14 consecutive
trials once a mouse stopped licking. Thus, the final 14 trials of each ses-
sion were discarded from all analyses. In order to account for the lower
number of rewarded trials due to low discriminability stimuli (20% sAM
depth), we increased the number of Go stimuli during the multi-AM
stage to 60% to increase the number of rewarded trials to maintain beha-
vioral engagement.

Water intake during the task was estimated by measuring the mice’s
weight difference (including droppings) before and after each session.
Mice received supplementary water if they consumed <1 ml during
the session. Upon conclusion of the experiment, mice received water
ad libitum for at least 2 d, were deeply anesthetized via an overdose of
isoflurane, and were transcardially perfused with formalin.

Behavior analysis. Lick responses to assign trial outcomes were
counted only during the reward period (1 s after sound offset). Licking
at any point during the reward period during Go trials resulted in a hit
and was immediately rewarded. Not licking during this period was
scored as a miss. Licking during the reward period during No-Go trials
was counted as a false alarm and resulted in a time-out, and not licking
was scored as a correct rejection and was not rewarded nor punished.
Licking at any other point during any trial had no consequence.

Licks were rebinned at 7.3 Hz (C57BL/6J lick frequency, Boughter et
al., 2007), averaged over trial category per mouse, and analyzed
for maximal lick probability and lick bout duration (full-width at half-
maximum of the lick bout). To determine lick bout duration, we first
determined the maximum lick probability and then measured the
duration in both directions until the half-maximum was reached. For
analyses that consider the onset of licking (Figs. 1K, 5E,F, 6B–D, 7A),
mice’s “first lick” is defined as the first lick occurring after sound
onset on each trial, including unrewarded, anticipatory licks during
sound presentation.

The sensitivity index d′ was calculated as d′ = z(hit rate) − z(false
alarm rate), where z(hit rate) and z(false alarm rate) are the
z-transformations of the hit rate and the false alarm rate, respectively.
Global lick rates pooled from all sessions were fitted per mouse with a
four-parameter logistic equation (sigmoid fit). d′ curves were fitted
with a sigmoid or logarithmic fit, and the perceptual threshold was
defined as the modulation depth at which half-maximal lick probability
was reached.

Ca2+ imaging. Movies were acquired at a frame rate of 30 Hz (512×
512 pixels) using a resonance-scanning, two-photon microscope (Janelia
Research Campus’ MIMMs design; Sutter Instrument) equipped with a
16× water immersion objective (Nikon, 0.8 NA, 3 mm working distance)
and a GaAsP photomultiplier tube (Hamamatsu Photonics). The micro-
scope was located in a custom-built, sound- and light-attenuated chamber
on a floating air table. GCaMP6f or −8 s were excited at 920 nm using a

titanium–sapphire laser (30–60 mW absolute peak power, Chameleon
Ultra 2, Coherent). Images were acquired for 8 s per trial from the
same field of view in each session (determined by eye using anatomical
landmarks), with a variable intertrial interval (see above, Behavior proto-
col). Recording depth from dura was variable between mice and chosen
by image quality and number and responsiveness of neurons (tested live)
but generally kept between 20 and 55 µm. Behavioral data (licks) were
recorded simultaneously through Matlab-based WaveSurfer software
(Janelia Research Campus) and synchronized with the imaging data offline.

Ca2+ imaging analysis. We used the Python version of suite2p to
motion-correct the movies, generate regions of interest (ROIs), and
extract fluorescence time series (Pachitariu et al., 2016). ROIs were
manually curated by the experimenter to exclude neurites without
somata, and overlapping ROIs were discarded if they could not be clearly
separated. Raw fluorescence time series were converted to ΔF/F by divid-
ing the fluorescence by the mean fluorescence intensity during the 2 s
baseline period on each trial, subtracting the surrounding neuropil signal
scaled by a factor of 0.7, and smoothing the traces using a five-frame
Gaussian kernel. ΔF/F traces and behavioral data were then analyzed
using custom Matlab routines (available upon request). To determine
significantly responding ROIs, we used a bootstrapping procedure based
on the ΔF/F “signal autocorrelation” as in prior electrophysiology and
imaging studies of the IC (Geis et al., 2011; Wong and Borst, 2019).
We chose this approach because it quantifies for each neuron the degree
of trial-to-trial response consistency across similar trial categories, rather
than mean amplitude. Briefly, we compared the average correlation of
each matching pair of trials (same stimulus identity or same trial out-
come) over either the sound or the answer period to the correlations
from shuffled signals originating from these same trials (10,000 itera-
tions). Trials were matched across the same stimulus identity (sAM
depth) to determine stimulus selectivity or matched across the same trial
outcome (hit, miss, correct rejection, false alarm) to determine trial
outcome selectivity. The p-values were then computed as the fraction
of these randomly sampled signals with greater correlation than the
real data and corrected for multiple comparisons using the
Bonferroni–Holm method. Since our behavior employed six distinct
sound stimuli, a neuron was classified as significantly sound modulated
when p was below 0.05 for at least one, and at most six, stimulus condi-
tion. Similarly, our task structure has four trial outcomes; a neuron was
classified as trial outcome modulated if p was below 0.05 for at least one,
and at most four, outcome condition. Importantly, this methodmeasures
trial-to-trial consistency, and not response onset or strength. Thus,
prolonged, but consistent responses during the sound presentation
may occasionally lead to significant responses during the trial outcome
period. Since decreases in fluorescence can be difficult to interpret
specifically for tuning analyses, we used t-distributed stochastic neighbor
embedding (t-SNE; van der Maaten and Hinton, 2008) and k-means
clustering (two clusters) in the tuning analyses to separate sound-excited
from sound-inhibited neurons by their average ΔF/F waveform and only
analyzed sound-excited neurons. In population analyses [principal
component analysis (PCA) and support vector machine (SVM)], all
neurons were used, regardless of whether they were significantly
responding, sound-excited, or sound-inhibited, according to our analy-
ses. The outcome selectivity index (SI) of each neuron was calculated
as follows: We first averaged ΔF/F traces of hit, miss, correct rejection,
and false alarm trials. We then measured the absolute value integrals
of each average waveform from sound onset to 1 s after the answer
period. Outcome selectivity indices for Go and No-Go trials were calcu-
lated as (hit−miss) / (hit +miss) and (correct rejections− false alarms) /
(correct rejections + false alarms), respectively.

To determine the fraction of significantly different ΔF/F values on
different trial outcomes (Fig. 4G,H), we compared the mean ΔF/F over
1 s bins between different trial outcomes within the same neurons with
pairwise Bonferroni-corrected t tests. To normalize for differences in
lick count, rate, and bout duration on hit and false alarm trials, we divided
the ΔF/F values into 1 s time bins either by the lick count in the respective
second, by themean slope of the lick histogram in the respective second, or
by the full-width at half-maximum of the mean lick histogram.
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Lifetime sparseness. As an additional measure for neuronal selectiv-
ity, we computed the lifetime sparseness per neuron, which describes a
neuron’s general activity variance in response to an arbitrary number
of stimuli (Vinje and Gallant, 2000). Here, we computed the lifetime
sparseness separately for modulation depth and trial outcome:

LS = 1
1− 1/N

1−
∑N

j=1 rj/N
( )
∑N

j=1 r
2
j /N

2⎛
⎜⎝

⎞
⎟⎠,

where N is the number of different stimuli and rj is the mean peak ΔF/F
response to stimulus j from sound onset to +2 s. Before computing the
lifetime sparseness, we set all negative ΔF/F traces (neurons that reduced
their firing relative to baseline) to 0 to keep the lifetime sparseness
between 0 and 1. Lifetime sparseness is 0 when a neuron responds to
all stimuli with the same peak ΔF/F response and 1 when it only responds
to a single stimulus.

Principal component analysis. We performed a population principal
component analysis (PCA) using individual ROIs as observations and
the trial-averaged ΔF/F samples as individual variables using Matlab’s
“pca” function with the default parameters. To compare the differences
in the multidimensional neural trajectories, we computed the mean
weighted Euclidean distances (weuΔ) of hit and miss, and correct rejec-
tion and false alarm trials, respectively. The weuΔ was obtained by com-
puting the Euclidean distance between each component of the neural
trajectories at each point in time, weighted by the amount of variance
explained by each component, resulting in a weighted distance vector
per component. These were then summed up to a single ∑weuΔ-curve
per session that is proportionate to the general difference in network
activity and normalized to the intrasession variance.

Support vector machine classifier. The support vector machine
(SVM) classifiers of Figures 6 and 7 were generated in Matlab using
the classification learner app, with the “templateSVM” and “fitsvm” or
“fitecoc” functions as the skeleton for binary andmultilabel classification,
respectively. For these analyses, we used data recorded across 7 different
multi-sAM sessions recorded in each of the n= 11 mice in this study,
for a total of 77 imaging sessions. This includes both mice trained on
BBN and mice trained on sAM noise as the Go stimulus. N-way
ANOVA tests showed that neither Go stimulus type nor session # had
a significant main effect on the data (see Results), and data were
pooled. Separate SVMs were trained on each session, and the results
were averaged per mouse, adding additional overfitting protection by
introducing another data layer. In all cases, we used a linear kernel
and the sequential minimal optimization algorithm to build the classifier.
We used the ROIs as individual predictors and one of several sets
of variables as classes: trial outcome (hit, miss, correct rejection, false
alarm), action during the answer period (lick, no lick), stimulus identity
(AM depth), and stimulus category (Go stimulus, No-Go stimulus),
using equal priors. The integral of the ΔF/F traces over 100 ms was
used as the input data, and the classifier was constructed and trained
on each individual session using an equal number of Go and No-Go
trials. We used periods of 100 ms in steps of 100 ms over the whole
signal to extract the information content in the signal at each period.
Thus, at each time point t, the classifier has access to the integral of
the activity from t to t+ 100 ms. For the “first-lick accuracy,” the
100 ms preceding the first lick that occurred after sound onset was
used. If no lick was present during a trial, the median first-lick time
of all licked trials of that session was used instead. We used fivefold
validation to determine the decoding accuracy per session, i.e., five
randomly sampled portions of 80% of trials as training data and the
remaining five times 20% as test data. The accuracy is then given as
the mean decoding accuracy among those fivefolds. Because the number
of trials per class is not always balanced, we computed the “balanced
accuracy,” which is calculated differently for binary (lick/no lick,
Go/No Go) and nonbinary problems (trial outcome, AM depth). For
binary problems, the balanced accuracy is defined as the number of

true positives plus the number of true negatives, divided by 2. Thus,
the balanced accuracy normalizes the accuracy to 50% at chance level
even if the percentage of Go/No-Go or lick/no-lick trials per session
does not follow a precise 50/50 split. For nonbinary problems, it is
defined as the mean of the microrecalls (recall/class, see below), and
the chance level is 1 divided by the number of classes. All data is
presented as “balanced accuracy.”

For controls, we computed the “shuffled” and “shuffled balanced”
accuracies, where the trials and the class labels are shuffled prior to class-
ifier training. This method thus reflects a real chance level. To prevent
overfitting to individual, strongly selective neurons, we included a “drop-
out” rate of 10% by setting the ΔF/F traces of 10% randomly sampled
ROIs in each trial to 0 during the training (Srivastava et al., 2014). We
trained and tested classifiers for all seven multi-sAM sessions per mouse
and averaged the accuracy.

We further assessed the quality of our classifiers by computing the
weighted precision (positive predictive value, or exactness, the number
of true positives divided by the number of all positives, weighted by class
prevalence) and weighted recall (sensitivity or completeness, the number
of true positives divided by the number of true positives and false nega-
tives, weighted by class prevalence) and then computing the weighted F1
score (the harmonic mean of the two, van Rijsbergen, 1979; Hand et al.,
2001) and the area under the curve (AUC) as the mean of the AUCs per
class (area under the receiver-operating characteristic, Huang et al.,
2003). This information was used to compute the balanced accuracy
for multiclass problems.

When conducting a weight analysis on SVM classifiers, correlations
of features can lead to arbitrary changes in feature weights (“multicolli-
nearity,” defined as a high proportion of Pearson’s correlation coeffi-
cients >0.7, Dormann et al., 2013). To control for this, we computed
the condition index for each feature (=ROI) correlation matrix, which
is the square root of the ratio of the largest and the smallest eigenvalues
of the correlation matrix. Values >20, not capped in either direction, are
considered problematic (Belsley et al., 1980, Johnston andDinardo, 1996,
Mela and Kopalle, 2002). After applying the 10% dropout, no session had
a condition index >20. Thus, multicollinearity is not a concern in our
dataset by the current standards.

Statistics. All statistical analyses were run in Matlab. Significance
levels *, **, and *** correspond to p-values lower than 0.05, 0.01,
and 0.001, respectively. Data were tested for normality using the
Kolmogorov–Smirnov test, and nonparametric tests were used when
the data were not normally distributed. All descriptive values are mean
and standard deviation unless otherwise noted. p-values were corrected
for multiple comparisons where appropriate using the Bonferroni–
Holm method. Sample sizes were not predetermined.

Results
Head-fixed mice discriminate amplitude-modulated from
unmodulated noise in an operant task
Water-deprived, head-fixed mice (N= 8) were trained to discri-
minate the presence or absence of 15 Hz sinusoidal amplitude
modulation (sAM) in a 1 s broadband noise (BBN, 4–16 kHz,
70 dB SPL) using an operant Go/No-Go paradigm (see
Materials andMethods for a full description of training regimen).
In Go trials, the noise carrier sound was presented without
amplitude modulation (0% sAM depth). Licking a waterspout
within a 1 s “answer period” following sound offset was scored
as a “hit” outcome and rewarded with a drop of 10% sucrose
water. Withholding licking during the answer period of
Go trials was scored as a “miss” outcome and neither punished
nor rewarded. On No-Go trials, the noise carrier was fully
amplitude-modulated (100% sAM depth), and mice had
to withhold licking during the answer period; these “correct
rejection” outcomes were not rewarded. Licking during
the answer period of No-Go trials was scored as a “false
alarm” outcome and punished with a 5 s “time-out” (increased
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intertrial interval; Fig. 1A–C). Mice reached a criterion
expert performance of ≥80% correctly responded to trials after
13.6 ± 2.6 training sessions.

After mice reached expert performance (<20% false alarms for
two consecutive sessions), we varied the modulation depth of the
sAM sound in subsequent sessions from 20 to 100% in 20% steps.
False alarm rates increased in this “multi-sAM” paradigm com-
pared with the final two sessions with only 0 and 100% sAM
depths (0.46 ± 0.16 vs 0.18 ± 0.11, respectively, mean and stan-
dard deviation), as expected from an increased perceptual ambi-
guity of No-Go sounds on low sAM depth trials (Fig. 1D).
Expectedly, false alarm rates were not evenly distributed across
No-Go conditions of varying depths, and mice were more likely
to lick on low sAM depth No-Go trials than on 100% sAM depth
No-Go trials that they were initially trained on (mean fit half-
maximal lick probability, 69% sAM depth; Fig. 1E). However,
mice’s hit and false alarm rates remained stable across consecu-
tive daily sessions (Fig. 1F), indicating that discriminative perfor-
mance did not increase with further training on the multi-sAM

paradigm for any AM depth (ANOVA, F(6,58) = 1.46 for factor
session #, p= 0.2065). Because false alarm rates increased with
the perceptual similarity of Go and No-Go sounds, these data
argue that performance reflects mice’s attending to temporal
envelope modulation.

As a separate test of whether mice were indeed attending to
the discriminative sound’s temporal envelope, we trained n= 3
mice on the opposite contingency with the presence of sAM
serving as the Go stimulus. These mice’s operant responses in
the multi-sAM paradigm also varied in a manner expected
from temporal envelope detection. To quantify the performance
for all mice regardless of training contingency, we calculated
the sensitivity index (d′) per AM depth rather than the licking
probability (Fig. 1G). On average, d′ steadily rose with increasing
AM depth (i.e., increasing perceptual distance from the 0%
band-limited noise carrier). Discrimination curves for mice
trained with sAM noise as the Go stimulus (n= 3) were better
described by a logarithmic relationship, whereas data from
mice trained with BBN as the Go stimulus (n= 8) were better

Figure 1. Mice discriminate sAM noise from unmodulated noise in a modulation depth-dependent manner. A, Experiment structure. Head-fixed mice were trained to discriminate between
0 and 100% sAM depth (green). We progressively reduced the ratio of Go to No-Go trials as mice’s task performance increased until mice reached the multi-sAM stage (purple). B, Upon reaching
the criterion (see Results), mice engaged in a “multi-sAM depth” version of the task where the modulation depth of the No-Go sound was varied on a trial-by-trial basis. C, Trial structure. After a
2 s baseline, a sound was presented for 1 s. Licking a waterspout during a 1 s answer period following sound offset was rewarded with a drop of sugar water on Go trials and punished with a 5 s
time-out on No-Go trials. Licking at any other point during the trial had no consequence. FA, false alarm; CR, correct rejection. D, Fitted lick probability during the answer period as a function of
sAM depth for all mice during multi-sAM sessions. The gray lines are the individual mice, the black circles and lines are the mean ± standard deviation of each sAM depth, and the purple line is
the mean fit. E, Mean ± standard deviation lick probability over the final training session (green) and 7 d of multi-sAM sessions for all Go stimuli (blue), all No-Go stimuli (red), and only the
trained Go (black) and trained No-Go stimuli (gray). F, d′ for all mice plotted over time for the final training session (Day 0, green) and the 7 d of multi-sAM sessions (purple) as mean ± standard
deviation. G, d′ per sAM depth. The gray lines are mice trained on the task contingency described in panels A–F, with BBN employed as the Go sound cue. The dashed orange lines show n= 3
mice that were trained on an opposite contingency with sAM noise as the Go sound cue. The black circles and lines are mean ± standard deviation for each sAM depth, and the purple line is the
mean sigmoid fit to “BBN is Go” mice. The dashed dark orange line is the mean logarithmic fit to “sAM is Go” mouse data only. H, Individual average lick histograms for each mouse for all trial
outcomes. I, Summary lick statistics for baseline, sound, answer, and intertrial interval periods (1 s each). J, Average maximal lick probability plotted against the full-width at half-maximum of
lick bouts, for each mouse and trial category. The outlier miss data point originates from a mouse that routinely licked at low frequency after the end of the response window. K, Histogram of
first-lick times for all trials with licks during sound or answer period (n= 3,613 trials).
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fit with a sigmoid function. We thus compared discrimination
curves across mouse groups by measuring the slope of linear fits
to the psychometric data, revealing significantly shallower slopes
in mice trained on sAM=Go contingency (2.88 ± 0.47 for
BBN vs 1.36± 0.83 for sAM, Kruskal–Wallis test, χ2(1,10) = 4.17,
p=0.0412). However, both groups of mice’s discrimination beha-
vior increased as a function of modulation depth and as such
appeared to solve the task by responding to the presence or
absence of sinusoidal envelope modulation in a depth-dependent
manner. Neural data for subsequent analyses were thus pooled
across mice trained on both stimulus contingencies after confi-
rming for each analysis that there was no significant statistical
difference between the two groups.

Lick counts per second in trained mice were stable across
consecutive daily sessions (four-way ANOVA, F(6,1,219) = 1.53,
p=0.166 for factor session number) and differed substantially
between hit, miss, correct rejection, and false alarm trials (N-way
ANOVA, F(3,351) = 1,083.55, p=3.310× 10

−167 for factor trial out-
come type, Fig. 1H,I). Intersubject variability was quite low (N-way
ANOVA, F(10,351) = 1.02, p=0.3029 for factor subject ID, Fig. 1H).
Mice generally performed anticipatory licks during sound
presentation on hit and false alarm trials, and lick probability
peaked after sound offset during the answer period. Miss and cor-
rect rejection trials were accompanied by low lick rates. Maximal
lick probability and full-width at half-maximum of lick bout histo-
grams were also stable across sessions (N-way ANOVA; maximal
probability, F(6,255) = 0.74, p= 0.6147; full-width at half-maximum,
F(6,255) = 0.55, p=0.7725) but significantly different between
trial outcomes (Fig. 1J, N-way ANOVA; maximal probability,
F(3,43) = 253.37, p=1.319× 10−25; half-width, F(3,43) = 26.62,
p=1.537× 10−9). Themajor observed difference between trial out-
comes was longer duration lick bouts on hit compared with false
alarm trials, where mice’s licking extended beyond the answer
period and into the intertrial interval. However, this result is not
surprising given that reward delivery occurs on hit trials and
thus engages consummatory licking behavior. Mice regularly ini-
tiated licking during the sound, and the median first-lick time
was 0.73± 0.35 s after sound onset (Fig. 1K, median ±median
absolute deviation). Additionally, we found nomain effect of train-
ing contingency, such that licking behavior was not different
between mice trained with BBN or sAM noise as the Go stimulus
(N-way ANOVA; maximal probability, F(1,43) = 0.73, p= 0.3992;
half-width, F(1,43) = 1.85, p=0.181). Licks during the baseline
occurred with a mean probability across all baseline time bins of
2% for hits, 0.9% for misses, 2.7% for false alarms, and 0.7% for
correct rejections, suggesting that withholding licking in the
answer period is associated with slightly lower baseline lick rates
(Kruskal–Wallis test, χ2(3,43) = 32.32, p=4.482× 10

−7). However, a
linear support vector machine classifier was unable to predict
the trial outcome from the baseline licks above chance level
(25 ± 0.4% vs 25± 0.3% for real and shuffled data. Kruskal–
Wallis test, χ2(1,21) = 2.8, p=0.094), suggesting that small variations
in baseline lick rates were not informative of impending trial out-
comes. Altogether, these data show that head-fixed mice rapidly
learn and stably execute our psychometric sAM task.

Shell IC neurons are active during sound and answer periods
We next investigated the extent to which task-dependent activity
is present in the shell IC of actively listening mice. To this end, we
used a viral approach to broadly express a genetically encoded
Ca2+ indicator (GCaMP6f or −8 s) in the IC and conducted
two-photon Ca2+ imaging to record shell IC neuron activity as
head-fixed mice engaged in the multi-sAM task (Fig. 2A–C).

The multi-sAM paradigm enables comparing neural activity on
trials with similar sounds, but distinct trial outcomes (i.e., hits
vs misses; correct rejections vs false alarms), thereby testing
how shell IC activity varies depending on mice’s instrumental
choice in the answer period.

We recorded n= 909 regions of interest (ROI) in n= 11
multi-sAM sessions recorded across N= 11 mice (83 ± 27 ROIs
per FOV). We restricted the analyses of Figures 2–5 to a single
FOV from each mouse, recorded during the mouse’s first
multi-sAM session. This approach was taken to prevent repeated
measurements from the same neurons across multiple sessions.
As a first pass to determine how shell IC neurons respond to
task-relevant variables, we averaged each neuron’s baseline-
normalized fluorescence traces (ΔF/F ) separately for all Go and
No-Go trials in a given session. As expected from prior
imaging studies in anesthetized and passively listening mice

Figure 2. Shell IC neurons are active across the entirety of Go and No-Go trials.
A, Experimental approach: multiphoton Ca2+ imaging was conducted in the superficial shell
IC layers to record neural activity as mice engaged in the multi-sAM task. B, Schematic of the
imaging plane. A window (teal) was placed above the left IC. The imaging plane was
20–50 µm below the brain surface to reliably target the dorsal shell IC (yellow), rather than
the lateral shell (purple) or central IC (black). C, Example field of view from a typical session
(L, lateral; R, rostral). D, Example mean ± SEM fluorescence traces of eight separate ROIs on
Go (blue) and No-Go (red) trials. All ROIs were recorded simultaneously in the same FOV. Of
note is that differential neural activity on Go and No-Go trials spans across the entire trial epoch
and is expressed as both increases and decreases in fluorescence. E, The proportion of cells
significantly modulated by any sound or outcome, any combination of sound and outcome,
or none of those three options (n= 909). F, Normalized mean activity on Go (left) and
No-Go (right) trials for all recorded ROIs across all mice’s first multi-sAM session, sorted by
activity maxima. Of note, most ROIs have their activity maxima after the sound termination.
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(Ito et al., 2014; Barnstedt et al., 2015; Wong and Borst, 2019),
some shell IC neurons showed strong fluorescence increases
(Fig. 2D, ROI I) or decreases (Fig. 2D, ROI II) that began during
sound presentation and reflect bidirectional changes in firing
rates (Wong and Borst, 2019). However, many neurons showed
neural activity changes that began following sound termination,
such that maximal activity modulation occurred during the
answer period or in the intertrial interval. This activity was
driven by fluorescence increases (Fig. 2D, ROIs III–VI) and
decreases (Fig. 2D, ROIs VII and VIII), with distinct neurons
often showing differential activity patterns on Go and No-Go
trials (Fig. 2D, compare ROIs III, IV, and VI). Moreover, many
neurons showed fluorescence changes during both sound and
answer periods (Fig. 2D, ROIs III, V, and VIII). Shell IC neuron
activity is thus bidirectionally modulated across the entire dura-
tion of behavioral trials of our task, with substantial fluorescence
activity peaking after the answer period in the intertrial interval
(Fig. 2D, ROIs V and VI). Some of the activity observed following
sound termination may reflect sound offset responses, as previ-
ously reported for 13% of shell IC neurons in response to pure
tones (Wong and Borst, 2019). Another possibility is that since
this long-latency activity often instantiates during the trial
answer period, it might reflect task-dependent information in
shell IC neurons.

We summarized these results by quantifying the relative pro-
portion of shell IC neurons showing significant activity during
sound and answer periods. To this end, we employed an “auto-
correlation” bootstrapping analysis (Geis et al., 2011; Wong
and Borst, 2019; Fig. 2E) to test for significant trial-to-trial corre-
lations during the sound presentation of specific sAM stimuli or
during the answer period of distinct trial outcomes (hit, miss,
correct rejection, false alarm). This analysis suggested that 23%
(207/909) of all recorded neurons were consistently modulated
by at least one sound stimulus during sound presentation, but
showed no consistent activity changes during the trial outcome
period; 17% (154/909) of neurons showed consistent activity

during the answer period of one or more trial outcomes, but
not during sound presentation; 37% (340/909) showed consistent
trial-to-trial modulation during sound presentation and answer
period, and 23% (208/909) of neurons were neither modulated
by sound nor trial outcome in a systematic manner detected by
these analyses. Consequently, the majority of neurons in our
datasets (77%, 701/909) showed reliable activity modulation dur-
ing sound presentation and/or the trial answer period. However,
only a minority of neurons were exclusively modulated during
sound presentation (23%). Over half of all neurons (54%) instead
displayed trial outcome modulation, with many neurons reach-
ing their activity peak several seconds after sound offset on
both Go andNo-Go trials (Fig. 2F). Altogether, these data suggest
that task-dependent and nonstimulus-locked activity are the
dominant efferent signals from shell IC neurons under our
conditions.

Shell IC neuron activity during sound presentation is broadly
tuned to sAM depth
Sound-evoked spike rates of central IC neurons generally
increase monotonically with higher sAM depths (Rees and
Møller, 1983; Joris et al., 2004). However, nonmonotonic sAM
depth coding has also been reported (Preuß and Müller-Preuss,
1990), whereby neurons selectively respond to a “preferred”
sAM depth akin to the nonmonotonic intensity selectivity of
brainstem or auditory cortex neurons (Young and Brownell,
1976; Sadagopan and Wang, 2008). We thus wondered how
the shell IC neurons in our recordings encode sAM depth. To
this end, we used t-SNE/k-means clustering to identify neurons
showing a fluorescence increase during sound presentation
(272/464), given the interpretive difficulty of fluorescence
decreases (Vanwalleghem et al., 2021) and the broad selectivity
of sound-evoked inhibition in shell IC neurons (Shi et al.,
2024). This clustering was only used to identify sound-excited
neurons and not to cluster tuning curve shapes. Since baseline-
variance–based thresholding for event detection requires

Figure 3. Most shell IC neurons are broadly responsive to sAM depth. A, Example ΔF/F traces (left) and sAM depth tuning curve (right) for a broadly tuned representative example cell. B, The
same as in A for a cell tuned to high sAM depths. C, The same as in A for a cell tuned to low sAM depths. D, The same as in A for a cell tuned to intermediate sAM depths. E, Mean ± standard
deviation of ΔF/F peak for all sound-excited cells (272) shows no linear correlation with sAM depth. The histogram bars indicate the relative proportion of significantly responsive neurons at each
sAM depth as determined by trial-to-trial correlation bootstrapping analysis. F, Lifetime sparseness for sAM depth responses of all neurons with significant activity during sound presentation.
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significant assumptions and can confound results obtained
from noisy Ca2+-imaging data, we used the trial-to-trial correla-
tion approach to determine whether one or multiple sAM
depths drove consistent responses during sound presentation.
Thirty-eight percent (104/272) of neurons were significantly
responsive to all sAM depths (Fig. 3A), suggesting that more
than a third of shell IC neurons that increase their activity during
sound presentation do so in response to each of the sound stimuli
in our conditions. Twenty-two percent (60/272) of cells preferen-
tially showed activity increases during presentation of low AM
depths (0 and 20%), but not to higher ones (Fig. 3B), and only
6% (17/272) increased their activity during high sAM depth trials
(80 and 100%), but not to lower ones (Fig. 3C). Only a single cell
showed selective activity on medium sAM depth trials (60 and

80%, Fig. 3D). The categorically broad sAM depth selectivity
was also reflected in the magnitude of these shell IC neurons’
responses, i.e., the average peak of ΔF/F traces during the sound
presentation. Indeed, there was no significant correlation between
ΔF/F peak and sAM depth (Pearson’s ρ=0.26, R2 = 0.07, Fig. 3E),
suggesting that the average population activity of shell IC neu-
rons during the discriminative sound cue does not systematically
increase or decrease with sAM depth. Finally, we computed the
lifetime sparseness of all neurons as a separate measure of
response sharpness across all stimuli (Vinje and Gallant, 2000,
Fig. 3F). The population distribution of lifetime sparseness values
was broad, with a low median value of 0.28 (median absolute
derivation 0.18), in further agreement with broad selectivity to
sAM depth. Altogether these analyses suggest limited

Figure 4. Trial outcome selectivity of individual Shell IC neurons. A, Mean ± SEM ΔF/F traces of an example neuron selective for hit and false alarm (FA) trial outcomes. B–D, Same as in A, but
for a neuron responding on misses and correct rejections (CR; B), hits only (C), and with opposing activity on hits and false alarms (D). E, Lifetime sparseness for outcome responses of all 701
significantly task-modulated neurons. F, Selectivity Indices on Go and No-Go trials are plotted for each neuron on the x- and y-axes, respectively. G, Schematic of the Δ(ΔF/F ) analysis. The mean
ΔF/F in 1 s bins was computed on a trial-by-trial basis for each neuron and compared across trial outcomes using a Wilcoxon rank sum test. H, The proportion of neurons with significantly
different ΔF/F values for (from left to right) hits and misses (blue), correct rejections and false alarms (red), hits and false alarms (green), and misses and correct rejections (orange) per averaging
period. *p< 0.05; **p< 0.01; ***p< 0.001.
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nonmonotonic sAM depth encoding and instead indicate that
most shell IC neurons respond similarly during presentation of
different sound cues employed in our task.

Single-neuron responses are modulated by trial outcome
Many neurons showed their strongest activity modulation in the
answer period of Go and No-Go trials (Fig. 2F), and activity
covaried with trial outcomes rather than acoustic sound features.
The neuronal activity might thus discriminate between divergent

trial outcomes, such that shell IC neurons would transmit dis-
tinct signals depending on mice’s instrumental choices. We
tested this hypothesis by comparing fluorescence traces averaged
across trial outcomes, rather than acoustic features, for all trial
outcome responsive neurons (n= 701/909). We included all task-
modulated neurons in this analysis as we had no a priori reason
to expect that trial outcome–dependent differences would be
restricted to the answer period. Rather, sound-related activity
might also covary with mice’s impending actions, in accordance

Figure 5. Population dynamics revealed through principal component analysis show trial outcome–dependent differences. A, Example PCA-based trajectory from a single mouse sorted by AM
depth. For visualization purposes, only the first two components are displayed, collectively explaining∼80% of the total variance. B, The same example sorted by trial outcome for Go trials (hits/
misses). Of note, the trajectories for hits and misses start to diverge immediately after the baseline. C, The same as in B but for No-Go trials. D, Top, The sum of weighted Euclidean distances over
all principal components over time for hits/misses (blue), correct rejections/false alarms (red), and hits/false alarms (FA, green) aligned to sound onset for all mice and sessions, plotted as mean
and standard deviation. Bottom, Friedman’s test followed by a Dunnett’s post hoc test comparing the mean sum of weighted Euclidean distances against the baseline at t=−1 s. E, The same as
in D, but the data were aligned to the first lick after sound onset prior to computing the PCA. F, Average lick histograms sorted by trial outcome for the initial multi-sAM session for all mice, given
as mean and standard deviation and aligned to the first sound-evoked lick. G, The mean and standard deviation z-scored cross-correlation functions for sound-aligned ΔF/F traces and lick
histograms for Go (blue), No-Go (red), and hit/false alarm trials (green). H, Pearson’s correlation coefficient distributions of ΔF/F traces and lick histograms for Go (blue), No-Go (red), and
hit/false alarm trials (green) for sound-aligned data and lick-aligned data. Statistics are two-sample Wilcoxon signed rank tests. *p< 0.05; **p< 0.01; ***p< 0.001.
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with prior work demonstrating context-dependent scaling of
acoustic responses in IC neurons (A. F. Ryan et al., 1984; Slee
and David, 2015; Joshi et al., 2016; Saderi et al., 2021; Shaheen
et al., 2021).

We observed diverse trial outcome–related activity during the
sound and/or answer period: Many neurons had fluorescence
increases restricted to hit and false alarm (Fig. 4A) or alterna-
tively miss and correct rejection trials (Fig. 4B). Activity in these
neurons thus covaried with mice’s licking of the waterspout
rather than the discriminative sound cue features. However, trial
outcome–related activity was not strictly yoked to mice’s actions.
Indeed, other neurons had activity restricted to individual trial
outcomes such as hits (Fig. 4C) or had complex activity profiles,
which diverged depending on whether mice’s licking action was
rewarded (Fig. 4D). One possibility is that outcome selectivity
largely reflects a movement-related modulation of neural activity
(A. Nelson and Mooney, 2016; C. Chen and Song, 2019; Stringer
et al., 2019; Karadimas et al., 2020; Yang et al., 2020).
Alternatively, some of the trial outcome activity may also reflect
signals related to reward, choice, learned categorization, and/or
arousal, although limitations of our Go/No-Go task structure
preclude fully disambiguating these scenarios.

Most shell IC neurons were active on multiple trial outcomes,
as reflected by a low median lifetime sparseness measure in the
population data (0.37; absolute derivation = 0.21, Fig. 4E).We fur-
ther summarized the trial outcome selectivity by measuring a
separate trial outcome selectivity index (SI) value for Go and
No-Go trials for each neuron. Index values range from −1 to
+1 and quantify the extent to which fluorescence changes are
selective for incorrect or correct trial outcomes; values of −1
and +1 indicate neurons that are only active on incorrect or cor-
rect trials, respectively. Plotting each neuron’s SI values revealed a
distribution clustered toward positive and negative values on Go
and No-Go trials, respectively (Fig. 4F). This result indicates that
correlated activity on hits and false alarms (as in Fig. 4A) is the
dominant (although not exclusive) form of trial outcome–depen-
dent modulation, although a substantial variability in response
types is clearly observable in the spread of population data.

We next quantified this diversity in trial outcome selectivity
by calculating the fraction of neurons with significantly different
ΔF/F values during the sound and postsound periods of divergent
trial outcomes. To this end, we averaged the fluorescence values
across 1 s time bins, beginning 1 s prior to sound onset and con-
tinuing until 1 s following the answer period (4 s total, Fig. 4G).
We then compared these values across hit and miss and correct
rejection and false alarm trials (Fig. 4H). In the 1 s baseline
period prior to sound onset, only 1% (7/701) of neurons showed
a statistically significant difference between hit and miss trials;
these values align with the expected false-positive rate set by
the cutoff of our statistical analysis (see Materials and
Methods). In contrast, 28% (194/701) had significantly different
fluorescence values during sound presentation on hit and miss
trials, and this fraction increased to 62% (436/701) and 67%
(470/701) during the answer and post-answer time bins, respec-
tively (Fig. 4H, blue). Thus, in Go trials, a major fraction of
task-active shell IC neurons transmit signals correlated with
mice’s actions rather than the features of the discriminative
sound cue.

Similar results were found when comparing activity across cor-
rect rejections and false alarms of No-Go trials: Although a negli-
gible proportion of neurons showed significant differences during
the presound baseline period (0.4%; 3/701), significant differences
were seen in 30% of neurons (211/701) during sound presentation

(Fig. 4H, red), 52% of neurons (363/701) during the answer period,
and 45% (321/701) of neurons in the post-answer period. During
sound presentation, a similar fraction of neurons showed trial
outcome selectivity during Go and No-Go trials (chi-square test,
χ2(1) = 1.00, p=0.3165). However, the fraction of neurons with
differential activity in the answer and post-answer periods of
No-Go trial outcomes was significantly lower onNo-Go compared
with Go trials (chi-square test, χ2(1) = 15.51, p=0.0001 and
χ2(1) = 64.40, p= 1.01 × 10

−15 for answer and post-answer periods,
respectively). Thus, under our conditions, outcome-selective activ-
ity preferentially occurs after sound presentation on Go trials.

The above differences between correct and incorrect out-
comes could reflect an all-or-none asymmetry in mice’s licking
during the 1 s answer period of Go and No-Go trials. If outcome
selectivity arises due to the binary presence or absence of licking
activity in the answer period, few neurons should have significant
fluorescence differences in the answer period of hit and false
alarm trials. These outcomes are defined by the presence of licks
in the answer period, with mice’s anticipatory licking behavior in
the preceding sound cue period being similar (Fig. 1H,I).
Presound baseline differences approximated the expected false-
positive rate (3/701, 0.4%), and 14% (98/701) were significantly
different during sound presentation. However, 42% (293/701)
of neurons had significant fluorescence differences during the
answer period of hit and false alarm trials (Fig. 4H, green).
Thus, trial outcome–related differences do not solely reflect the
all-or-none presence of licks in the answer period. Rather, differ-
ential neural activity may be due to outcome-specific differences
in mice’s lick patterns or potentially the behavioral consequences
of licking actions.

Indeed, an important caveat is that mice made more licks on
hits than false alarm trials (7.14 ± 1.78 vs 3.87 ± 1.80 licks/s for hit
and false alarm trials, respectively; Wilcoxon rank sum test,
p= 5.6 × 10−187, Fig. 1I). Thus, any differential activity may
reflect differences in mice’s number and/or rate of licks rather
than information related to trial outcome. Assuming that lick
number, frequency, and/or duration monotonically influences
neural activity, normalizing the trial outcome–specific fluores-
cence values by these parameters should reduce the fraction of
neurons with significantly different activity on hit and false alarm
trials. In other words, if the trial outcome–specific ΔF/F values
are roughly linearly proportional to trial-specific licking patterns,
dividing the fluorescence magnitude by the lick parameters on
each trial should minimize the difference between hit and false
alarm trials. In contrast, we expect this procedure should have
minimal effect on the proportion of significant neurons if fluor-
escence values are largely independent of trial outcome–specific
differences in licking patterns. We thus recalculated the propor-
tion of neurons with significant fluorescence differences on hit
and false alarm trials, after dividing the fluorescence traces by
either the number of licks during the 1 s answer period or the
slope of the lick histogram during the 1 s answer period on a
trial-by-trial basis. Normalized data revealed a similar propor-
tion of neurons with different activity on hit and false alarm trials
compared with non-normalized values (normalized to number of
licks, 35%, 247/701 significant; chi-square test compared with
non-normalized, χ2(1) = 6.37, p= 0.186; normalized to slope,
39%, 273/701 significant, chi-square test compared with non-
normalized, χ2(1) = 1.19, p= 0.276). In contrast, normalizing the
fluorescence values to the full-width at half-maximum of lick
histograms, thereby attempting to account for the differential
duration of mice’s lick bouts across hit and false alarm trials,
significantly increased the proportion of neurons with
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significantly different trial outcome responses (65%, 459/701
significant, chi-square test compared with non-normalized
data, χ2(1) = 8.17, p= 0.004). Altogether, these results suggest
that potentially, trial outcome–related activity is not fully
explained by differences in mice’s licking patterns during the
answer period. However, an important caveat is that these anal-
yses assume that the relationship between mice’s licking behavior
and single-neuron activity is not saturated on false alarm trials; a
change in licking behavior on hits is assumed to cause a propor-
tional change in fluorescence values. If this assumption does not
hold true, then the increase in trial outcome–related activity
upon normalizing for lick bout durations could also reflect a
ceiling effect, whereby longer lick bouts on hit trials do not mean-
ingfully increase firing rates compared with false alarm trials.

Differential activity on hit and false alarm trials could also
reflect distinct sound offset responses due to the different sound
cues employed on the Go and No-Go trials. This hypothesis pre-
dicts that a similar proportion of neurons should have a signifi-
cantly different activity onmiss and correct rejection trials, where
mice hear equally distinct sound cues as on hit and false alarm
trials but do not lick (Fig. 4H, orange). As expected, baseline
differences on miss and correct rejection trials were within the
margin of error (0.3%, 2/701). In contrast, the percentage of
neurons with a significantly different activity during sound,
answer, and post-trial periods was 6%, (41/701), 9% (62/701),
and 3% (18/701), respectively; these proportions are significantly
lower than observed when comparing hit and false alarm
trials (chi-square tests; sound, χ2(1) = 92.55, p= 6.555 × 10−22;
answer, χ2(1) = 33.49, p= 7.165 × 10

−9; post-answer, χ2(1) = 27.40,
p= 1.651 × 10−7). Thus, the data suggest that the trial outcome–
selective responses of shell IC neurons observed under our
conditions are unlikely to solely reflect sound offset or differential
licking patterns on rewarded and unrewarded trials.

Neural population trajectories are modulated by behavioral
outcome
Our results thus far show that individual shell IC neurons trans-
mit task-dependent and trial outcome–specific information fol-
lowing sound termination, although the extent of such activity
varies in magnitude across neurons. We thus asked whether
task-related information is more robustly represented in
population-level dynamics of shell IC activity, rather than at
the single-neuron level. To this end, we investigated the trajecto-
ries of neural population activity across trials. Neural trajectories
are a simple way to express the network state of multineuronal
data and have been used in the past to compare the time-varying
activity of neuronal ensembles across different experimental con-
ditions (Stopfer et al., 2003; Briggman et al., 2005; Churchland et
al., 2007). If task-related information is indeed transmitted via a
population code, a network state difference should be observable
for different trial outcome conditions. Using only the first
multi-sAM session from each mouse, we first computed a prin-
cipal component analysis (PCA) of the ΔF/F traces on a
timepoint-by-timepoint basis to reduce the dimensionality
(Fig. 5A–C). The change of the principal components over
time was then defined as a neural trajectory. We generally
observed a deviation of neural trajectories for Go trials
(Fig. 5B) depending on the trial outcome that we did not always
observe for No-Go trials (Fig. 5C). Surprisingly, this trial out-
come–specific trajectory divergence occurred immediately fol-
lowing sound onset, suggesting a difference in population
activity during sound presentation. The difference between hit
and miss trial trajectories could in principle reflect trial-specific

differences in mice’s licking during sound presentation.
However, hit and false alarm trials have similar lick patterns dur-
ing sound presentation (Fig. 1I); the initial trajectory differences
during sound presentation of hit and false alarm trials should be
similar if mice’s licking was driving such trial outcome–specific
trajectories. However, hit and false alarm trajectories often
appeared to diverge during sound presentation (Fig. 5B,C), fur-
ther suggesting that population activity varies as a joint function
of sound cues and mice’s actions.

To quantify the trial outcome divergence in ensemble activity,
we computed the Euclidean distance between the principal com-
ponents of correct and incorrect trials of the same trial category:
hits versus misses and correct rejections versus false alarms on
the Go and No-Go trials, respectively. We then weighted the prin-
cipal components by their explained variance (weuΔ) and summed
up the weighted Euclidean distances (ΣweuΔ) to compute the
mean ΣweuΔ for Go and No-Go trials across mice and sessions
(Fig. 5D). Weighted Euclidean distance curves were not signifi-
cantly different between mice trained on the broadband noise =
Go and sAM noise =Go task contingencies (n=8 and 3 mice,
respectively; N-way ANOVA, F(1,98) = 3.26, p=0.0743), and data
from both groups were pooled for these analyses.

On average, we found an increasing divergence during
sound presentation of both Go (Friedman’s test, χ2(7) = 57.85,
p= 4.05 × 10−10) and No-Go sounds for correct versus incorrect
trials (Friedman’s test, χ2(7) = 22.94, p= 0.0017) and a slow rejoin-
ing of the trajectories toward the end of the trial (Fig. 5D, blue and
red curves). This general time course recapitulates the effect seen
in the raw PCA trajectories. Interestingly, a clear second phase of
divergence was also seen 2–2.5 s after sound onset, immediately
after the answer period ended. This second phase of divergence
lasted for 1–2 s before converging. Both the first and second tra-
jectory divergences were statistically significant, as confirmed by
a post hoc Dunnett’s test comparing the baseline difference at
−1 s with the peak divergences at 1 and 3 s (Fig. 5D, bottom
panel, p= 1.175 × 10−5 and 5.81 × 10−5 for Go trials;
p= 2.167 × 10−6 and 0.006 for No-Go trials).

A primary difference between trial outcomes is mice’s lick
action. Since 440/701 (63%) single neurons were active on hits
and false alarms (Fig. 4), we asked if the trajectory divergences
could be explained by licking. To this end, we first computed
the weighted Euclidian distance between the principal compo-
nents of hit and false alarm trials (Fig. 5D, green curve). If licking
during the sound is responsible for the trajectory divergences
observed for Go and No-Go trials, the weighted Euclidean dis-
tances between hit/false alarm trajectories should be near zero
during sound presentation; mice’s licking patterns are similar
at this time on these two trial outcomes (Fig. 1I). However, the
weighted Euclidean distances of hit and false alarm trials varied
across time (Fig. 5D, lower panel; Friedman’s test, χ2(7) = 53.7,
p= 2.6999 × 10−9), with significant divergence occurring during
sound presentation. These results suggest that mice’s licking
does not explain trial outcome–specific neural population
trajectories.

To better understand the role of lick activity, we next com-
puted the PCA after aligning the ΔF/F traces to mice’s first lick
after sound onset until the end of the answer period (or the
median first-lick time of a session in trials without licks;
Figs. 1K, 5E,F). A trajectory divergence was similarly present in
lick-aligned data, but divergence began before the first lick after
sound onset and persisted for the entire recording period for both
Go (Friedman’s test, χ2(7) = 21.64, p= 0.0029) and No-Go trials
(Friedman’s test, χ2(7) = 22.94, p= 0.0017). In contrast, there was
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no significant divergence between hit and false alarm trials before
the first lick after sound onset, but instead a prominent and
prolonged late divergence 2 s later (Friedman’s test, χ2(7) = 25.95,
p= 0.0005). These results indicate that population trajectories
may diverge slightly prior to the onset of lick bouts, implying
that shell IC neurons transmit different activity patterns in close
temporal alignment with mice’s actions.

To further determine the extent to which our results reflect
mice’s licking patterns, we next cross-correlated the means of
the lick histograms and weighted Euclidean distances on Go
and No-Go trials, as well as all hit and false alarm trials
(Fig. 5G). If the lick histogram correlates with the general curve
or either of the two peaks from the sound-aligned data, we should
observe one or two distinct and statistically significant maximum
correlation time points (“lags”). Indeed, we found the maximum
correlation for the weighted Euclidean distance curves of Go tri-
als occurred at −0.29 s ± 0.37 s, for No-Go trials 0.07 s ± 0.96 s,
and for hit/false alarm trials 0.09 s ± 1.28 s, indicating that the
lick histogram correlates maximally with the neural population
activity when aligned to sound. Moreover, the cross-correlation
function is rather broad, and the correlation coefficient
values are not significantly different at the 0 ms and maximum
correlation lag index times for all three weighted Euclidean dis-
tance curves (three-way ANOVA, no main effect of lag time,
F(1,131) = 0.54, p= 0.4637). These results suggest that licking
dynamics and population trajectories are not closely synchro-
nized at time scales that can be resolved via Ca2+ imaging.

Since mice lick in bouts (A. W. Johnson et al., 2010), the
first-lick timing should represent the onset of significant licking
activity (Fig. 5F). If licking determines trajectory divergences,
one expects a greater correlational structure in lick-aligned
compared with sound-aligned data. However, Pearson’s correla-
tion coefficients measured after aligning the lick histogram
and the ΔF/F traces to the first lick following sound onset are
significantly lower than those measured from sound-aligned
data for Go and No-Go Euclidean distance curves (Fig. 5H;
Go, 0.48 ± 0.24 for sound aligned vs 0.22 ± 0.39 for lick aligned;
No Go, 0.53 ± 0.24 vs 0.16 ± 0.37; hit/false alarm, 0.22 ± 0.25 vs
0.14 ± 0.36; two-way ANOVA, main effect of ΔF/F alignment,
F(1,65) = 9.53, p= 0.0031). The lack of significant difference
across alignment types for the hit and false alarm condition
may reflect a greater population variance compared with the
Go and No-Go conditions, which could lower the correlation
value for the sound-aligned curves. Nevertheless, the reduced
correlation around the first-lick time argues that a trial out-
come–dependent, time-varying divergence of population activity
is not tightly time-locked to the onset of lick bouts. Rather, the
initial divergence in population trajectories may reflect a trial
outcome–dependent modulation of sound responses, potentially
ramping activity related to reward anticipation (Metzger et al.,
2006), or an intermediate task-dependent variable such as
stimulus categorization (Xin et al., 2019). In contrast, the
second divergence following the answer period may reflect a trial
outcome–related signal that modulates shell IC neuron intertrial
activity on a timescale of seconds.

An SVM classifier reliably decodes task-relevant information
from shell IC population activity
Individual shell IC neurons were often broadly responsive to
sAM depth (Fig. 3) and trial outcomes (Fig. 4). These single-
neuron responses gave rise to prolonged, time-varying ensembles
whose activity systematically varied with mice’s instrumental
choice (Fig. 5). Despite low individual neuron selectivity,

task-dependent information might thus still be transmitted in
population activity (Robotka et al., 2023). We tested this idea
by training SVM classifiers to decode specific task-relevant vari-
ables—sAM depth, trial category (Go or No Go), and lick
responses—using integrated fluorescence activity from discrete
100 ms time bins along the trial (Fig. 6A). All SVMs were individ-
ually trained and tested, such that classifiers only used data
from mice trained with BBN or sAM sounds as the Go cue but
never both. A three-way analysis of variances showed no signifi-
cant main effect of training contingency (three-way ANOVA,
F(1,2,799) = 0.01, p= 0.9055), and thus we pooled the data of
both groups. Decoding accuracy for all variables tested remained
at chance level before sound onset, which is expected given that
each trial’s ΔF/F signal was normalized to the 2 s baseline period
prior to sound presentation.

We first trained the classifiers to decode sAM depth and tested
if population activity transmits discriminative acoustic features
above chance level. The maximum classification accuracy
reached was 31 ± 7% at 1.1 s after sound onset (Fig. 6B, top),
thereby modestly but significantly exceeding the chance level
accuracy obtained from shuffled data by 14% (Friedman’s test,
χ2(8) = 70.47, p= 3.96 × 10

−12). Conversely, sAM depth could not
be decoded at all when the classifier only had access to the fluor-
escence data from 100 ms preceding the first lick after sound pre-
sentation (“first-lick accuracy”), and the classifier resorts to
classifying everything as BBN (accuracy, 19 ± 4%; Fig. 6B,
bottom). However, an important consideration is that in our
experiments, sAM depth is correlated with trial category (Go
or No-Go depending on training contingency), which is, in
turn, correlated with mice’s lick probability. To ensure that
the sAM depth classifier did not simply reflect the differential
behavioral significance of task-relevant sounds, we asked if
classification accuracy was maintained when testing was restricted
to only modulated stimuli. Under these conditions, maximum
classification accuracy peaked at 41± 8%, 1.0 s after sound onset
(Fig. 6B, middle; 22% increase compared with shuffled data.
Friedman’s test, χ2(8) = 78.52, p=9.70× 10

−14). First-lick accuracy
remained near chance level (23 ± 4%). These results indicate that
despite a rather broad sAM depth selectivity at the single-neuron
level, population codes might nevertheless transmit sufficient
information to aid in discerning absolute sAM depth.

SVM classifiers also performed significantly above chance level
when decoding the trial category (Friedman’s test, χ2(8) = 72.58,
p= 1.50 × 10−12). Interestingly, the average accuracy-over-time
curve showed two separate local maxima (Fig. 6C): The first pla-
teau peaked at 70 ± 6% 1.1 s following sound onset and overlapped
with sound presentation during the trial. This may reflect sound-
driven information, as it is the earliest signal available for classifi-
cation. Additionally, any purely lick-related activity during the
sound period is presumably of limited information as to trial cat-
egory: Mice’s licking during sound presentation is similar across
specific outcomes of different trial categories, e.g., hit versus false
alarm, miss versus correct rejection trials (Fig. 1I). The second
accuracy peak rose during the answer period and reached a plateau
of 82± 6% at 2.7 s (31% over chance level), suggesting that IC
activity remains informative about trial category across the post-
answer period. First-lick accuracy for the trial category was also
significantly above chance level (76 ± 3%), suggesting that exact
sAM depth, which is not decodable from first-lick data, is not
necessary for the classification of the trial category from shell IC
neuron activity.

SVMs were also robust when tasked to classify if mice licked
during the answer period (Fig. 6D, top). Decoding accuracy

12 • J. Neurosci., July 24, 2024 • 44(30):e1831232024 Quass et al. • Mixed Selectivity in the Auditory Midbrain



peaked at 88 ± 3% 1.9 s following sound onset (37% above chance
level, Friedman’s test, χ2(8) = 83.47, p= 9.78 × 10

−15, Fig. 6D, bot-
tom), remaining elevated throughout the answer and post-
answer periods. Decoding accuracy remained high at 76 ± 3%
when using only the neural activity preceding the first lick after
sound onset, although this measurement did not cross our a pri-
ori significance threshold (Dunnet’s post hoc comparing against
the accuracy at −1 s, p= 0.077). Nevertheless, these results sug-
gest that the information used to decode mice’s licking may
reflect preparatory motor or anticipatory activity (Metzger et
al., 2006) in addition to motor-related activity itself. Since mice

routinely licked during the sound period, we extended our anal-
ysis to a classification of whether mice licked during the sound or
answer period. The SVM classification accuracy profiles are not
significantly different (Kruskal–Wallis test, χ2(1,175) = 0.43, p=
0.5113; Fig. 6D, middle), indicating that there is no qualitative
difference between licks during the sound and answer periods.

Our recordings were acquired in well-trained mice who
consistently performed with high hit rates (87.1 ± 11.5%). This
condition leads to a correlation between the presence of a lick
response and Go trials in the training data. Thus, the lick
response and trial category classifiers might achieve high

Figure 6. An SVM classifier can predict task-related variables from the neural activity before, during, and after mice’s instrumental actions. A, Schematic of the SVM classifier. Training data is
the integral of the ΔF/F traces of all neurons in a 100 ms sliding window across the trial. Accuracy is plotted over the beginning of the integration time. B, Top, Classification accuracy over time for
a decoder trained to classify sAM depth. The raw accuracy was normalized to obtain the balanced accuracy (black trace) and balanced shuffled accuracy (gray trace), normalizing the chance level
to 16.67% (1 divided by the number of classes; see Materials and Methods). Middle, The same as in top but only using modulated stimuli (sAM depths 20–100%). Bottom, Friedman’s test with
Dunnett’s post hoc comparisons for each 0.5 s time bin against the baseline accuracy at−1 s (dashed line) for all sAM depth trials (black) or only modulated trials (red). Data points labeled “first
lick” are classifiers trained on fluorescence data limited to before mice’s first lick after sound onset on each trial. C, Same as in B but for the trial category. The chance level is normalized to 50%
(see Materials and Methods). D, Top, Same as in B but for lick response during the answer period. The chance level is normalized to 50% (see Materials and Methods). Middle, The same as in top,
but for lick response during the sound or answer period. Bottom, Friedman’s test with Dunnett’s post hoc test comparing time points against the baseline accuracy at −1 s for top data (black)
and the middle data (red). E, Examples of SVM feature (ROI) weights over time for a binary classifier distinguishing Go from No-Go trials (left), lick from no-lick trials determined by the answer
(middle) and sound or answer period (right). F, Mean correlation coefficients for the feature weights of the “trial category” and “lick response” decoders from C and D (top). Each point in time
represents the mean and standard deviation of Pearson’s coefficients for two matched individual columns from E (feature weights at a single time point). G, Statistics from F, Friedman’s test with
Dunnett’s post hoc test against baseline (t=−1 s). *p< 0.05; **p< 0.01; ***p< 0.001.
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accuracy via the same information, such as neural activity reflect-
ing the acoustic features of the Go sound or reflecting motor- or
premotor activity. In this case, licking responses might simply be
predicted by proxy of their occurrence on Go trials or vice versa:
Trial category might be decoded by proxy of lick information.
If true, the feature weights (=informative ROIs) assigned by
the lick and trial outcome classifiers should be correlated, as
classification would be based on activity in the same neurons.
Alternatively, separate neurons might encode trial category and
lick information, which would be reflected as a limited correla-
tion between the feature weights of these two classifiers. We
differentiated these possibilities by extracting the feature weight
matrices from the lick and trial category decoders and measuring
the correlation coefficient between the “weight over ROI”-values
at each time point across the two decoders (Fig. 6E, left and mid-
dle, F). The feature weights do not correlate significantly stronger
than the baseline correlation at t− 1 (Friedman’s test, χ2(4) = 6.33,
p= 0.176, Fig. 6G), indicating that lick responses are not decoded
by proxy of their occurrence on Go trials (or vice versa).
Moreover, these results were similar when compared across
mice trained with the two different task contingencies (no
main effect of training contingency, ANOVA, F(1,36) = 0.41,
p= 0.5261). We further ensured that the within-dataset predictor
variables (DF/F values) did not exhibit multicollinearity by calcu-
lating the condition index for each feature matrix (Dormann et
al., 2013; see also Materials and Methods). Altogether, these
results further argue that shell IC population activity transmits
information related to both sound and actions.

Joint population coding of task-relevant signals
SVM accuracy exceeded chance levels when decoding single var-
iables such as sAM depth, trial category, and lick occurrence
(Fig. 6). Thus, shell IC activity might also transmit higher-order
information that depends on combinations of multiple features.
To test this hypothesis, we asked if a multiclass SVM could
decode the trial outcome—hit, miss, correct rejection, and false
alarm—from shell IC population data. Decoding accuracy for
trial outcome peaked at 55 ± 5%, 2.5 s following sound offset
(Fig. 7A; 30% above chance level, Friedman’s test, χ2(8) = 82.86,
p= 1.30 × 10−14). Decoding accuracy also remained above chance
at 47 ± 5% when classifier training data was restricted to 100 ms
before the first lick after sound onset, indicating that shell IC
activity predicts trial outcomes around the time of, or prior to,
mice’s licking.

Classification accuracy of trial outcomes might rely on a uni-
form neuronal population whose responses reflect integrated
combinations of acoustic signals through mice’s movement,
arousal, or choice, as suggested by our single-neuron trial mean
response analyses (Fig. 4). If true, we would expect a strong cor-
relation between each neuron’s feature weights during the sound
and answer period of the task. In contrast, classification accuracy
could rely on sequentially informative neurons that are mainly
active during the sound or answer period, in which case correla-
tions across trial epochs should be low. We tested this by measur-
ing the correlation between the mean weight per neuron during
the sound and answer periods and found a significant correlation
for all subclassifiers (Fig. 7B,C). However, the mean Pearson’s
ρ was 0.53 ± 0.07; this moderate correlation in the feature weight
matrices suggests that although the classifier does use similar pop-
ulations of neurons during the sound and answer period, some
neurons’ feature weights nevertheless have low correlations across
the trial. To investigate whether this uncorrelated population
reflects neurons with distinctly informative responses during

specific trial epochs, we extracted the feature weights of the differ-
ent outcome subclassifiers and correlated the feature weights in
each 100 ms time bin with those of the preceding time bin
(Fig. 7D). If mostly a single neuronal population drives classifica-
tion accuracy, weight correlations across time should show a
single increase during sound presentation that remains elevated
throughout the trial. Alternatively, the observation of multiple
increases in the weight correlations would indicate that partly dis-
tinct neuronal populations are maximally informative at specific
trial time points. We thus plotted the mean weight correlation
curves (Fig. 7D, black traces and standard deviation shading)
and their first derivative describing the rate of change in the curve
(Fig. 7D, black filled curves). Accordingly, we find two distinct
steps of increased correlation, identified by local maxima in the
first derivative, during the sound and answer period for most sub-
classifiers. This result suggests that a distinct group of neurons
adds trial outcome information during the answer period—likely
late active neurons as those seen in Figure 4, C and D. However,
this observed pattern of two-step increases might also indicate a
sudden reduction in noise of a single population during the
trial answer period. We tested if neural noise decreases from the
sound to the answer period by measuring the pairwise neuronal
ΔF/F correlations per epoch on a trial-by-trial basis. Pairwise
correlations increased in the sound period and returned to
near baseline during the intertrial interval (Friedman’s test,
χ2(3,43) = 14.67, p= 0.002). However, there was no significant differ-
ence in pairwise correlation values between the sound and the
answer periods (post hoc Dunn–Sidak’s test, p= 0.35). This result
suggests that the observed shifts in classifier weights do not reflect
a sudden decrease in interneuronal correlations. Rather, under
our conditions, shell IC population activity transmits information
regarding mice’s actions in addition to acoustic signals. As sug-
gested by above-chance first-lick accuracy, this activity can be
used by a simple decoder to predict mice’s behavioral choice prior
to their first lick following sound onset.

Discussion
Shell IC neuron ensembles transmit task-dependent activity that
is predictive of mice’s behavioral choice, potentially prior to
action initiation. In prior studies, IC neuron sound responses
varied between passive listening and task-engaged conditions
(A. Ryan and Miller, 1977; A. F. Ryan et al., 1984; De
Franceschi and Barkat, 2021), during locomotion (C. Chen and
Song, 2019; Yang et al., 2020), and as a function of arousal or
reward expectation (Metzger et al., 2006; Joshi et al., 2016).
These effects are thought to primarily reflect an arousal- or a
movement-mediated reduction of sound responses that sharpens
selectivity while maintaining preferred frequency tuning (Slee
and David, 2015; Yang et al., 2020; Saderi et al., 2021; but see
Shaheen et al., 2021). However, prior studies could not determine
if task-dependent modulation extends beyond a context- or
arousal-dependent scaling of acoustic responses. We used a psy-
chometric Go/No-Go task and found that many neurons in the
superficial IC layers show task-dependent activity extending
beyond sound presentation that is predictive of trial outcome.
Thus, rather than a simple gain modulation of neural sound
responses, our data establish that task-dependent IC activity
reflects conjunctive processing of acoustic information and
actions.

Neural activity prior to mice’s first lick following sound onset
predicted multiple task-relevant variables, and these results were
similar in mice trained across two different task contingencies
(BBN=Go or sAM=Go). The task-dependent activity could
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Figure 7. The outcome classifier uses overlapping information during the sound- and the outcome period. A, Top, Classification accuracy over time for a decoder trained to classify trial
outcome. The raw accuracy was normalized to obtain the balanced accuracy (black trace) and balanced shuffled accuracy (gray trace), normalizing the chance level to 25% (1 divided by
the number of classes; see Materials and Methods). Bottom, Friedman’s test with Dunnett’s post hoc test comparing time points against the baseline accuracy at −1 s. B, An example set
of weights for a binary classifier (hit/false alarm) of the set of subclassifiers that make up the outcome classifier. C, Mean feature weights during the sound (y-axis) and answer period
(x-axis) for all ROIs for the subclassifiers distinguishing hits and misses, hits and correct rejections (CR), hits and false alarms (FA), misses and correct rejections, misses and false alarms,
and correct rejections and false alarms. The red lines are unity lines. D, Mean correlation coefficients for the feature weights of the subclassifiers at time t and time t− 100 ms. The black
area below the curve indicates the first derivative to visualize the steps of increased correlation in arbitrary units, with d(y)/d(x) = 0 at 0.2 on the y-axis. *p< 0.05; **p< 0.01; ***p< 0.001.
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speculatively reflect mice’s unrewarded licking, sound categori-
zation, behavioral choice, or the expected outcomes of said
choices. However, addressing these questions here is limited by
our Go/No-Go task design: Mice were allowed to perform antic-
ipatory licks during sound presentation and report their choice
by either licking or not licking. Additionally, lick patterns
differed in the answer period of rewarded and unrewarded trials
(e.g., hit vs false alarms; Fig. 1H–J). Although trial outcome–
specific differences persisted when attempting to account for
mice’s lick rates and counts, the possibility remains that answer
period activity is influenced by outcome-specific intricacies of
mice’s licking. Nevertheless, these data establish falsifiable
hypotheses to be tested in future studies. If task-dependent sig-
nals reflect mice’s stimulus categorization, activity during sound
presentation and/or the answer period should covary with mice’s
choices. This could be tested using a two-alternative forced
choice design that enforces a “no-lick” delay period between
the discriminative sound cue and answer period and where
mice make different directional actions to categorize sounds
(Inagaki et al., 2018). In contrast, if task-dependent activity is
mostly determined by mice’s unrewarded licking behavior
regardless of choice, answer period activity should be similar fol-
lowing distinct directional lick actions. Moreover, if task-
dependent activity reflects learned expectations, such activity
should arise with learning and should be sensitive to violations
of said expectations. Longitudinal imaging across learning and
trial-by-trial manipulation of reward expectation or value could
address these questions (Eshel et al., 2016). Finally, some task-
dependent signals could also reflect sound offset responses (J.
Lee and Rothschild, 2021; Solyga and Barkat, 2021). However,
answer period activity typically covaried with mice’s licking.
Thus, if these signals reflect sound offset responses, they must
be ones that are influenced by mice’s actions.

Our data do not exclude the possibility that some task-
dependent activity reflects self-generated sounds due to licking,
as previously suggested for the ventral cochlear nucleus (Singla
et al., 2017) and IC (Shaheen et al., 2021). Although the precise
loudness of mice’s licking sounds is difficult to measure owing
to bone conduction, the spiking activity of ventral cochlear
nucleus neurons during mice’s licks is roughly equivalent to sim-
ilar sounds presented at 12 dB SPL at the outer ear (Singla et al.,
2017). However, the mean threshold for observable Ca2+ signals
in shell IC neurons is ∼50 dB SPL (Barnstedt et al., 2015), and
our sound cues are presented at 70 dB SPL, yet lick-related activ-
ity is often more prevalent and larger than the sound cue activity
(Fig. 2). Thus, if licking sounds indeed contribute to task-
dependent activity, mechanisms postsynaptic to the ventral
cochlear nucleus might amplify this behaviorally relevant infor-
mation. Future studies using tasks where conditioned responses
generate negligible auditory nerve activity are needed to disam-
biguate the contribution of self-generated sounds to task-
dependent shell IC activity.

Approximately 40% of shell IC neurons were not systemati-
cally responsive to the task-relevant sounds. Furthermore, most
sound-responsive neurons were weakly sensitive to increasing
sAM depth. These findings contrast with the central IC, where
neurons are often strongly responsive to sAM sounds and
increase their firing rates at higher modulation depths (Rees
and Møller, 1983; Krishna and Semple, 2000; P. Nelson and
Carney, 2007). However, an important caveat is that our task
only tests a single modulation rate (15 Hz). We thus cannot
test the full range of sAM rate selectivity for our neuronal popu-
lations, which in the IC of behaving mice extends up to at least

512 Hz (van den Berg et al., 2023). Indeed, superficial IC layers
seemingly transmit detailed sAM information, albeit via a popu-
lation of broadly tuned single neurons (Shi et al., 2024).
Moreover, the dynamic range of our Ca2+ indicators
(GCaMP6f and GCaMP8s; T-W. Chen et al., 2013; Zhang et
al., 2020) likely places an upper bound on our ability to discern
spike rate differences across distinct stimuli. Despite these exper-
imental limitations, shell IC fluorescence data were informative
of absolute sAM depth above chance level. Thus, the combined
activity of shell IC populations may aid in reliably discriminating
acoustic features. Alternatively, broad feature tuning may be
advantageous for multiplexing concurrent sounds and
task-relevant information, potentially leading to categorical rep-
resentations that predict sound-driven decisions (Caruso et al.,
2018). However, future studies are required to test if shell IC neu-
rons causally contribute to acoustic discrimination.

Using dimensionality reduction approaches (Broome et al.,
2006; Yu et al., 2007; Churchland et al., 2012; Stokes et al.,
2013), we found that shell IC ensemble responses to physically
identical sounds substantially differed depending on behavioral
outcome. Thus, sound-evoked activity may be partially deter-
mined by the expected behavioral relevance. Some of this trajec-
tory divergence may reflect movement activity, preparatory or
otherwise: IC neurons are known to respond to movement even
in the absence of sound presentation (C. Chen and Song, 2019;
Yang et al., 2020). However, differences in population trajectories
of lick- and no-lick trials reach a minimum during the response
window where mice’s licking response is most vigorous, implying
that trajectory divergences are not purely motor-related.

In addition to the initial divergence during sound presenta-
tion, neural trajectories showed a trial outcome–specific, second-
ary phase of divergence that occurred several seconds after the
answer period; this secondary divergence persisted at least 5 s
after sound offset and continued after lick bouts had largely sub-
sided. The mechanistic basis of this long-latency activity is
unclear. One potential origin is the massive system of descending
auditory cortico-collicular projections that preferentially target
the nonlemniscal shell IC layers (Winer, 2005; Bajo et al., 2007;
Yudintsev et al., 2021). Accordingly, Layer 5 neurons of the audi-
tory cortex are highly active during mice’s instrumental actions
(Audette and Schneider, 2023; Ford et al., 2024), which may
reflect information relayed by the basal forebrain, motor cortex
area M2, or basal ganglia (Nelson et al., 2013; Schneider et al.,
2014; A. Nelson and Mooney, 2016; Clayton et al., 2021).
However noncortical sources may also contribute, as auditory
cortex lesions do not fully abolish putative nonauditory activity
in corticorecipient IC neurons (T. Lee et al., 2023).
Accordingly, the IC receives dense projections from midbrain
tegmentum nuclei (Motts and Schofield, 2011; Noftz et al.,
2020), which could transmit behaviorally relevant information
(Thompson and Felsen, 2013; Hong and Hikosaka, 2014; Tian
et al., 2016; Yoo et al., 2017). Ascending inputs from trigeminal
and dorsal column nuclei are another potential source of task-
dependent signals, although these pathways mostly target the lat-
eral shell IC region which we could not access in our imaging
window (Lesicko et al., 2016). Future studies using microprism
imaging (Ibrahim et al., 2022) could shed light on any differential
distribution of task-related activity across IC subfields.

Combined responses to sound and behavioral choice, trial out-
come, or unconditioned contextual stimuli are well documented in
shell IC neurons’ primary targets, the nonlemniscal MGB (Ryugo
and Weinberger, 1978; Barsy et al., 2020; Gilad et al., 2020; Taylor
et al., 2021). This task-dependent activity is generally thought to
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reflect tactile or nociceptive inputs from spinal afferents (Whitlock
and Perl, 1961; Wepsic, 1966, Khorevin, 1980a,b; LeDoux et al.,
1987; Bordi and LeDoux, 1994) and is suggested as important
for associative learning and synaptic plasticity (McEchron et al.,
1996; Weinberger, 2011; Barsy et al., 2020). Our data suggest
that themixed selectivity found in the thalamus could also partially
reflect integrative computations of shell IC neurons. Additionally,
some shell IC neurons project to the superior olivary complex
(Faye-Lund, 1986; Schofield and Cant, 1999) and cochlear nucleus
(Schofield, 2001); these neurons may be distinct from those that
originate the colliculus–geniculate projection (Coomes et al.,
2002). Follow-up studies using target-specific expression of activ-
ity sensors (Tervo et al., 2016) are required to determine if shell IC
neurons transmit similar or unique task-dependent signals to tha-
lamic and brainstem targets.
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