TABLE III:
Performance comparison between the proposed method with state-of-the-art algorithms. Bolded numbers indicate the top performance across all models being compared.
Method | Test set 1 | Test set 2 | Test set 3 |
---|---|---|---|
CE | 0.924 ± 0.02 | 0.836 ± 0.01 | 0.585 ± 0.01 |
SCE | 0.929 ± 0.02 | 0.843 ± 0.03 | 0.558 ± 0.01 |
Co-teaching | 0.905 ± 0.01 | 0.824 ± 0.02 | 0.539 ± 0.01 |
INCV | 0.932 ± 0.01 | 0.861 ± 0.01 | 0.605 ± 0.01 |
DivideMix | 0.931 ± 0.01 | 0.891 ± 0.01 | 0.737 ± 0.01 |
ELR | 0.860 ± 0.02 | 0.811 ± 0.01 | 0.566 ± 0.01 |
SOP | 0.930 ± 0.02 | 0.887 ± 0.02 | 0.661 ± 0.01 |
CMC (Ours) | 0.932 ± 0.02 | 0.910 ± 0.02 | 0.735 ± 0.01 |
Method (AUROC) | Test set 1 | Test set 2 | Test set 3 | |||
---|---|---|---|---|---|---|
| ||||||
Good quality | Bad quality | Good quality | Bad quality | Good quality | Bad quality | |
| ||||||
CE | 0.943 ± 0.02 | 0.912 ± 0.02 | 0.934 ± 0.02 | 0.768 ± 0.02 | 0.896 ± 0.02 | 0.542 ± 0.02 |
SCE | 0.935 ± 0.02 | 0.905 ± 0.02 | 0.929 ± 0.02 | 0.755 ± 0.02 | 0.710 ± 0.02 | 0.531 ± 0.02 |
Co-teaching | 0.917 ± 0.01 | 0.875 ± 0.01 | 0.905 ± 0.01 | 0.731 ± 0.01 | 0.777 ± 0.01 | 0.500 ± 0.01 |
INCV | 0.942 ± 0.01 | 0.927 ± 0.01 | 0.942 ± 0.01 | 0.778 ± 0.01 | 0.915 ± 0.01 | 0.547 ± 0.01 |
DivideMix | 0.943 ± 0.01 | 0.926 ± 0.01 | 0.938 ± 0.01 | 0.819 ± 0.02 | 0.964 ± 0.01 | 0.695 ± 0.01 |
ELR | 0.869 ± 0.02 | 0.861 ± 0.02 | 0.919 ± 0.02 | 0.684 ± 0.02 | 0.743 ± 0.02 | 0.524 ± 0.02 |
SOP | 0.937 ± 0.02 | 0.914 ± 0.02 | 0.987 ± 0.02 | 0.797 ± 0.02 | 0.958 ± 0.02 | 0.571 ± 0.02 |
CMC (Ours) | 0.937 ± 0.02 | 0.927 ± 0.02 | 0.991 ± 0.02 | 0.843 ± 0.01 | 0.974 ± 0.02 | 0.670 ± 0.02 |
Tested on the whole dataset
Tested on good and bad quality subgroups