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ABSTRACT: Our ability to calculate rate constants of bio-
chemical processes using molecular dynamics simulations is
severely limited by the fact that the time scales for reactions, or
changes in conformational state, scale exponentially with the
relevant free-energy barrier heights. In this work, we improve upon
a recently proposed rate estimator that allows us to predict
transition times with molecular dynamics simulations biased to
rapidly explore one or several collective variables (CVs). This
approach relies on the idea that not all bias goes into promoting
transitions, and along with the rate, it estimates a concomitant scale
factor for the bias termed the “CV biasing efficiency” γ. First, we
demonstrate mathematically that our new formulation allows us to
derive the commonly used Infrequent Metadynamics (iMetaD)
estimator when using a perfect CV, where γ = 1. After testing it on a model potential, we then study the unfolding behavior of a
previously well characterized coarse-grained protein, which is sufficiently complex that we can choose many different CVs to bias,
but which is sufficiently simple that we are able to compute the unbiased rate directly. For this system, we demonstrate that
predictions from our new Exponential Average Time-Dependent Rate (EATR) estimator converge to the true rate constant more
rapidly as a function of bias deposition time than does the previous iMetaD approach, even for bias deposition times that are short.
We also show that the γ parameter can serve as a good metric for assessing the quality of the biasing coordinate. We demonstrate
that these results hold when applying the methods to an atomistic protein folding example. Finally, we demonstrate that our
approach works when combining multiple less-than-optimal bias coordinates, and adapt our method to the related “OPES flooding”
approach. Overall, our time-dependent rate approach offers a powerful framework for predicting rate constants from biased
simulations.

1. INTRODUCTION
A major challenge in biomolecular simulation is to be able to
accurately assess the transition rate constant (inverse of the
mean residence time in a state) of complex processes,
including conformational transitions and the binding/unbind-
ing of macromolecules and their ligands. Processes of interest
often involve rare events, where the system spends a large
amount of time in a metastable state and rarely transitions to
another relevant one, so the transition path time is typically
orders of magnitude shorter than the time spent in either
state.1 Because of this, extracting rates of such processes
directly from unbiased simulation is out of reach for all but the
simplest of systems.

Numerous methodologies have been developed to accelerate
rare conformational transitions, with the primary purpose
being to compute ensemble-averaged observables.2,3 A major
subclass of such methods operate by adding an additional
biasing potential to the system’s Hamiltonian, usually in terms
of a small set of collective variables (CVs) which are believed
or determined to be good descriptors of states of interest, or
the path between them.2,3 Common examples of such methods

include Umbrella Sampling, Adaptive Bias Force, Metady-
namics (MetaD), Variationally Enhanced Sampling, and On-
the-fly Probability Enhanced Sampling (OPES), among
others.4−12 All of these methods pay the price of distorting
the system’s dynamics to obtain a much more rapid estimate of
the underlying free-energy landscape as a function of the CVs.

Most methods that tackle the problem of computing rates of
rare transitions seek to generate a set of unbiased trajectories,
either through combining direct sampling of many short
trajectories from different starting points13,14 as done in
Markov State Modeling, through Monte Carlo in trajectory
space as in Transition Path Sampling,15 or by generating
trajectories that progress in a particular coordinate as in
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Forward Flux Sampling,16 Steered Transition Path Sampling,17

Weighted Ensemble,18 Transition Interface Sampling,19 and
Milestoning.20 However, these methods are computationally
expensive, and some scale poorly with system size, making
them challenging to apply for the complex biophysical
problems we are interested in studying, such as finding the
time scale for protein−drug unbinding,21 for the RBD opening
of the SARS-CoV-2 Spike protein,22 or for the unbinding of
cytoskeletal adhesion proteins under force.23−25

As such, we are interested in approaches that build on CV
biasing methods, which have been used to probe conforma-
tional transitions with sufficient computational efficiency even
for relatively complex biological assemblies. The challenge
already mentioned is that these methods alter the dynamics,
which prevents any obvious solutions to inferring the unbiased
time scales of events. However, starting with the Hyper-
dynamics method of Voter, it was shown that the first passage
time of rare events could be approximately predicted using
biased simulations if bias is not applied during the actual
crossing through the transition state, by formulating an ansatz
for how time is accelerated.26,27 This approach was originally
developed using a time-independent potential defined on the
whole system of interest, but later in the Infrequent
Metadynamics (iMetaD) approach the same ideas were
extended to CV biasing. MetaD8 works by updating an
external bias with a Gaussian centered at the current position
in CV space every Δ time steps (see Section 5.2 for details).
iMetaD solves the problem of not biasing the transition over
the barrier by only rarely updating the bias potential, such that
it is unlikely to add bias on a high barrier during a fast crossing.
iMetaD also introduces an additional approximation since the
system is experiencing a time-dependent bias rather than a
static one. The difficulty of avoiding adding bias during barrier
crossings can also be mitigated by MetaD variants that only
add bias within a region or up to a certain energy level,28,29

which is now particularly easy to implement in the OPES
variant of MetaD.12,30 iMetaD and similar approaches have
now been used and benchmarked for many different problems,
especially for protein−ligand unbinding problems,31 as
reviewed in ref 32.

To extract the transition rate, these methods assume that a
“good” CV is used, and validate the rate estimates using a
Kolmogorov−Smirnov (KS) test between the empirical and
theoretical survival distributions. Unfortunately, for large and
complex transitions, the CV that is used may be poor because
finding a good CV is challenging. Moreover, CV quality
indicators, such as the committor,33 are expensive or
intractable to compute. The Kramers time-dependent rate
(KTR) method34 was recently developed to extract transition
rates from biased simulations, such as those used for iMetaD,
but with much less sensitivity to CV choice. It introduced a
new parameter γ, called the CV biasing efficiency, that scales
the effect of the added potential. In that work, it was shown
that γ had a lower value for a poor CV in a simple 2D double-
well potential, and as such it was assumed to relate to the CV
quality.34 However, this has not been systematically demon-
strated, and KTR has not been benchmarked on a problem
where many CVs could be tested. Moreover, a direct
connection between the KTR and iMetaD estimators has not
been established.

In this work, we introduce a more general framework for
computing rates from time-dependent biasing protocols, which
allows us to treat the iMetaD and KTR estimators on the same

footing. We then use this framework to propose a revision to
KTR termed the Exponential Average Time-dependent Rate
(EATR) method that bridges the two approaches. The EATR
approach is shown to give the correct Kramers’ rate when γ = 1
for an idealized 1D potential. Then, we use a Go̅-protein
system as a model to show how the prediction of rates depends
on the choice of bias coordinate, and compare EATR’s results
to the true intrinsic rate. Importantly, we find that γ correlates
with the intuition of CV quality. We find that for the poor
biasing coordinates, the original KTR and EATR results are
comparable and they enable an accurate recovery of the
unbiased rates. Surprisingly, this is often true even in the
frequent-biasing regime. These same overall conclusions hold
when applied to the folding of the small peptide chignolin,
using biased trajectories along three CVs provided by the
authors of ref 35.

The paper is organized as follows. First, we present a general
theory for rate calculations from time-dependent biased
simulations. We relate it to iMetaD and KTR, and then
formulate the EATR approach. Then, we show results for a 1D
overdamped Langevin dynamics simulation, and for the
unfolding process of two proteins for which we can easily
compare by biasing different CVs. We also adapt our approach
to be used with OPES rather than a MetaD biasing protocol.
We show that the method can be extended beyond one biasing
coordinate, presenting accurate results on protein G unfolding
when biasing two CVs simultaneously. We end with
conclusions and future perspectives of the work.

2. THEORY
2.1. Transition Rate for Rare Events. The rare event

problem constitutes the stochastic crossing of a single free-
energy barrier, where typically the waiting time to cross the
barrier is much longer than the transition time over it. For a
high barrier, the survival function S(t), which is the probability
of a transition not occurring before time t, is given by an
exponential distribution characterized by a single transition
rate constant k0

=S t( ) e k t0 (1)

Note that this survival probability is related to the
probability of a transition occurring at time t via

=p t
S t

t
( )

d ( )
d (2)

and it is also related to the cumulative distribution function
(CDF), the probability that a transition occurred by time t

=t S tCDF( ) 1 ( ) (3)

For Brownian dynamics, Kramers’ rate theory36−39 can be
used with several approximations to calculate the barrier
crossing rate,⊥ k0, from the bottom of a well on a potential
surface U(x) containing a single high barrier

=
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑk D x xe d e dU x U x

0
well

( )

barrier

( )
1

(4)

where D is the diffusion coefficient.
However, for most systems of interest, the diffusion

coefficient and underlying potential (or free-energy landscape)
are not known and, therefore, one cannot directly use eq 4 to
estimate the rate. Instead, the transition rate constant can be
calculated using the survival function and a set of simulations i
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= 1, ..., N where M ≤ N have crossed the barrier and N − M
have not. Let ti be the time the i-th simulation crossed the
barrier, and ti = Ti the total simulation time for simulations i =
M + 1, ..., N. For right censored transition times, the likelihood
is given by

=
= = +

p t S t( ) ( )
i

M

i
i M

N

i
1 1 (5)

which is the product of the probabilities of the transitions
occurring at times { }=ti i

M
1 and the probabilities of not

transitioning before the times { = }= +t Ti i i M
N

1 for N − M
simulations.40

An estimate for the transition rate constant can be obtained
by substituting eq 1 and eq 2 into eq 5 and maximizing the
logarithm of the likelihood with respect to k0

* =
=

k
M

ti
N

i
0

1 (6)

Note that the summation in the denominator takes into
account the simulations that did not transition. When all
simulations have crossed the barrier, eq 6 reduces to the
inverse of the average barrier-crossing time, =k ti0

1 where
⟨·⟩ denotes the average over the simulations.

The transition rate can also be calculated by fitting the CDF
(eq 3). To do so for the same set of simulations i = 1, ..., N, we
construct an empirical CDF which is the number of
simulations that have transitioned before ti over the total
number of simulations. The theoretical CDF can then be fit to
the empirical CDF with a least-squares method by optimizing
k0.

2.2. Expression for the General Time-dependent
Rate. For time-dependent biased simulations, such as a
MetaD simulation, the transition rate is no longer a constant,
and hence we would like to formulate a general expression for
the survival function in the case of a time varying potential
(similar to a situation considered by Zwanzig in ref 41.).
Without loss of generality, we can write

=S t( ) e ek t t k f t t( )d ( )d
t t

0
0

0 (7)

which can be used in eq 3 for fitting to an empirical CDF.
Here, we introduced a time-dependent rate constant k(t), and
then re-express k(t) as the unbiased k0 scaled by a function of
time

=k t k f t( ) ( )0 (8)

Because S(t) = elog(S(t)), this is equivalent to defining
=k t( ) S t

t
d log( ( ))

d
, and we can do this because we expect

log(S(t)) to be differentiable at t > 0 for a physically realizable
process.

Substituting eq 7 into eq 5 results in a general likelihood
given by

=
= = +

k f t( )e e
i

M

i
k f t t

i M

N
k f t t

1
0

( )d

1

( )d
ti ti

0
0

0
0

(9)

which can be simplified by taking its logarithm

= +
= =

M k f t k f t dtlog( ) log( ) log( ( )) ( )
i

M

i
i

N t

0
1

0
1 0

i

(10)

Similar to the unbiased case, we can maximize this
expression with respect to k0, to obtain k0* as an estimator
for the true rate constant

* =
=

k M

f t t( )di
N t0

1 0
i

(11)

Maximization of the log likelihood function answers the
question: what k0 best describes the observed biased survival
times assuming the particular form of the time dependent rate
constant given by eq 8.

2.3. Relation to iMetaD. In the hyperdynamics
method,26,27 the rate from transition state theory is scaled by
the acceleration factor = e V x

X
( ) (note that here we use

the subscript X to denote a configurational average and
unlabeled brackets to represent an average over separate
trajectories) where V(x) is a fixed bias function added to the
system’s Hamiltonian as a function of the system’s full
coordinates. This α arises by considering the average effect
in many individual trajectories whose time is dilated by a factor
e V t( )i , where Vi(t) is the bias experienced by the system during
simulation i at time t. Hyperdynamics then corresponds to a
rate scaling function of the form

= =f t( ) e V x
X

( ) (12)

and inserting this in eq 7 results in the survival probability

=S t( ) e k t0 (13)

Using this expression and assuming all simulations
transitioned (M = N), the likelihood maximization (LM) gives

* =k
t

1

i
0

(14)

In iMetaD, the form of the bias is also changing in time
along with the configuration of the system in a history-
dependent manner. Therefore, in iMetaD an acceleration
factor for each simulation is approximated as a time average
over that simulation instead of calculating it as a configura-
tional average, = te di t

t V t1
0

( )
i

i i . In the Supporting

Information Section S1, we show that using f(t) = eβVi(t), we
recover the standard rescaling formula used in iMetaD

* =k
t

1

i i
0

(15)

We note that this result is derived using the LM approach
for the case where all simulations have transitioned.

In ref 42, it was shown that directly fitting the theoretical
CDF (obtained from eq 13) is less sensitive to outliers in the
tail of the distribution. The KS test can be used to assess
whether the transition distribution is well-described by the
theoretical CDF (see Section 5.6). Recently, it was also
suggested that the short time information from the CDF can
be fit to get a more robust estimate of the rate.35 We note that
the results from LM and CDF fitting need not coincide, as we
will describe below.

2.4. Kramers Time-dependent Rate and the CV
Biasing Efficiency. Most of the transition-rate methods for
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biased simulations, such as those described above, are
formulated assuming that it is possible to apply the bias
along a perfect CV, where all added bias accelerates the barrier
crossing event. However, for large biomolecular systems,
choosing a priori a perfect CV for accelerating transitions to
another targeted state is almost impossible. In practice, the bias
is applied along nonideal CVs, which insert bias along useless
directions that are not aligned with the transition path.

To overcome this issue, the KTR theory34 introduces a
parameter, γ ∈ [0, 1], to account for the efficiency of the
biased CVs. In addition to the unbiased rate, γ will also be
estimated from the simulation transition times, and it will
inform about the quality of the CV with γ → 0 reflecting poor
CVs and γ ∼ 1 good ones. In the KTR approach as previously
implemented, the efficiency of CVs is accounted for by
defining the scaling function as

=f t( ) e V tmax ( )i (16)

where ⟨max Vi(t)⟩ is the maximum bias applied at any point up
to time t in simulation i, averaged over all simulations (denoted
VMB(t) in ref 34.). This form of treating the biasing potential
was inspired by rate-calculation methods developed for force-
spectroscopy,43,44 where the barrier is reduced due to the
external force, and therefore, by using ⟨max Vi(t)⟩, it was
assumed that the bias only affects the barrier height. Inserting
eq 16 into eq 7 gives

=S t( ) e k te d
t

Vi t
0

0

max ( )

(17)

which can be used directly in a CDF fit. Substituting this
expression into the log-likelihood from eq 10, and maximizing
it with respect to k0 results in a γ-dependent expression for the
unbiased rate constant

* =
=

k M

t
( )

e di
N t V t0

1 0
max ( )i i

(18)

To obtain the maximum likelihood estimate for both γ and
k0, eq 18 is substituted back into the log-likelihood function
and it is maximized numerically with respect to γ.

2.5. Exponential Average Time-dependent Rate
(EATR). While rate constants computed by the KTR approach
are accurate (as shown in ref 34 and in the following sections),
we show below in Section 3.1 that it has the undesirable
property that it does not agree with the iMetaD estimator
when γ = 1, whereas we expect the iMetaD estimator to be
correct for an ideal coordinate with a very high barrier and
slow deposition time. The reason for this discrepancy is the
way in which the average effect of the bias is defined�for
iMetaD e V t( )i is averaged, whereas for KTR, the maximum of
the biasing potential is averaged.

To unify the two theories, we propose the following
modification to the KTR method, which will have the desired
property of producing the same rates as iMetaD in the case
where γ = 1. To do so, we introduce the scaling function

=f t( ) e V t( )i (19)

This gives the survival probability

=S t( ) e k te d
t

Vi t
0

0

( )

(20)

Substituting this expression in eq 10 results in a log-
likelihood of the form

= +
=

=

M k

k t

log log log e

e d .

i

M
V t

i

N t
V t

0
1

( )

0
1 0

( )

i i

i
i

(21)

In the case where all simulations transition (M = N), the
optimal unbiased k0 as a function of γ is given by

* =k
t

( )
1

e d
t V t0

0
( )i i

(22)

where we have benefited from the idempotence of averages to
rewrite the average of an average as a single average. Observing
that when γ = 1, the term within brackets in the denominator is
equivalent to tiαi, this estimator is then identical to the
standard iMetaD estimator in eq 15. Similarly, as with the
KTR, we can now substitute eq 22 into the log-likelihood and
numerically maximize it with respect to γ to obtain estimates
for both the unbiased rate constant and the efficiency of CVs.
Incidentally, it might seem from the final step of this derivation
that taking the average in eq 19 was redundant; however, in
Section S2 we show that without doing this average, the log-
likelihood cannot be maximized with respect to γ.

Importantly, we note that eq 20 also provides us the option
to numerically fit the biased empirical CDF to find the best
values of k0 and γ. As initial guesses, we use the LM estimates
for k0 and γ, and optimize using the Levenberg−Marquardt
algorithm implemented in the SciPy Python package45,46 to fit
the empirical CDF to the theoretical CDF obtained from eq
20. The same can be done for the KTR method using the
theoretical CDF from eq 17. We note that these optimization
procedures are stable for time-dependent biases. In Section
3.2.2 and the Supporting Information, we explore their
combination with OPES flooding30 that effectively has a time
independent bias.

3. RESULTS AND DISCUSSION
3.1. Benchmarking on a 1D Potential. The rate

methods were tested first on the one-dimensional matched-
harmonic potential illustrated in Figure 1a given by

=
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

U x x x U x

x x U x

( )
1
2

( )
2

(1 ( ))

1
2

( )
2

( ),

0
2

0
2

1
2

1
2

(23)

where the subscript 0 corresponds to the well and the subscript
1 corresponds to the barrier, Θ(x) is the Heaviside step
function, and = U x/i i, which is needed to make the
potential continuous. Full simulation details for this model are
given in Section 5.1.

To estimate the unbiased rate constant, many Langevin
dynamics simulations were performed on the potential from eq
23, starting from the bottom of the well (Figure 1a). The first
barrier-crossing time for each simulation was recorded, and the
empirical CDF was calculated as described in Section 2. The
unbiased rate constant was extracted by fitting the distribution
to the expected Poisson process. The 2-sample KS test was
performed to assess whether this transition is accurately
described by a Poisson process. The p-value for the KS statistic
is 0.97, demonstrating that the transition times are likely
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Poisson-distributed data. This yielded a log10 value of −5.98 ±
0.04 where rate constants are in units of τ−1, with τ as the time
unit, and the error is the standard deviation obtained from
bootstrap analysis47 (see Section 5.5). The log10 estimate
calculated with Kramers’ theory using eq 4 is −6.02, which
agrees with the empirical rate constant within error.

We then performed well-tempered metadynamics (WT-
MetaD) simulations (see Section 5.2) for this system to predict
the rates using iMetaD, KTR, and EATR using different bias-
deposition times Δdt with dt the MD time step (varying from
10 to 10,000 τ, which corresponds to fractions of the mean-
first passage time varying from 10−6 to 10−2). In Figure 1, we
compare the methods for both the LM and CDF-fit for the
situation where γ = 1 is enforced, because (i) this allows us to
only assess the quality of the different time-dependent rate
metrics, and (ii) for a 1D potential, all bias should go into
promoting the transition as there are no orthogonal degrees of
freedom; results obtained from fitting both k0 and γ are shown
in Figure S1. We find that the original KTR method does not
give a rate consistent with the empirical unbiased rate when γ =
1. On the other hand, we find that both the iMetaD and EATR
methods are consistent with the expected values for the rate.
Moreover, in agreement with ref 42, we find that fitting the
CDF provides more accurate rate estimates than LM at small
Δ for all three methods, with the discrepancy between the two
fits negligible for large Δ. The rate estimates for each fitting
procedure improve as Δ increases, which is consistent with the

principles of iMetaD. This is also consistent with the results of
the KS test. The 2-sample KS test was performed on iMetaD
and the 1-sample test was performed for KTR and EATR as
explained in Section 5.6. The KS tests failed for the CDF fits at
Δdt = 101 τ and 102 τ and passed for the CDF fits at Δdt = 103

τ and 104 τ. These KS test failures are shown for EATR in
Figure 1c as open circles. Given that the rate estimates are
more accurate for fitting the CDF (even when the KS test
fails), we report results from the CDF-fitting procedure below.

3.2. Protein G Unfolding. 3.2.1. Application of KTR and
EATR under WT-MetaD Bias. We now focus on a more
complex system, the unfolding of the B1 domain of protein G
using a Go̅-like potential and MD simulations. This system has
the advantage that it is possible to obtain an unbiased estimate
of the unfolding rate, while having a rich unfolding landscape
complexity, and many possible choices of CVs to characterize
the transition.48 Below, we will evaluate the quality of several
good and bad CVs for predicting rates. For this study, we first
considered the fraction of native contacts Q and distance
between the ends of the protein (Ree) which were shown to be
a good and bad coordinate, respectively, for characterizing the
folding of this protein in ref 48. In addition to these two CVs,
we will consider the radius of gyration (Rg), the root-mean-
squared-deviation from the native state (RMSD), and a
recently developed linear-discriminant analysis coordinate
maximally separating states as defined through a clustering
analysis49 (LD1, see Section 5.4.2, Figure S2).

We first performed a 120 μs-long unbiased simulation to
study the system’s behavior. For this unbiased trajectory, we
computed the potential of mean force (PMF) along each CV
by taking the negative log of the histogram of observed CV
values (eq 27). The PMF for Q is shown in Figure 2, and along

all CVs in Figure S3, revealing a range of potential profiles and
apparent barrier heights. Although the PMFs of each CV
exhibit two wells, we know that Ree is a poor CV for
characterizing unfolding because the unfolded ensemble
contains configurations with small values of Ree comparable
to the folded state, resulting in an unusually shaped basin at
small values of the CV.

In contrast, we expect Q to be a good CV for unfolding,50

and so we used Q to define when our system has transitioned
out of the folded state by using the average committor in the

Figure 1. (a) The potential energy profile of the 1D matched-
harmonic potential from eq 23. (b) The unbiased rate constant from
Kramers’ rate theory and from unbiased simulations are shown as the
dashed black line and the dotted blue line, respectively. We compare
these with predictions from iMetaD, and from the KTR and EATR
methods by asserting γ = 1 as a function of the bias-deposition time
(Δdt). Maximum likelihood estimates are represented by open
symbols while CDF-fit estimates are filled symbols. Error bars are
from a bootstrap analysis as described in Section 5.5. (c) The
empirical CDFs of observed transition times over the barrier are
shown with their EATR-CDF fits; different bias deposition times are
indicated in the caption with curves with fastest to slowest biasing
appearing from left to right. Fits that fail the KS test are represented
with open symbols. The unbiased empirical CDF (black points) is
shown together with the Poisson-process distribution fit (black line)
and the predicted distribution using the Kramers’ analytical
expression, eq 24 (cyan dashed line).

Figure 2. Potential of mean force along the fraction of native contacts
Q for the Go̅-like model of the B1 domain of protein G colored
according to the average committor function. The value of Q where
the average committor is 0.5 is marked with the dashed line, while the
critical value for unfolding Q = 0.35 is marked with the solid line.
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unbiased simulation.33,51,52 To do so, we computed for every
frame whether the simulation next reached the metastable free-
energy minimum on the left (unfolded) before reaching the
global minimum on the right (folded), and computed the
average by binning these values as a function of the
corresponding value of Q in that frame. Based on this result,
shown in Figure 2, we defined the unfolded region to be where
Q < 0.35 because the average committor to the left of this
point is effectively 1.0. To estimate the unbiased rate, we ran
200 unbiased simulations of the protein with randomized
initial velocities, and stopped these simulations when Q
dropped below Q = 0.35 using the COMMITTOR function
of PLUMED.53 The residence time for the folded state was
recorded for each simulation. The unbiased rate constant was
determined to be 1.4 ± 0.1 μs−1 using the CDF-fitting
procedure previously described. The KS test using a Poisson
distribution passed with p = 0.65, demonstrating a good fit.

We then performed 100 biased simulations for each CV at
various bias-deposition times to determine how sensitive each
method was to biasing speed. The recovered rate constants
from the methods are shown in Figure 3a for each of the biased
CVs as a function of the bias-deposition time Δdt. Bias
deposition times varied from 1 ps to 10 ns, corresponding to
fractions of the mean first passage time ranging from ∼10−6 to
∼10−2 as in the case of the simple potential in the previous
section. As expected, longer hill deposition times are observed
to generally increase the accuracy of all rate calculations.
However, for intermediate to fast-deposition times, KTR and
EATR predict unbiased rate constants closer to the true rate
than does iMetaD, especially for the three CVs shown on the
left of Figure 3a. We also performed a similar study using

untempered MetaD and find that, similarly, all methods work
well, with KTR and EATR slightly out-performing iMetaD in
the fast biasing regime (Figure S4).

The KTR and EATR methods also give a measure of the CV
biasing efficiency γ, which is shown in Figure 3b. We find that
Q and RMSD typically give higher values of γ than the end-to-
end distance (Ree) and the radius of gyration (Rg). This
coincides with the physical intuition of protein unfolding CVs,
where the number of contacts and the similarity to the folded
structure should be most relevant. This also agrees with ref 50,
which found that Q is a good CV for this system. The CV
obtained from linear discriminant analysis (LD1, ref 49.)
appears to have a large value of γ for slow biasing and a small
value of γ for fast biasing. A similar trend appears for all CVs
tested, but this is most prominent in LD1, and we are still
investigating the reason γ for LD1 is so much more sensitive
than the other CVs here, while still serving as a very good CV
for distinguishing folded and unfolded states (as proposed in
our previous study49). We note that the discrepancy between
iMetaD and the true rate constant is most pronounced when
KTR or EATR predict lower values of γ.

Our intuitive expectation is that a bad CV would require
significant amounts of extra bias to be deposited before the
system can overcome the apparent barrier in the FES for that
CV, necessitating a low value of γ to compensate in our rate
calculation. To check this, we computed the histogram of the
maximum bias across the different simulations at different
deposition rates (Figure 4). CVs with high γ and slow
deposition have maximum bias that do not exceed the apparent
barrier, while fast biasing and poor CVs require a substantial
amount of extra energy to be injected into the system to effect

Figure 3. (a) The rate constants obtained from fitting the CDF for iMetaD (black), KTR (blue), and EATR (orange) for each CV at various
deposition times (Δdt). The horizontal dashed line represents the empirical rate obtained from unbiased simulations. Open shapes indicate where
the KS test failed. (b) γ values obtained for the KTR and EATR methods. Horizontal dashed lines represent the bounds placed on γ. In both panels,
the error bars are computed from a bootstrap analysis as described in Section 5.5.

Figure 4. Histograms of the maximum bias deposited for the WT-MetaD simulations for the five CVs and different bias-depositions times. As the
biasing efficiency γ increases, there is a decrease in the amount of bias needed for transition.
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transitions. Accordingly, if we look at the average bias as a
function of position along a poor and good CV (Ree and Q,
respectively, in Figure S5), we find that the amount of bias
applied near the transition state is much larger for Ree than Q.
Interestingly, even if some amount of bias is added within the
transition region, EATR and KTR are still able to recover the
true rate for most cases. We note that we use max Vi in Figure
4 because it is a direct ingredient in the KTR method. Another
interesting quantity to compute here would be the amount of
nonequilibrium work performed by the MetaD bias, which has
been recently exploited in another estimator of rates from
time-dependent biased simulations.54

For all these CVs, the KTR and EATR methods performed
comparably well and consistently performed better than the
iMetaD method. Interestingly, the KS test seems not to be as
sensitive for KTR and EATR as it was in iMetaD. Fitting the
CDF for iMetaD results in failed KS tests even where the error
in the rate is small, but KTR never failed the KS test for these
CVs and EATR only failed for one condition. This may be an
effect of introducing γ as an additional fitting parameter, so it is
possible to get fits closer to the empirical CDF with worse rate
estimates. In Figure S6, we show that the introduction of γ
allows us to make good fits to the CDF; indeed, many pairs of
(k0, γ) can be used to fit these data; however, we note that the
resulting predicted rate constants are still quite close to the
most confident prediction, so this small amount of flexibility is
not a problem here in practice.
3.2.2. Adapting the Approach to OPES Flooding. As

mentioned in the introduction, the MetaD-like method OPES
offers a promising alternative approach to computing rate
constants via the estimator given in eq 15. That is because
OPES has a parameter specifying a maximum amount of bias
to add, allowing the method to be kept below any apparent
barriers to the reaction of interest, and it can be adapted to not
include bias outside a prespecified region of CV space.12,30 A
brief technical description of the OPES-MetaD biasing
procedure is given in Section 5.3. Computing rates in this
fashion (referred to as OPES flooding by ref 30) satisfies the
assumptions required to derive the iMetaD rate estimator
without using the infrequent biasing in iMetaD. The OPES
flooding bias rapidly converges to its final value, leading in
principle to faster observations of the rare events.30,32 We
expect that this approach should work better than traditional
iMetaD for high dimensional systems such as conformational
changes in large biomolecular systems.

In principle, our time dependent rate framework should
apply to OPES flooding without modification. We performed
six sets of 100 OPES simulations each for the Ree and Q CVs of
the protein G model to compare the different methods. Each
set of simulations used a different barrier parameter ΔE,
ranging between 1 and 4 kcal/mol, with resulting rates shown
in Figure 5a. OPES flooding performs comparably to standard
iMetaD for both CVs (Figures 5a, S7). Surprisingly, we found
that the rapid convergence of the bias function results in a log-
likelihood for both KTR and EATR which is insensitive to γ,
making it very difficult to maximize; a discussion on why this is
the case is given in Section S9. Attempting to fit both in
practice often causes instabilities with γ tending toward the
extreme values 0 or 1 (Figure 5b), and leading to the
inaccurate rate constant estimates shown in Figure 5a. Here,
we found that EATR performed better than the standard
estimator only in some cases and KTR consistently performed
worse. Although we could not find stable solutions for both γ

and k0 by optimizing the likelihood, we discovered that we
could fit γ and k0 by determining how the observed unfolding
rate constant scaled with the average of a bias measure as
described in Section S9 and Figure S7. This “OPES-EATR-
slope” approach results in rate constant predictions accurate to
within 5% for both CVs (Figure 5a), but it is an approximation
and requires computing and combining the results from
simulations biased using different OPES flooding barriers.
3.2.3. Simultaneous Biasing of Two Collective Variables.

MD studies involving large biomolecules or molecular
assemblies will typically have many slow degrees of freedom
characterizing transitions between important states, and hence
we expect the need to use multiple CVs to bias the system in
order to promote transitions in a reasonably short amount of
simulation time. We wanted to assess whether KTR and EATR
still work for this case, despite the fact that the role of γ in
characterizing CV quality is less direct. To do so, we performed
WT-MetaD simulations while simultaneously biasing the end-
to-end distance Ree and the radius of gyration Rg, and
summarize the results in Section S10 and Figure S8. Overall,
both KTR and EATR recovered the rate equally well apart
from EATR for the fastest bias-deposition time, where the KS
test failed. For intermediate values of bias deposition time, the
value of γ extracted is higher than that of either CV alone,
which could be connected to the fact that biasing multiple CVs
simultaneously increases the efficiency of the biasing to
produce transitions, and this is something we will investigate
more rigorously in the future.

3.3. Chignolin Miniprotein Unfolding. To ensure that
our method is robust for more complicated atomistic systems,
we applied the KTR and EATR methods to the chignolin
miniprotein data presented in ref 35. The CVs which were
biased in that paper were the C-alpha RMSD to the folded
state, the radius of gyration, and a CV obtained from harmonic
linear discriminant analysis (HLDA), and for each CV and bias
deposition time, 1000 iMetaD calculations were performed.55

We emphasize that this HLDA CV is different from the LDA
CV used in Section 3.2, and it was the CV that worked the best

Figure 5. (a) The rate constant estimates obtained from applying the
iMetaD, KTR, and EATR methods to OPES simulations when biasing
Ree (left) or Q (right), varying the OPES barrier parameter. (b) The
values of γ obtained from these KTR and EATR fits. Colored
horizontal dashed lines in both panels represent the more accurate
estimates obtained from fitting the observed OPES unfolding rate
constant and γ as described in Section S9, denoted OPES-EATR-
slope or OPES-KTR-slope, using different OPES barrier simulations;
see Figure S7.
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in ref 35. The rate constants and γ estimates are given in Figure
6. We found that fitting the CDFs for KTR and EATR both

dramatically improve rate estimates as compared to the
iMetaD estimator (performing at least comparably to the
short time fitting in ref 35.). Moreover, in this approach, we are
able to extract a γ parameter showing that, for chignolin, the
RMSD to the native structure is a worse CV for predicting
rates of unfolding than radius of gyration, in contrast to our
Go-model example. As expected, based on the more accurate
iMetaD results, γ for HLDA is much closer to 1, validating that
it is a good CV for this problem. Although this CV already
gives fairly good rate constant predictions for slow deposition,
accounting for the fitted γ when using HLDA in both EATR
and KTR results in nearly perfect rate predictions at all
deposition times.

4. CONCLUSIONS
In this work, we have developed a general rate theory for time-
dependent biased simulations that encompasses several of the
existing methods by using the scaling factor f(t) (from eq 11)
with different analytical formulations. In practice, LM and
CDF-fitting are two different manners for estimating the
unbiased rate constant from an ensemble of simulations
launched from a single state. Although we demonstrate in this
work that the previously proposed KTR approach works
robustly for realistic problems, it does not predict as accurate
results as iMetaD for the case of an ideal 1D CV. Therefore, we
proposed the EATR formulation, which exactly coincides with
iMetaD in the ideal CV case but which gives good rate
estimates for bad coordinates more robustly than does iMetaD,
with the additional benefit of reporting on the efficiency of that
parameter through the parameter γ. Having a high value of γ
seems to suggest that KTR or EATR will provide high quality
rate constant predictions. We also foresee using γ as a metric
that can help us in iteratively optimizing our choice of CV(s)
for rate calculations. We do note though that having a good
CV for a rate calculation may not be the same as having a good
CV for predicting a full free energy surface, as it may only be a

good way of describing the starting state and configurations on
the way to a transition state.

We have validated the methods over the more complex
landscape of protein G and chignolin unfolding where we
could still have ground truth. We have found that both the
KTR and EATR methods offer accurate rate measurements
from biased simulations. The accuracy of the rates determined
from these methods are surprisingly insensitive to biasing rate
and CV quality, even for frequent-biasing regimes where the
average maximum bias likely exceeds the true free energy
barrier. We find that the γ computed from both KTR and
EATR report CV efficiencies γ that correlate with our
qualitative intuition of what are good or bad biasing
coordinates. Overall, we find that the CDF fit is better than
LM to obtain the rate constant. However, many solution pairs
of {k0, γ} could pass the KS test, so getting a good fit is not
sufficient to guarantee that the optimal unbiased rate constant
was obtained; in practice the predicted values were all very
close to the highest confidence prediction (as shown in Figure
S6). Indeed, for cases where the biasing potential is well
approximated as time-independent (such as OPES flooding),
we find that optimizing both k0 and γ simultaneously brings
unstable solutions. Nonetheless, by analyzing the unfolding
rate constant as a function of a rate scaling function for
different OPES barrier parameter values, we are able to
overcome this, obtaining stable and accurate estimates.

We find that for biasing 2D landscapes, all methods perform
reasonably well, which is an indication that biasing many
directions might be helpful for barrier-crossing enhancement.
In the future, we hope to test the methods on more complex
systems using multiple biasing dimensions and, if necessary,
extend the theory to multiple dimensions as was done for
force-spectroscopy in refs 56 and 57.

Despite this success, there are several aspects of the EATR
method that can still be improved through future work. For
example, we could take into account the effect of the bias on
the pre-exponential factor. Although the method works well in
the case of our coarse-grained model of protein G for very fast
biasing, we have not solved the general problem of how to
compute rates in the overbiasing regime where γ times the bias
could still be larger than the true barrier, as for example for
LDA at fast deposition times (Figure 4), which could lead to
the overestimated rate constants and small γ (Figure 3).
Addressing this issue will be crucial for systematically using the
EATR method for large systems with many slow degrees of
freedom. It might be that using a slightly more time-consuming
procedure like the OPES EATR-slope fit with multiple barrier
heights is the best solution. Going forward, we would like to
determine whether it is possible to find a theoretical
interpretation for γ in multiple dimensions, e.g., whether it
can be derived considering projection operator approaches,
and investigate whether it is rigorously connected to
nonequilibrium estimators of the effect of a time-varying bias
on the rates.54

5. COMPUTATIONAL METHODS
5.1. Overdamped Langevin Dynamics on a 1D

Potential. We ran overdamped Langevin dynamics over the
potential given in eq 23 using x0 = −3, x1 = 3, and ΔU = 8 kBT.
We used an integration time step of dt = 0.01 τ where τ is the
time unit. The friction parameter used was 0.02 τ, which
corresponds to the friction coefficient ζ = 50 τ−1 and the
diffusion coefficient D = 0.02 τkBT. All simulations were

Figure 6. (a) The unfolding rate constants obtained from fitting the
CDF for iMetaD (black), KTR (blue), and EATR (orange) at various
deposition times for each of the biased CVs of all-atom simulations
for the chignolin miniprotein from ref 35. (b) The values of γ for each
CV for each deposition time. Open shapes indicate where the KS test
failed. The error bars were obtained by bootstrapping with
subsamples of 200 simulations out of the 1000 in each set.
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started from x = −3. Because the diffusion coefficient and
potential are known, we can derive the standard Kramer’s
expression in the Smoluchowski limit38 from eq 24

=k
2

e U
0

0 1

(24)

and use that to determine the unbiased rate constant. For this
specific system, the theoretical rate constant is 9.49 × 10−7 τ−1.
These Langevin dynamics simulations were performed using
the PESMD tool in PLUMED.53 Some of these simulations
were biased using WT-MetaD with a starting hill height of 1
kBT, a σ of 0.5, and a biasfactor of 2.0. MetaD simulations were
performed for four bias-deposition times (Δdt): 101 τ, 102 τ,
103 τ, and 104 τ.

5.2. Well-Tempered Metadynamics. In WT-MetaD
simulations, a history-dependent biasing potential V(ξ, t) is
generated at a position ξ in CV-space. V(ξ, t) is formed as a
sum of Gaussians with width σ (which can differ for each CV)
and height h deposited every Δ steps. For a one-dimensional
CV, this can be written as
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where tj = jΔdt are the times where hills were deposited prior
to time t, and Nhills = ⌊t/(Δdt)⌋. Here, ΔT is a tempering
factor which causes the heights to decrease proportionally to
how much bias is already applied at that point, and is specified
in PLUMED by setting a biasfactor of the form λ = (T + ΔT)/
T, where T is the simulation temperature. In the original
untempered MetaD, the hills are of constant height, i.e., ΔT →
∞. In iMetaD, the pace Δdt would be taken to be large, such
that the frequency of deposition (Δdt)−1 becomes small. For
notation simplicity, we have omitted the explicit dependence
on ξ from eq 25 in all equations in the Theory.

5.3. On-The-Fly Probability Enhanced Sampling
(OPES). A history dependent biasing potential V(ξ, t) is
used in OPES simulations, which is obtained from an estimate
of the probability distribution made “on the fly” using kernel
density estimation. V(ξ, t) is given by30
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where λ is the biasfactor from WT-MetaD, P(ξ, t) is the
probability distribution estimate at time t, Z(t) is the
normalization factor for P(ξ, t), and ε = e−βΔE/(1−1/λ), where
ΔE is the barrier parameter. ε serves to prevent the bias from
surpassing ΔE.

5.4. Go ̅-like Model of Protein G. A Go̅-like coarse
grained model of the B1 domain of protein G was prepared to
assess the accuracy of the rate extraction methods, starting
from PDB ID 1PGB. This system was selected because it was
previously used as a paradigmatic example of a two state folder
with known good and bad reaction coordinates.48,58,59 In a Go̅-
like model, each residue is modeled as a bead at the position of
the α-carbon. The force field for this model treats
pseudobonds and angles harmonically, and pseudodihedrals
using a Fourier series. Noncovalent interactions, as in ref 60,
depend on whether the residues are in contact in the native
structure, which is determined by whether the side chains of
two residues contain heavy atoms within 4.5 Å of each other.
The force field parameters for the model in refs 48 and 59 were

provided by the authors. Our implementation of the potential
in LAMMPS61 and input files for all simulations are provided
in the GitHub for this article (see Data Availability below).
5.4.1. Molecular Dynamics Simulations. The MD simu-

lations of the Go̅-like model were performed using the
LAMMPS software package.61 The software was updated
partway through the project and the version used for each set
of simulations is shown in Table S1. All simulations used a
time step of dt = 10 fs, and the temperature was held constant
at 312 K using the Nose−́Hoover chain thermostat62 with a
damping factor of 1 ps and a chain length of 3. All simulations
started from the folded structure.

For the unbiased simulations, we ran 200 replicates and
ended the simulations when the protein model unfolded,
which was defined to be when the CV Q decreased past 0.35 as
described above. The empirical CDF for the transition times to
the unfolded state were fit to eq 1 as explained in the Theory
section to obtain the observed unbiased rate for this system.
5.4.2. Collective Variables. A variety of CVs were analyzed

for the Go̅-like model, which were used for the biased
simulations and during the rate analysis. The first of these is
the fraction of native contacts (Q), which captures the degree
to which the protein is folded. This CV is the fraction of the
contacts present in the native structure which are still present,
and was defined as in ref 59. The end-to-end distance (Ree)
was also used, as it was previously determined to be a poor
coordinate.48 The RMSD of the protein with respect to the
native structure and the radius of gyration (Rg) were included
to compare with the previously used CVs for this system.

To define the LD1 coordinate, first we performed a cluster
scan on the unbiased trajectory using the shapeGMM
clustering algorithm63 with 50,000 frames for training, 3
training sets and 15 attempts each, for cluster sizes (K) = 2,...,6.
The training curve with cross validation from the scan is shown
in Figure S2. We used the positions of the beads as input
features for shapeGMM. We did a 5 state shapeGMM fit on
the entire trajectory (∼1.2 M frames) with 15 attempts to
identify the distinct clusters. We then performed an iterative
global alignment of the trajectory to the global mean and
covariance. Multistate Linear Discriminant Analysis (LDA)
was performed on the globally aligned trajectory with frames
from all 5 clusters. Only the first coordinate (LD1) out of four
resulting LD coordinates has been used in this study.49 In
Figure S2b,c we show that this coordinate completely separates
the folded and unfolded states, with the other states appearing
as intermediates.
5.4.3. Biased Simulations. The collective variables and

biasing for protein G were handled using PLUMED.53 The
version of PLUMED used for each set of simulations is shown
in Table S1. As is the case for the 1D potential, WT-MetaD
was used to bias the simulations. A set of untempered MetaD
simulations were also performed, the results of which are
provided in the Supporting Information. The parameters used
for the WT- and untempered MetaD simulations are given in
Table S2. The values of σ were chosen for WT-MetaD
according to the standard deviation of the biased CV in the
folded state, and for untempered MetaD σ was chosen to be
less than that used in WT-MetaD. We performed simulations
at eight different bias deposition times (Δdt): 1, 10, 100, 200,
500 ps, 1, 5, and 10 ns. 100 simulations were performed for
each Δdt. The simulations were halted when the protein was
determined to have unfolded, or when either the wall-clock
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time reached 48 h or a total simulation time of 10 μs was
reached.

We also performed 6 sets of 100 OPES simulations each for
Q and Ree. These sets were run with ΔE values of 5, 7, 9, 11,
13, and 15 kJ/mol. We used the values of σ from the WT-
MetaD simulations as the width of the kernels and used a
kernel update time of 1 ns. We excluded bias in the region Q <
0.65 when biasing Q and the region Ree > 2.9 when biasing Ree.
5.4.4. Potential of Mean Force and Committor Analysis. A

long simulation of protein G was performed and the potentials
of mean force (PMFs) along various CVs were determined
from the unbiased simulation data using

=A k T P( ) log ( )B (27)

where ξ is the CV along which the potential of mean force is
computed and P(ξ) is the probability density of ξ obtained by
computing a normalized histogram.

Committor analysis33,51,52 along Q was done on this long
simulation by assigning either 0 or 1 to each frame of the
trajectory depending on whether the system visits the folded or
unfolded state next, then taking the average for all frames
associated with each value of Q. In order to prevent incorrect
assignments to either state, for the committor analysis the
system was considered to be in the unfolded state when Q <
0.25 and to be in the unfolded state when Q > 0.85. From this,
Q = 0.35 was decided to be the critical value for unfolding, as
illustrated in Figure 2. This was chosen to be less than the
transition state to prevent counting cases where the system
enters the transition region, but fails to unfold.

5.5. Bootstrap Analysis. Errors were obtained from
bootstrap analysis.47 For this analysis, a new set of transition
times was constructed by choosing random simulations from
the original set with replacement. Once the new set had the
same size as the original set, the rate calculation was performed
on the new set. This was repeated 100 times and the standard
deviation of the log of the rate and γ across these new sets is
reported.

5.6. Kolmogorov−Smirnov Test. The KS test was
performed to assess whether the transition distribution is
accurately described by the expected theoretical distribution.
For the case of unbiased or iMetaD, it is a Poisson distribution.
The 2-sample KS test was used for the unbiased and iMetaD
analyses. This version of the test determines the maximum
deviation of the observed CDF from two samples and gives a
p-value which, when sufficiently low, allows us to conclude that
the samples most likely did not come from the same
underlying distribution. We consider the empirical and
theoretical distributions to coincide if p > 0.05. The 1-sample
KS test was used for the KTR and EATR analyses, as
generating large random samples from their distributions took
a significant amount of time. This version of the test
determines the maximum deviation of the observed CDF for
one sample from a theoretical CDF and gave the same results
as the 2-sample test in all the cases that were checked.
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■ ADDITIONAL NOTE
⊥By convention, the term “rate” is often used in the Kramers’
problem when referring to the rate constant/coefficient, and so
we also use the term rate when not specifically referring to the
rate constant, k.39
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