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ABSTRACT
Recently, two-way or longitudinal functional data analysis has
attracted much attention in many fields. However, little is known on
how to appropriately characterize the association between two-way
functional predictor and scalar response. Motivated by a mortality
study, in this paper, we propose a novel two-way functional linear
model, where the response is a scalar and functional predictor is
two-way trajectory. Themodel is intuitive, interpretable andnaturally
captures relationship between each way of two-way functional pre-
dictor and scalar-type response. Further, we develop a new estima-
tion method to estimate the regression functions in the framework
of weak separability. The main technical tools for the construction of
the regression functions are product functional principal component
analysis and iterative least square procedure. The solid performance
of our method is demonstrated in extensive simulation studies. We
also analyze the mortality dataset to illustrate the usefulness of the
proposed procedure.
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1. Introduction

Functional linear regression, due to its flexibility and ease of interpretation, is widely used
in different fields of applied sciences to model all kinds of dynamic association when pre-
dictor is trajectory. There have been extensive researches on functional linear regression
in the past decades. For example, see the monographs [10,14,15], as well as the articles by
[3,4,13,19–22,33,34,36,38,40] and the references therein.

So far, most existing works focus on the case where the functional predictor is one-way
trajectory. Due to advances in technology, functional data analysts increasingly encounter
complex data types where functional data are no longer traditional one-way trajectory.
Two-way or multi-way functional data are now commonly seen in many different fields
of applied sciences including, for example, chemometrics, biomedical studies, and econo-
metrics. Some progress has been made in developing methodologies for analyzing such
functional data. For instance, [12] first considered the model and method for analysis of
functional data observed atmultiple time points, i.e. longitudinal observed functional data.
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[5] developed a two-step functional principal components analysis (FPCA) for model-
ing longitudinal functional data, aiming at covering the case where the recordings of the
curves are recorded either dense or sparse. [28] accounted for the longitudinal design of
functional data, and proposed a parsimonious modeling approach to analyze the diffusion
tensor imaging study of multiple sclerosis. [16] performed a two-way principal compo-
nent analysis for analyzing the functional magnetic resonance imaging data. Bymulti-level
FPCA approach, [35] proposed a methodology for statistical inference in the presence of
three-level nested hierarchical functional data. Further, [32] proposed amulti-dimensional
nonparametric covariance function estimation approach under the framework of repro-
ducing kernel Hilbert spaces that can handle both sparse and dense multidimensional
functional data.

The above works mainly focus on the methods of modeling two-way trajectories, with-
out considering impact of the trajectories on some interested response. This limits the
application of various developed estimation approaches in real regression problems. More
recently, there have been some related researches about image data to address this issue.
For example, [31] described a regularized Haar wavelet-based approach for the analysis
of three-dimensional brain image data in the framework of functional data analysis. [11]
developed scalar-on-image regression models by using a fast and scalable Bayes’ inferen-
tial procedure to estimate the image coefficient. [30] proposed a parsimonious modeling
framework to study longitudinal dynamic functional regression models that account for
the association between time-varying functional covariate and time-varying responses.
[22] developed a set of generalized functional partial linear varying-coefficient regression
models for the association analysis of asynchronous functional covariates and functional
response.

As far as we know, the aforementioned methods and theories are not applicable for sep-
arately analysing dynamic association between each way of two-way functional predictor
and scalar response. An additional technical drawback is that existing regression proce-
dure involves performing high dimensional non-parametric regression, with possible slow
computing, curse of dimensionality and loss of efficiency. This motivates us to study a new
model and method that is suitable for characterizing possibly asymmetric dynamic effects
between each way of two-way functional predictor and response separately. The method-
ology is also motivated by and applied to a human mortality study designed to analyze
the dynamic impact of mortality over past 40 calendar years and age over the 60 years old
on the corresponding average population across different countries, respectively (we shall
discuss in detail in Section 3.2).

In the current work, we propose a new and flexible two-way functional linear model,
which separately depicts the dynamic impact of each way of two-way functional predictor
on the scalar response. To perform estimation, given the mild weak separability assump-
tion, we utilize the product functional principal component analysis (FPCA) to achieve
the dimension reduction for two-way functional predictor. This procedure not only can
reduce the computational burden, especially for dense trajectories, but also guarantee the
orthogonality of eigenfunctions, which is crucial for subsequent procedure. Then, a (reg-
ularized) iterative least-squares estimation (LSE) approach is developed to estimate the
coefficient after dimension reduction. Lastly, combining the above estimated coefficient
and the product of eigenfunctions, we can easily obtain the estimated regression functions,
respectively. To our knowledge, our work is the first one that attempts to tackle scalar on
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two-way functional regression via popular FPCA techniques, which is a well-established
tool of functional data analysis.

The rest of this paper is organized as follows. In the Section 2,we first review someneces-
sary preliminary concepts, such as, weak separability and product FPCA. Subsequently, we
present the two-way functional linear model in Section 2.2 and the estimation procedure
in Section 2.3. We illustrate the proposed methods by simulation studies in Section 3.1,
and analyze our motivating dataset in Section 3.2. More discussion and future works are
put in the last section.

2. Methodology

2.1. Preliminaries

Since the concepts of product FPCA and weak separability introduced by [6] and [27],
respectively, are still relatively new, we briefly review them in this section.

Suppose that the two-way stochastic process is X(s, t) with mean and covariance func-
tions, denoted by E{X(s, t)} = μ(s, t) and G(s, t; u, v) = cov{X(s, t),X(u, v)}, respectively,
where s ∈ S and t ∈ T . Here, S and T denote closed interval of the real line in this
paper. Aiming to avoid difficulties of estimation of multidimensional covariance func-
tion G(s, t; u, v), such as, curse of dimensionality, slow computing, by simplified two-way
Karhunen-Loève (K-L) representation, [6] proposed the product FPCA as follows:

X(s, t) = μ(s, t)+
∞∑
k=1

∞∑
j=1

ξjkψj(s)φk(t), (1)

where ξjk = ∫
T

∫
S{X(s, t)− μ(s, t)}ψj(s)φk(t) ds dt, j, k = 1, 2 . . . , are viewed as marginal

projection scores. The functions {ψj(s)}j=1,2,... and {φk(t)}k=1,2,... are the eigenbasis of the
marginal covariance functions, respectively, which are defined as follows

GS(s, u) =
∫
T
G(s, t; u, t) dt, GT (t, v) =

∫
S
G(s, t; s, v) ds. (2)

HereGS(s, u) andGT (t, v) satisfy the spectral decomposition as ordinary covariance func-
tion, that is, GS(s, u) = ∑∞

j=1 λjψj(s)ψj(u) and GT (t, v) = ∑∞
k=1 κkφk(t)φk(v), where

λ1 ≥ λ2 ≥ · · · and κ1 ≥ κ2 ≥ · · · are themarginal eigenvalues, respectively. Although the
simplified two-wayK-L representation in (1) has a nice expression, without additional con-
ditions, the scores ξjk in general will not be uncorrelated. This restricts the application of
product FPCA.

When aforementioned two-way (or multi-way) functional data are encountered, struc-
tural assumptions can often simplify matters greatly, both in terms of interpretation and
computation. In this case, there is some literature on the structural restriction of multi-
dimensional covariance function of X(·, ·) in the context of functional data analysis, see,
such as, [1,2,7,8,25,37] and references therein. Noticeably, to alleviate the difficulties asso-
ciated with modeling of the two-way functional data, [27] introduced following definition
of weak separability.
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Definition 2.1: X(s, t) is weakly separable if there exist orthonormal bases {fj(s)}∞j=1 and
{gk(t)}∞k=1, such that the scores array {ξjk, j = 1, 2, . . . ; k = 1, 2, . . .} are uncorrelated to
each other. That is, cov(ξjk, ξj′k′) = 0 for j �= j′ or k �= k′.

If weak separability holds, as established by [27], it need not be necessary that the covari-
ance function G(s, t; u, v) be factored as a product of two marginal covariance function,
so that {ψj(s)φk(t)}j,k=1,..., are not necessarily eigenfunctions of G(s, t; u, v). But following
lemma can be established.

Lemma 2.2: If X(s, t) is weakly separable, the pair of bases {fj(s)}∞j=1 and {gk(t)}∞k=1 that
satisfies weak separability is unique, i.e. for any j, k ≥ 1, fj(s) ≡ ψj(s) and gk(t) ≡ φk(t),
where ψj(s) and φk(t) are the eigenfunctions of the marginal covariance functions GS(s, u)
and GT (t, v), respectively.

Therefore, the key point of weak separability is that the K-L representation is the
same as the product representation in (1). This means that we only need to calculate
the marginal covariances GS(s, u) and GT (t, v) instead of the full covariance function
G(s, t; u, v). Hence, this provides us with a convenient vehicle for modeling two-way func-
tional data and based on the assumption we will devise a new model and method for
analysing two-way functional linear regression in next section.

2.2. Model and eigenbasis representation

Assume that the two-way functional predictor X(s, t) is weakly separable, which has mean
function E{X(s, t)} = μ(s, t) and covariance function G(s, t; u, v) = cov{X(s, t),X(u, v)}.
The response Y is a real-valued random variable. Without loss of generality, we assume
that the response variable and the two-way trajectory are all centered so that no intercept
term is included hereafter.

Now assume that we collect pair data (X1,Y1), . . . , (Xn,Yn), which are independent and
identically distributed (i.i.d.) copies of (X,Y), then the novel two-way functional linear
model proposed is introduced as follows

Yi =
∫
S

∫
T
β1(s)Xi(s, t)β2(t) dt ds + εi, i = 1, . . . , n, (3)

where β1(·) and β2(·) are both square-integrable regression functions. The main object
of our interest in this paper is to estimate the two regression functions β1(·) and β2(·).
The random error term εi’s are i.i.d. copies of ε with E(ε) = 0 and var(ε) = σ 2. To avoid
identification problems, we assume that

∫
S β

2
1 (s) ds = 1 andβ2(0) = 1. Similar constraints

can be found in [18,26]. Different constraints mainly change the scale of the parameter
coefficients and have no effect on model fitting or prediction. Note that model (3) allows
the asymmetry of the roles played by t and s. This makes it easy to separate and visualize
the regression effects of s and t.

To estimate the regression functions β1(s) and β2(t), we first utilize the product FPCA
to obtain a data driven basis function, that is, Xi(s, t) admits being decomposed as Xi(s, t)
= ∑∞

k=1
∑∞

j=1 ξjkψj(s)φk(t), where {ξijk}j=1,2,...;k=1,2,... are uncorrelated with each other



JOURNAL OF APPLIED STATISTICS 2029

by the weak separability from Definition 2.1. Moreover, the product marginal eigenfunc-
tion {ψj(s)φk(t)}j=1,2,...;k=1,2,... forms an orthonormal basis by Lemma 2.2, whereψj(s) and
φk(t) are marginal eigenfunctions ofGS(s, u) andGT (t, v), respectively, which are defined
in (2). Based on above results, we then expand β1(s) and β2(t) in terms of ψj(s) and φk(t),
respectively, such that

β1(s) =
∞∑
j=1

ajψj(s) and β2(t) =
∞∑
k=1

bkφk(t). (4)

Then, it is easy to see that model (3) can be represented as follows

Yi =
∫
S

∫
T
β1(s)X(s, t)β2(t) ds dt

=
∫
S

∫
T

⎧⎨⎩
∞∑
j=1

ajψj(s)

⎫⎬⎭
⎧⎨⎩

∞∑
k=1

∞∑
j=1

ξijkψj(s)φk(t)

⎫⎬⎭
{ ∞∑
k=1

bkφk(t)

}
ds dt

=
∫
S

∫
S

⎧⎨⎩
∞∑
k=1

∞∑
j=1

ξijkψj(s)φk(t)

⎫⎬⎭
⎧⎨⎩

∞∑
k=1

∞∑
j=1

ajbkψj(s)φk(t)

⎫⎬⎭ ds dt

=
∞∑
k=1

∞∑
j=1

ajξijkbk, i = 1, . . . , n. (5)

Note that under mild weak separability condition, the utilization of data-driven
marginal basis naturally attends dimension reduction so that the model (3) is transformed
to a matrix-valued regression model (5), instead of estimating the full covariance function
of two-way trajectories. Consequently, the objective of estimating the regression functions
β1(s) and β2(t) is transformed into the one of estimating the coefficients {aj}j=1,2,... and
{bk}k=1,2,... as well as the principal component (PC) scores {ξjk}j=1,2,...;k=1,2,.... To address
the difficulty caused by the infinite dimensionality of the predictors, we assume that all
useful information in the functional predictor is contained in the first J and K principal
components, respectively. With this truncation, model (5) is approximately expressed in
the following matrix regression form:

Yi = aTZib + εi, (6)

where a = (a1, . . . , aJ)T ∈ R
J×1, b = (b1, . . . , bK)T ∈ R

K×1 and Zi = (ξijk) ∈ R
J×K . For

identifiability issues of (6), similar to [9], we further set the first element of b to be positive
and note that ‖a‖2 = 1 derived by

∫
S β

2
1 (s) ds = 1.

Intuitively, model (6) is the form of matrix-variate regression [17], and by the fact
aTZib = (bT ⊗ aT)× vec(Zi), we can simply vectorize the matrix-valued PC scores Zi,
such that the (6) is equaviently written as

Yi = (bT ⊗ aT)× vec(Zi)+ εi, (7)

Thus, the two-way functional regression problem is transformed into a standard vector
variate regression with a Kronecker product structured on regression coefficient, so one
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can adopt the LSE techniques to obtain estimators. However, different from conventional
matrix-variate regression, this naive approach would lead to at least two potential difficul-
ties in our two-way functional regression setting. First, the vectorization inevitably loses
meaningful information in the scores array structure as in (6). This may lead to inefficient
and unstable estiamtion. Second, the number of parameters for the coefficient inmodel (7)
is J × K whereas it is J +K for the coefficients a and b in model (6). So, model (6) sig-
nificantly reduces the dimension of the problem, especially for diverging dimensionality
principal components involved. Moreover, the regression coefficient constraint bT ⊗ aT

may lead to any estimator making interpretation less natural. It is hard to identify the
regression effect along s and t, respectively.

Therefore, it is necessary to provide a new approach that takes advantage of the struc-
tural information andmakes the estimationmore accurate and parsimonious.We describe
the detailed approach in the next section.

2.3. Estimation

In this section, we turn to the estimation procedure.Different fromconventional regression
problems, our {Zi, i = 1, . . . , n} in (6) is matrix variate and unknown, and thus needs to
be estimated from the data.

In this paper we focus on the case where trajectories {Xi(·, ·), i = 1, . . . , n} are recorded
on arbitrarily dense and equally spaced grid points. In practice, if the two-way functional
data are not fully observed but rather, for each subject are recorded at series of different
time points, then one can use two-dimensional local polynomial smoothing to smooth the
trajectories before next step. Here, we adopt the moment estimation for brevity. Specifi-
cally, use the predictor {Xi(s, t), i = 1, . . . , n} to obtain estimates of themarginal covariance
GS(s, u) and then change the roles of the two arguments to obtain estimates of GT (t, v)
where

ĜS(s, u) = 1
n

n∑
i=1

∫
T
Xi(s, t)Xi(u, t) dt, ĜT (t, v) = 1

n

n∑
i=1

∫
S
Xi(s, t)Xi(s, v) ds.

Then, we employ the spectral decomposition for ĜS(s, u) and ĜT (t, v) to obtain
{ψ̂j(s)}j=1,...,J and {φ̂k(t)}k=1,...,K , respectively, where J and K are chosen by the percentage
of variation explained throughout this paper [23]. This yields that the estimated PC scores
Ẑi = (̂ξijk)j=1,...,J;k=1,...,K for i = 1, . . . , n, where ξ̂ijk = ∫

S
∫
T X̂i(s, t)ψ̂j(s)φ̂k(t) ds dt. Thus,

the complex two-way functional predictor is transformed to PC scores array. This achieves
the dimension reduction. Next, we take advantage of the array structural information to
propose an iterative LSE estimaiton procedure, which can be regarded as matrix version of
block relaxation algorithm [39]. For easy illustration, a four-step algorithm is summarized
as follows.

Step 1: Take the initial estimator â(1) generated fromU(0, 1), and standardize â(1), so that
‖̂a(1)‖ = 1.

Step 2: At them-th step, fix â(m) and apply the LSE algorithm with (̂ZT
i â
(m),Yi) as the ith

observation to estimate b and obtain b̂(m). Adjust b̂(m) such that sign(̂b(m)(1) ) = 1.
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Then fix b̂(m) and again apply the LSE algorithm with (̂ZT
i b̂
(m+1),Yi) as the ith

observation to obtain â(m+1), then scale the estimator such that ‖̂a(m+1)‖ = 1.
Step 3: Go back to Step 2 until the convergence is achieved. Then, the coefficient estimator

are finally given by â = (̂a1, . . . , âJ)T and b̂ = (̂b1, . . . , b̂K)T.
Step 4: Construct the estimates β̂1(s) = ∑J

j=1 âjψ̂j(s) and β̂2(t) = ∑K
k=1 b̂kφ̂k(t).

The similar choice of initial estimator in our Step 1 is suggested by [9]. Further, it is
noted that the truncation J andK were chosen to explain the majority of the total marginal
variation in X(s, t), respectively. The effect of PC scores on the response may does not
necessarily coincide with their magnitudes specified by the marginal variation alone, i.e.
some higher order PC scores may contribute to the regression significantly more than the
leading PC scores, especially when the number of principal components is diverging.

Therefore, to simultaneously estimate the coefficient and select related significant prin-
cipal components, we also propose an adjusted estimation procedure by using the idea of
variable selection. Specifically, regularized estimation for (6) incurs slight changes in Step 2.
That is, in Step 2, when updating â and b̂ at each step, we fit a penalized LSE regression,
such as, Lasso, instead of ordinary LSE. Other Steps in the algorithm remain the same. For
similar regularized consideration for classical one-way functional linear model, one can
refer to [20,21,24,29,33] and references therein.

3. Numerical studies

3.1. Simulation studies

In this section we present a simulation study to evaluate the numerical performance of the
proposed method. The scalar responses {Yi, i = 1, . . . , n} are generated as follows

Yi =
∫ 1

0

∫ 1

0
β1(s)Xi(s, t)β2(t) dt ds + εi,

= aTZib + εi, i = 1, . . . , n. (8)

Let s and t take values from 0 to 1 on an equally-spaced grid of 200 points. The cen-
tered two-way predictor trajectories are generated as Xi(s, t) = ∑p1

j=1
∑p2

k=1 ξijkψj(s)φk(t),
where the scores ξijk’s are i.i.d. asN (0, ςjk) for i = 1, . . . , n, where ςjk = 45.25 × 0.64(j+k).
The marginal eigenfunction {ψj(t), j = 1, . . . , p1} is derived from the Fourier basis
ψ2�−1(t) = √

2 cos{(2�− 1)π t} andψ2�(t) = √
2 sin{(2�− 1)π t} (� = 1, . . . , p1/2), and

define φk(t) = √
2 cos{(k − 1)π t} for k = 1, . . . , p2. The random errors εi ∼ N (0, 0.03).

The regression functions are β1(s) = ∑p1
j=1 ajψj(s) and β2(t) = ∑p2

k=1 bkφk(t) linear com-
binations of the marginal eigenfunctions, respectively, where aj and bk are the jth and kth
element of a and b, respectively. We consider the following two scenarios.

Example 3.1 (Fixed principal components): The true principal components (p1, p2)
is set as (2, 2), (5, 5), and (4, 6), respectively, and the corresponding coefficients
are set as follows: a = (1, 0.5)T and b = (0.9, 0.6)T; a = (1, 0.9, 0.6, 0.4, 0.2)T and b =
(0.9, 0.8, 0.6, 0.5, 0.3)T; a = (1, 0.9, 0.6, 0.4)T and b = (0.9, 0.8, 0.6, 0.4, 0.3, 0.2)T.
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Table 1. Simulation results aredisplayed for themean squarederror (MSE), the integratedmean squared
error (IMSE) and the relative prediction error (RPE) based on 200 replication.

# PC Methods n MSE(̂a) MSE(̂b) IMSE(β̂1) IMSE(β̂2) RPE(Ŷi)

(2,2) Proposed 100 2.18 (4.38) 1.64 (1.84) 1.71 (5.86) 1.07 (2.43) 0.46 (1.27)
200 1.08 (1.65) 0.82 (0.91) 0.55 (1.06) 0.42 (0.62) 0.09 (0.23)
300 0.57 (0.93) 0.55 (0.59) 0.27 (0.59) 0.22 (0.38) 0.03 (0.06)

Naive 100 5.43 (8.07) 3.25 (3.00) 17.18 (23.07) 10.40 (12.21) 12.75 (15.74)
200 3.73 (5.03) 2.26 (2.08) 9.19 (11.52) 6.10 (6.79) 7.23 (9.40)
300 3.23 (3.12) 1.94 (1.33) 7.83 (7.98) 5.54 (5.30) 6.55 (7.07)

(5,5) Proposed 100 1.70 (2.16) 1.33 (0.90) 3.50 (6.88) 2.44 (3.30) 0.27 (0.34)
200 0.80 (0.89) 0.71 (0.47) 1.42 (2.46) 1.08 (1.47) 0.06 (0.08)
300 0.62 (0.74) 0.53 (0.38) 1.18 (1.96) 0.89 (1.23) 0.03 (0.04)

Naive 100 3.90 (3.22) 2.57 (1.29) 27.36 (18.43) 17.84 (9.99) 9.65 (7.15)
200 2.59 (1.55) 1.76 (0.77) 16.85 (9.53) 11.92 (5.92) 6.08 (4.37)
300 2.37 (1.37) 1.63 (0.61) 15.01 (7.99) 10.34 (4.33) 5.08 (2.98)

(4,6) Proposed 100 1.65 (1.67) 1.06 (0.66) 2.44 (3.58) 2.07 (2.37) 0.23 (0.24)
200 0.77 (0.79) 0.61 (0.37) 1.07 (1.48) 0.93 (1.06) 0.06 (0.08)
300 0.60 (0.67) 0.49 (0.33) 0.91 (1.43) 0.74 (0.96) 0.03 (0.05)

Naive 100 5.58 (3.58) 9.98 (3.94) 28.72 (20.32) 61.93 (24.26) 16.39 (8.89)
200 4.76 (2.37) 9.45 (2.91) 21.86 (10.99) 56.53 (18.22) 13.02 (4.72)
300 4.37 (2.22) 9.35 (2.84) 20.22 (9.69) 55.15 (16.91) 12.21 (3.97)

Notes: The true number of principal components (# PC) is set as (2, 2), (5, 5) and (4, 6), respectively. We compare the pro-
posed approach (Proposed) with the naive vectoring approach (Naive) with sample size taken as 100, 200 and 300. (The
reported results are original results multiplied by 102).

Example 3.2 (Diverging principal components): The simulated data is also gen-
erated by (8), except that the true number of principal components is diverging.
Specifically, (p1, p2) is set as (10, 10), (10, 15) and (15, 15), respectively, where a =
(1, 0.8, 0.6, 0.5, 0.4, 0.3, 8 × (j − 2)−4)T and b = (0.4, 0.3, 0.2, 3 × (k − 2)−4)T with j ≥ 6
and k ≥ 4.

To evaluate the accuracy of estimation and prediction, we simulate M = 200 Monte
Carlo runs, each run consisting of a collection of n = 100, 200, 300 predictor trajecto-
ries Xi and associated scalar response Yi that serves as the training sample for estimation,
respectively. In addition, for each run, we further generate another 100 pairs of (Xi,Yi)

that constitute the validation sample, which will be used towards the end of this section
for assessing the predictive power. To measure the estimation accuracy, we consider the
integrated mean squared error (IMSE) for the functional coefficients, which is defined as∫ 1
0 {β̂j(t)− βj(t)}2 dt, when estimatingβj(t) for j = 1, 2.We also provide themean squared
error (MSE) for the corresponding vector coefficients, which is defined as E‖̂θ − θ‖2,
where θ = a and b. Lastly, to inspect the predictive ability of the proposal, relative pre-
diction error (RPE) is also reported based on validation samples, which is defined as
RPE = ∑n

i=1(Yi − Ŷi)
2/(

∑n
i=1 Yi

2), where Yi is the response of the ith new subject in the
validation sample and Ŷi is its predicted value.

We summarize the simulation results for Example 3.1 and 3.2 in Tables 1 and 2, respec-
tively, where the true number of principal components varies frombeing fixed to diverging.
For diverging example, we use the regularized estimation. We compare the estimation
accuracy of the proposed method with that of the naive vectoring approach as in (7) with
sample size n changing. For each case, we include the empirical means of IMSE(β̂j) for
j = 1, 2, MSE(̂a) and MSE(̂b), as well as RPE with their standard deviation in the paren-
theses. As we can see, Tables 1 and 2 show that our proposed estimation methods always
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Table 2. Simulation results aredisplayed for themean squarederror (MSE), the integratedmean squared
error (IMSE) and the relative prediction error (RPE) based on 200 replication.

# PC Methods n MSE(̂a) MSE(̂b) IMSE(β̂1) IMSE(β̂2) RPE(Ŷi)

(10,10) Proposed 100 2.19 (1.52) 0.21 (0.19) 14.61 (11.51) 1.40 (1.52) 3.88 (3.92)
200 1.18 (0.78) 0.11 (0.09) 8.01 (6.58) 0.68 (0.67) 1.82 (1.77)
300 0.77 (0.53) 0.07 (0.04) 4.87 (4.11) 0.45 (0.36) 1.09 (1.00)

Naive 100 3.00 (0.98) 0.34 (0.13) 34.51 (12.63) 3.69 (1.79) 11.15 (7.35)
200 2.40 (0.55) 0.30 (0.07) 25.24 (6.72) 2.87 (1.06) 7.03 (3.85)
300 2.17 (0.42) 0.29 (0.07) 22.33 (5.53) 2.58 (0.84) 5.81 (2.80)

(10,15) Proposed 100 2.63 (1.74) 0.21 (0.19) 17.60 (12.14) 1.71 (1.80) 4.72 (4.02)
200 1.22 (0.80) 0.09 (0.07) 8.48 (6.16) 0.73 (0.67) 2.01 (1.68)
300 0.88 (0.64) 0.06 (0.05) 5.96 (4.95) 0.55 (0.45) 1.40 (1.23)

Naive 100 7.49 (2.09) 1.37 (0.39) 76.62 (23.60) 15.04 (4.69) 23.08 (12.46)
200 6.54 (1.42) 1.46 (0.33) 61.43 (15.19) 15.80 (4.00) 17.42 (7.19)
300 6.57 (1.29) 1.50 (0.27) 60.51 (12.79) 16.11 (3.32) 16.86 (6.10)

(15,15) Proposed 100 2.19 (1.23) 0.20 (0.17) 18.46 (11.98) 1.66 (1.55) 4.97 (4.26)
200 1.10 (0.75) 0.10 (0.08) 9.22 (7.14) 0.87 (0.79) 2.27 (2.03)
300 0.86 (0.64) 0.07 (0.05) 7.34 (6.09) 0.59 (0.52) 1.70 (1.53)

Naive 100 5.36 (2.66) 0.40 (0.32) 63.02 (32.16) 4.72 (3.80) 16.68 (10.55)
200 3.70 (2.52) 0.35 (0.26) 42.03 (28.07) 3.86 (3.03) 11.01 (8.62)
300 3.26 (2.19) 0.32 (0.26) 37.59 (23.32) 3.43 (2.91) 9.11 (6.46)

Notes: The true number of principal components (# PC) is set as (10, 10), (10, 15) and (15, 15), respectively. We compare
the proposed approach (Proposed) with the naive vectoring approach (Naive) with sample size taken as 100, 200 and 300.
(The reported results are original results multiplied by 102).

perform much better than the naive approach in all different settings. As expected, the
performance improves as the number of subjects increases. Fewer number of principal
components lead to better performance of estimation. This is because there are fewer
parameters to be estimated under fewer principal components. Moreover, the developed
method outperforms the naivemethods in terms of relative prediction error, and the larger
the number of principal components is, the worse the performance of naive gets. These
results also indicate the advantages of the proposed methods.

We also provide graphical illustration for estimated functional regression coefficients in
Figures 1 and 2, where we randomly choose the case (p1, p2) = (2, 2) and (10, 10) corre-
sponding to fixed and diverging case, respectively, with sample size n = 100. We compare
in each panel the 2.5% and 97.5% pointwise percentiles of our coefficient estimator with
the truth. It is remarkable that the newly proposed estimator performs very well. In Figure
1, the estimated coefficients are close to the true values, and the true coefficients are always
nicely covered by the 95% confidence bands. Similarly, it can be seen from Figure 2 that
the curves based on the proposed method are closer to the true ones, which also indicates
that our method can fit the functional regression coefficients very well.

3.2. Application tomortality data

The analysis of human mortality is important to assess the future demographic prospects
of societies, quantify differences between countries with regard to this overall public health
measure, and to appraise biological limits of longevity.We now use the developedmethods
to analyze the humanmortality dataset, which is downloaded fromwww.mortality.org. The
human mortality database contains data in the form of yearly life-tables differentiated by
country and age. We select 28 life-tables made up of data from 28 countries, one table for
one country. Each row consists of the rates of mortality available for each of the calendar

http://www.mortality.org
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Figure 1. The functional coefficients estimation β̂1(s) and β̂2(t) with sample size n = 100. The solid
lines are the true values, the dashed lines are the average estimated values, and the dotted lines are the
pointwise 2.5% and 97.5% percentiles of the estimators based on 200 replications.

Figure 2. The functional coefficients estimation β̂1(s) and β̂2(t) with sample size n = 100. The solid
lines are the true values, the dashed lines are the average estimated values, and the dotted lines are the
pointwise 2.5% and 97.5% percentiles of the estimators based on 200 replications.

years from 1960 to 2006; each column denotes mortality of people from 60 to 100 years of
age. Due to the high correlation and density of the life sheet mortality singal, we naturally
view each life sheet mortality as a two-way functional trajectory. We randomly choose a
country (i.e. UK) in Figure 3 to visualize the complex two-way data structure. In addition,
we also collect the corresponding total population for each country.

What we are interested in is to investigate the dynamic impact of mortality of those
over the age of 60 in the past 40 calendar years on the corresponding average population
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Figure 3. Left panel: the mortality rate of UK, where 60 ≤ t ≤ 100 and 1960 ≤ s ≤ 2006. Right panel:
the total population of UK, where 60 ≤ t ≤ 100 and 1960 ≤ s ≤ 2006.

across different countries, respectively. Following the notation introduced in Section 2, for
i = 1, . . . , 28, Xi(s, t) denotes the mortality rate for the ith country for subjects at age t
for calendar year s, where 60 ≤ t ≤ 100, i.e. focusing on the death rates of older individ-
uals, and on a recent block of 47 years, 1960 ≤ s ≤ 2006. We use Yi to denote the average
population across the same age and year in ith country, which is our interested scalar
response.

Before presenting the estimated regression functions, we first show the mortality profile
trajectories along calendar year s at age of 80 for all countries in the left panel of Figure 4;
as well as the mortality profile trajectories changing with age t for all countries in 1980
as described in right panel of Figure 4. Then, apply the proposed methodology to the
dataset. The plot of two estimated regression functions are shown in Figure 5. The two
estimated curves are both nonlinear and one is smooth, the other is fluctuant. This is due
to the different profile noise level of the predictor trajectories itself as shown in Figure 4.
Here, the regression function β̂1(s) describes the dynamic relationship between mortal-
ity rate and average population size as calendar year s changes, and β̂2(t) characterizes
association between mortality rate and average population size along with age t increas-
ing. Observe that the shape of these two estimated regression functions is totally different,
β̂1(s) is increasing as year changes, while β̂2(t) is decreasing as age increases. This shows
that the closer it gets to the year 2006, the greater the impact of mortality on the total popu-
lation is, while the older the age is, the smaller the impact on the total population, because
the proportion of this group of people is smaller. This is consistent with our common
knowledge.

4. Discussion

In this work, under the structure of weak separability, we provide a convenient model,
which can separately investigate the dynamic relationship between each way of two-way
functional predictor and scalar response. Aiming to simplify the modeling and with a view
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Figure 4. Left panel: themortality profile trajectories from 1960 to 2006 at age 80 from all 28 countries;
Right panel: themortality profile trajectories between age 60 and 100 from all 28 countries in year 1980.

Figure 5. The estimated functional coefficients estimation β̂1(s) and β̂2(t). The solid black lines are esti-
mated values and the dashed red lines are the pointwise 2.5% and 97.5% percentiles of the estimators
based on 200 Bootstrap samples.

towards interpretability, we propose a flexible way to estimate the two time-varying regres-
sion coefficient function by combining ideas from two-way functional data analysis and
regularized approach. Simulation studies demonstrate the satisfactory finite sample per-
formance of developed procedure. The proposed method is motivated by and applied to
the human mortality data study.

Many extensions are possible following our work, which can potentially generate
interesting research topics for future studies. For example, a natural extension is to
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consider generalized two-way functional linear model to analyze the binary response
for the purpose of classification. An immediate application is the EEG database data
set (http://archive.ics.uci.edu/ml/datasets/EEG+Database). It is interesting to explore the
dynamic relationship between alcoholism and the pattern of voltage over time and chan-
nel. In addition, the theoretical property of the proposed estimator is also very important
and will be pursued in future work.
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