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1. Introduction

In 1920, French mathematician Paul Lévy with Aleksander Khinchine developed the the-
ory of stable distribution [10]. Subsequently, it has been applied in different disciplines, like
economics, physics, hydrology, biology, and signals processing to capture asymmetry, tail
behavior, and high kurtosis in datasets [1]. The one-sided Lévy distribution is a special case
of stable distribution with positive support and has a heavier tail than any exponential tail
distributions. Dumé [5] showed that the Lévy distribution could well describe the sequence
of polarity reversals. Rogers [9] used the one-sided Lévy distribution to model the length
of paths that are followed by photons after reflection from a turbid media. Despite its use
in statistical modeling of physical phenomenon, the construction of goodness-of-fit test
for the one-sided Lévy distribution has not attracted much attention from the researchers.
Recently, Bhati and Kattumannil [3] proposed Jackknife empirical likelihood (JEL) ratio
and adjusted Jackknife empirical likelihood (AJEL) ratio tests for testing the one-sided Lévy
distribution. Motivated with the fact that very few tests are available on the goodness-of-fit
test for the one-sided Lévy distribution in the statistical literature, we propose a new test
for the one-sided Lévy distribution in this article.

This manuscript is structured as follows: In Section 2, we propose a new estimator of the
scale parameter of the one-sided Lévy distribution. The proposed test and its asymptotic
distribution under null and alternative hypothesis is introduced in Section 3. Simulated
critical values at different significant levels and empirical power of the proposed test
and their comparison with existing tests are discussed using Monte Carlo Simulation in
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Section 4. Finally, we apply our test to two real-world datasets in Section 5.

2. A new estimator of ¢

A positive random variable (rv) is said to follow a one-sided Lévy distribution with scale
parameter o > 0, denoted as Lv(o), if its probability density function (pdf) is of the form

flxo) = ,/ 5 x e m, x>0, (1)

and the cumulative distribution function (cdf) is given by

F(x) =2 (1 — <(%)l/z>> , x>0, )

where ®(-) is the cdf of a standard normal random variable. The one-sided Lévy distribu-
tion can also be obtained as a particular case of the inverse gamma distribution with the
shape parameter 1/2 and the scale parameter ¢ /2, which implies that the one-sided Lévy
distribution possesses finite inverse moments. Lemma 2.1 will be used later to construct
our proposed test statistic.

Lemma 2.1: Let X ~ Lv(o) then for | =0,1,2,..., and k=1,2,..., therv Y =1/X
follows the relation

o (Y (log ¥)") = @1+ DE (Y (log V)") + 24E (Y (log ) ") . (3)

Proof: Let X ~ Lv(o), then the transformed rv Y = 1/X ~ Gamma (%, %) with density
fry) = /2y 12 e~7,y>0and hence

E(Yl logY /2 f = V2 ( logy e V2 dy,
v

noting the fact that, %,(y”l/z(logy)k) =+ 1/2)yl_’(logy)k + ky'=12(log y)*~1, the
above integral can be re-written as

E(Y'(l Y = /< l+1/2 1 —oy/2
( °8 2m 2041 / dy (logy) ) dy
1—1/2 1 - —(Ty/Zd
V 27T 21 +1 / Og)/ ¢ 4

solving the first integral by parts, we obtain

E (Yl (log Y) ) ZZL—l—lE <Yl+1 (log Y)k) — %E (Yl (log Y)k_l) .

Hence the lemma follows. [ |
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Let X := {X: X = 0X,0 > 0} be a generic collection of non-negative rvs with one
(scale) parameter o, where X is a unit scale rv. Then the covariance between X and log X
allows easy scale extraction of scale parameter o, that means,

cov (X, logX) = cov (05(, log (05()) = crcov(f(, logf()
which gives
cov (X, log X)
 cov (5(, logf()’
where cov(X,logX) is some known constant depending on the distribution of X. We
utilize the above idea to estimate the scale parameter of one-sided Lévy distribution.
Let rv X ~ Lv(o), then rv X follows Lv(1). Define another collection of rvs using

the inverse transform of X, say Y:={Y:Y =1/X,X € X} and Y = 1/X. Hence rv
Y and Y follows Gamma (l g) and Gamma(1 1) respectively. Hereinafter, we con-

22 202
sider rv Y =1/X and Z =logY with mean puy = % and variance o = % and with
simple computation the mean and variance of rv Z are puz = —y —log(20), and

ol = ”72 respectively. Then cov(Y,log Y) = cov <§,log %) = (%Cov(l?, log Y) gives o =

%}ggg Using E(f’log Y),E(Y) and E(log Y) respectively in Cov(Y, log Y) we get

Cov(Y,logY) =2 — y —log2 + y + log2 = 2, where y is Euler’s constant, we get
2

B Cov(Y,logY) @

Remark 2.1: The above approach can be applied to any generic family of distributions that
have finite moments/log-moments for estimating the scale parameter.

For a random sample X}, X5, ..., X, of size n from Lv(c), consider the transformed
observations Y; = 1/X; and Z; =logY;, i=1,2,...,n with Y, = Z?:l Y;/nand Z, =
Z?:l Zi/n, then the proposed new estimator (6,) of o based on sample covariance
Ea/,,(Y, Z) is given as

2 2(n—1)
T Com(V,2) Yo, (Yi— V) (Zi— Zn)

The sample covariance 60\1/”(Y Z) can also be written as @n(Y, Z) = (n+1) (Y —
my)(Zi — pz) — (Yn — MY)(Z —uz) = =D 3L (Vi = uy)(Zi — puz) + Op(n™h)
w1thIE(Covn(Y Z)) == —|— Op(n_l) andVar(Covn(Y 7)) = —Var((Y wuy)(Zi — uz)).
This shows that = isa con51stent estimator of L Hence by invariance property of consis-
tency, which means that, if T}, is any cons1stent estimator of some parameter 6 and £(.)
is a continuous function then £(T,) is a consistent estimator of & (6). Therefore using this
result with £ defined as £(t) = 1/t, one can say that 6, is an consistent estimator of oy,.

For benchmark purposes, we use the maximum likelihood estimator of scale parameter
o, which is the solution to the likelihood equation 7= — Y ", 2 = 0 and is given by

(5)

&n = (Yn)il > (6)

and this estimator will be used later for the construction of our ratio test statistic.
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Figure 1. Scatter plot of estimator of o obtained, by using maximum likelihood estimator (MLE) and
Method of covariance (MCoV) for different sample sizes.

In Figure 1, we give the results of a comparative study that we conducted to compare the
estimated value of o obtained using the method of maximum likelihood estimate (MLE)
and method of covariance (MCoV) for different sample sizes. We generate a sample of
size n = 20, 50, 100, 200, 400, 600, 800 and 1000. For each n, samples from Lv(c), o varies
from 0 to 10, are generated and the estimated value of o from ML and MCoV method
are plotted. In the figure, we observe that the estimated value of o by both the methods
falls closer to the diagonal line as the sample size increases, which is an important aspect
because the test introduced later depends on these being similar. Further to complement
this, we compare the performance of the new estimator 6, with & by generating 100,000
samples each of size 10, 20, 50, 100 and 200 from Lv(5). For each sample with size n, we
compute 6, and 6, and depict the box plot of it. Figure 2 gives the box plot for both the
estimators for different sample sizes. From this figure, we observe that the inter-quartile
range of the box plots decreases as sample size increases. And the median line of these box
plots are very close to the actual value of o (i.e. ¢ = 5). In addition to this, MCoV esti-
mate shows more dispersion as compared to ML estimate for all sample sizes, nevertheless,
this spread decreases as sample sizes increase. The MCoV estimate is more right-skewed
as compared to MLE estimate for small samples. As the exact expressions of the variance
and bias of the MCoV estimator is not in a closed form, we use simulation to get a visual
look on the behavior n — oo. The Bias(d,,), Bias(6,), MSE(6,,) and MSE(5,,) for differ-
ent sample sizes varies from n = 10, 50, 100, 150, 200, . . ., 1500 is obtained from 100,000
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Figure 2. Box plots of estimator of o obtained, by using maximum likelihood estimator (MLE) and
Method of covariance (MCoV), from 10,000 samples of size n = 10, 20, 50, 100, and 200 from Lv with
o =05.
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Figure 3. Bias and Means square error (MSE) of Maximum Likelihood Estimator (MLE) (in Blue) and
Method of covariance (MCoV) estimator (in Red) foroc = 0.5and o = 2.

samples each of size n and is drawn in Figure 3. Here, the Bias and MSE is decreasing as
the sample size increases, which suggests that for both the ML and MCoV estimates the
MLE and MSE approaches 0. It can be further observed that, irrespective of sample size, the
ML estimator has small bias and MSE as compared to MCoV estimator. Thus, rather than
parameter fitting, our main purpose is to introduce a new goodness-of-fit testing using this
new estimator.
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3. Scale-ratio test

Let X be a rv with continuous cdf F with support R* and let £ denote the one-sided Lévy
family of distributions having density (1). We propose a goodness-of-fit test for the com-
posite null hypothesis .75 : F € £ versus the alternative hypothesis 7] : F ¢ £, based on
arandom sample X, . .., X}, of size n from F. Similar to the well-known Shapiro-Wilk test
(see [11]) for testing the normality, we will construct our test statistic by taking the ratio of

n(y 7 for testing .7%5. Note that, V,, is

pivotal quantity with respect to . Hence, in order to test the 7% hypothesis, the value of
the ratio V, is expected to be close to one. In following section, we discuss the asymptotic
distribution of V,, and propose the test statistic.

the estimators 6, and 6, thatis V,, = 6,,/6,, =

3.1. Asymptotic distribution of V,,
Theorem 3.1: Let X;, i=1,2,...,n be iid positive rv’s having finite second inverse

moment and finite second log moment, set Y; = )% and Z; =logY;. Then, for Ty =
(Y, Covu (Y, Z))T, we have

Vi (Ta — W) 5 N@©, ),

d
where — denotes convergence in distribution, 0 = (0, 07, ¥ =(uy,oyz) and £ =

C s .
(o) LS ), with Uy = (Y1 = pay) and Uy = (Y = i) (2 = 1) = oz
2Y,

E‘m, we have

Moreover, for V,, =

Vi (V= 22) LN o).

oyz

-
where n* = [W (W)]T SH (V) with h(x, %) = x‘ and hence W' (V) = <UYZ Z’LTY) .

Oyz

Proof: Notice that, Cov,(Y,2) = L+ SV (Y, — uy)(Zi — uz) — (Vo — 1) (Zn — 12)
=m-1"1 Z?:l(Yi — uy)(Z; — ,u,z) + Op(n_l). Also, by the Central Limit theorem,
wehave Y, — uy = Op(n_l/ 2). Therefore, for any values t; and t,, we consider

I = Vn{ti(Yu — 1ty) + t2(Cova(Y, Z) — 0v2)}

1 n
= 5 210 = )+ 8 = )% = 1) = 03] + O™
i=1

\/_ZR i+0,(n7h,

where R; = t1(Y; — uy) + 6((Y; — uy)(Z; — uz) — oyz),i = 1,2,...,n are iid r.v. with
E(R;) = 0 and Var(R;)) = t' Tt with tT = (11, ). By the Central Limit Theorem along
with Slutsky’s theorem, we conclude that I, is asymptotically normally distributed. Since
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t" is arbitrary, by Cramér Wold theorem [4, p. 9], we get
Vi{ (0, Conn(¥,2) " = (uysonn) T} SN, ).

Define i : R x R — R such that h(x1, x2) = 2x1/x>. Notice that V,, = h(Y,,, @/n(Y, 7)),
we apply the multivariate delta theorem to obtain the desired result. That is, let W =

(ity,ovz) and notice that i (x1,x2) = 2/x and ) (x1,x2) = —2x1/x5 where Hi(x1, x2) =
) T
%ih(xl,xz). Hence, W' (V) = (oiyz’ —%) . [ |

Theorem 3.1 gives rise to the following corollary, which tells us what happens under 7.

Corollary 3.1: Under 5, if X ~ Lv(o), then /n(V, — 1)—d>N(0,n2) where n? =
1(07-2)=4(=*-4)

Proof: When Y ~ Gamma (%, ), by using Lemma 2.1 and by proceeding iteratively, we
have the following equations.

E ((Y - l) log Y) = E, (7)
o o
1\2

E ((Y— ;) log Y) = ;E( log Y). (8)

By using (3), (7) and (8), it is possible to obtain the covariance expression as

\S)

cov (Y — uy, (Y — uy)(Z — nz))

2
=K <(Y — Wy) <(Y —uy)(Z —pz) — ;)) ,

Se((r- 1) (v D)t 2))

2 2
= ;]E (YlogY) — L2

2 4 2 4

Now, from Lemma 2.1, we obtain the following relation

E ((Y - %)2 (log Y)2> _ % (E ((10g ¥)°) + 4E (log ¥) + 4),

and  Var (Y — uy)(Z — uz)) = E((Y = uy)*(Z — 12)?)
— EY = un)(Z = u2)))?,

—E <<Y = é)z (log Y — MZ)Z) - é,

2
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Therefore, if we denote by Xj;,1,j = 1,2 the elements of the covariance matrix X, then
Y= %, Yoo = U%(O’Zz +2),X120=2%31= (;iz. Hence, by Theorem 3.1, for h/(\l-’) =

>

(0,9 .0 = [ ()] TSH W) = (6} - 2). .

In view of Corollary 3.1, for testing the one-sided Lévy distribution hypothesis we

propose a test
4n
* [ J—
Vi Ve D, )

which is asymptotically distributed as standard normal N(0, 1) under .7%. Figure 4 shows
the histogram of test statistic (V') values obtained from 100,000 samples drawn from Lv(1)
for different sample sizes (it is to be noted that the test statistics does not depend on o, hence
for brevity, we choose samples from Lévy distribution with ¢ = 1 ). We further superim-
pose the kernel density plot (in red) and standard normal density (in blue) on the histogram
to visualize the test statistic behavior. For small sample size, the distribution of V7 is right-
skewed, this occurs due to the fact that the estimator 6, have relatively more dispersion
than estimator &, see Figure 2. However, the kernel density plot tends to symmetric and
overlap with the density of standard normal as the sample size is above 250. There are cri-
teria in the literature which can be used to assess the closeness of the simulated type I error
rates to the nominal size, see for example [2]. Therefore, for testing .74 based on the sample
X1,X5,. .., X, of size n from a continuous cdf F with support on the positive real numbers,
the null hypothesis .77 is rejected at the significance level (SL) «, if V;; deviates away from
0. That is for a relatively small sample size, reject #g ata if Vi < ¢, or Vi > ¢y 05
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Figure 4. Histogram, kernel density plot(in red color) of the test statistic V; and density of standard
normal distribution (in blue color) obtained from 100,000 realizations from Lv(1) of different size n.
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where c;,a P and cf,,l_ a2 AT€ such that
_ v * v
l—a=P (Cn,o{/Z <V, < Cn,lfa/2|%> .

Note that, the statistic V;' does not depend on unknown parameter o and hence is scale
invariant. Thus, we use 0 = 1 for computation of empirical size and empirical power. On
the other hand, for large sample, we reject the null hypothesis at SL «, if |V;| > z1_q/2,
where z;_y 2 is the 100(1 — or/2)% quantile of the standard normal distribution. This relies
on the fact for large sample size the upper quantiles of the null distribution of | V| obtained
by MC simulation are close to the upper quantiles of the standard half-normal distribution,
which is asymptotic null distribution of | V}}| (see [12]).

4. Simulation study

To investigate the performance of V}; test given in (9), we first evaluate the critical val-
ues at SL o by Monte Carlo simulation for different sample sizes. As the proposed test
is asymptotically normally distributed, we also examine whether the critical values from
the asymptotic distribution can be used in place of simulated critical values. These criti-
cal values are then being used to obtain the empirical size and power of the test. Finally,
we compare the empirical power of V' test with Jackknife Empirical Likelihood (JEL) and
the Adjusted Jackknife Empirical Likelihood (AJEL) tests introduced in Ref. [3]. To begin
the investigation, we use the following stepwise procedure to obtain the simulated critical
values of V.

Step 1 Fix sample size n and o = 1.
Step 2 Generate a sample (x’s) of size n from Lv(c).
Step 3 Compute y; = 1/x;and z; = logy;, i =1,...,n.

Step 4 Calculate V,, = %ZSE%
i=1Vi™ i—

" 4n
Vi = m(vn -1

Step 5 Repeat steps 1-4 B times to get the realization of Vi say V), b=1,...,B.

Step 6 Then, for sample size n < 250, the critical value at SL «, (cy, ), is the a-th quantile
of Vi 1, Viis, ..., Vg and for sample of size n > 250, the critical value at SL o, is the
2ac-th upper quantile of [V} [, V51, .., [V 5l

and then obtain

The above procedure is used to obtain the simulated critical values at different SL « for
V¥ tests for small and moderate sample size and for large sample size. The critical value
obtained for different sample size n > 250 seems close to the critical value of half-normal
value. Hence, as a thumb rule, we suggest the readers to use the simulated critical value
for n <250 and for n > 250, critical values, as quantile, of Half-normal distribution can be
used. These results are shown in Tables 1 and 2, respectively. Table 1 provides the critical
constants of the test corresponding to SL o = 0.025, 0.05, 0.90, and 0.95 for samples of size
n =10, 15,20, 25, 30,. . ., 250. These values were obtained as the average of three runs of
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Table 1. Simulated critical value of the V;! test for different SL cr.

n €10.025 €005 €1,0.090 €10.095 n Cn0.025 0.0 €10.090 €10.095
10 —1.225 —1.085 3.3590 4.584 130 —1.671 —1.437 1.904 2313
15 —1.315 —1.154 2.8075 3.664 135 —1.685 —1.441 1.908 2.321
20 —1.378 —1.204 2.5551 3.291 140 —1.684 —1.439 1.906 2.334
25 —1.432 —1.243 24329 3.072 145 —1.685 —1.439 1.893 2313
30 —1.459 —1.270 2.3180 2916 150 —1.695 —1.445 1.894 2318
35 —1.494 —1.292 2.2659 2.849 155 —1.702 —1.444 1.891 2.303
40 —1.513 —1.306 2.2034 2.758 160 —1.704 —1.453 1.894 2.305
45 —1.526 —1.320 2.1599 2.673 165 —1.708 —1.449 1.883 2.287
50 —1.539 —1.328 2.1346 2.652 170 —1.714 —1.457 1.887 2.298
55 —1.557 —1.336 2.0933 2.601 175 —1.710 —1.457 1.879 2.285
60 —1.572 —1.350 2.0757 2.566 180 —1.710 —1.458 1.876 2.274
65 —1.578 —1.364 2.0541 2.514 185 —1.720 —1.469 1.857 2.258
70 —1.596 —1.371 2.0333 2.516 190 —1.716 —1.458 1.880 2.275
75 —1.600 —1.376 2.0280 2.488 195 —1.722 —1.467 1.859 2.260
80 —1.623 —1.389 2.0158 2.462 200 —1.733 —1.476 1.857 2.250
85 —1.624 —1.395 1.9824 2441 205 —1.732 —1.473 1.850 2.247
90 —1.633 —1.396 1.9768 2.399 210 —1.728 —1.471 1.860 2.258
95 —1.632 —1.402 1.9668 2414 215 —1.742 —1.478 1.855 2.238
100 —1.645 —1.410 1.9437 2.400 220 —1.737 —1.476 1.845 2.235
105 —1.654 —1.412 1.9513 2377 225 —1.747 —1.485 1.859 2.236
110 —1.651 —1.417 1.9357 2375 230 —1.744 —1.474 1.846 2.243
115 —1.665 —1.420 1.9407 2.365 235 —1.742 —1.484 1.851 2.243
120 —1.672 —1.424 1.9254 2343 240 —1.743 —1.487 1.839 2232
125 —1.665 —1.426 1.9284 2.346 245 —1.749 —1.488 1.850 2.230

250 —1.753 —1.491 1.836 2.227

Table 2. Upper quantiles of V|
under Hp for different sample
sizes, n > 250.

n 1090 Cn095
250 1.653 1.994
500 1.655 1.985
1000 1.653 1.981
1500 1.645 1.960
2000 1.648 1.964
2500 1.644 1.964
3000 1.650 1.964
3500 1.647 1.961
4000 1.647 1.959
4500 1.641 1.963
5000 1.646 1.959

100,000 MC samples each from the one-sided Lévy distribution with o = 1. Table 2 con-
tains the 90% and 95% quantiles of | V| under 7% for n = 250, 500, 1000, 1500, . . ., 5000
which were obtained from 100,000 MC samples each. These values are close to the 95%
and 97.5% quantiles of the asymptotic standard normal distribution (1.645 and 1.959).
The empirical size of the test is then obtained by generating 100, 000 samples each of size
(n) varies sample sizes from null hypothesis i.e. Lv(1) and proportion of samples for which
the test statistic that falls in the critical region are computed. In Figure 5, we compute the
empirical size at 5% SL using the simulated critical values (red) and critical values from
asymptotic normal distribution (blue). We can observe in figure that the empirical size
obtained from simulated critical value falls close to nominal level i.e. 0.05 for small and
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Figure 5. Empirical size obtained using simulated critical value (in red) and critical value of asymptotic
normal distribution (in blue) for different sample size n at SL o = 0.05.

moderate sample size. Whereas it falls away from the nominal level (0.05) for critical values
from asymptotic normal distribution. However, for large sample size (n > 250), the empir-
ical size obtained by considering simulated critical value or critical values from asymptotic
normal distribution fall close to nominal level. Therefore we use the simulated critical value
for computation of empirical power.

In order to compute the empirical power of V}, JEL and AJEL tests, we considered
several families of distributions from alternative hypothesis, with support [0, 00), such as
Lognormal (0, 1), Chi-square (4), Gamma (2, 3), Fréchet (0.5, 0, 1), Pareto (1.5, 1), Log-
Gamma (3, 2), Pareto (0.75, 1), Inverse Gaussian (1, 1.5), Burr (1.5, 0.5, 0.5, 1), Rayleigh
(1), Weibull (1.75, 1) and Half-Normal (1). These results are shown in Table 3. For sample
size n from each alternative family, we generate 100, 000 independent samples of size n
and obtained the value of each test statistic. Then the proportion of samples for which the
test statistic falls in critical region are recorded as empirical power. The critical region for
JEL and AJEL are obtained as suggested in Ref. [3]. For the family of distributions from
alternative class having the right tail heavier than the normal distribution, say Lognormal,
chi-square, Gamma, Fréchet, Pareto, Log-Gamma, Burr and Inverse Gaussian, the V; test
shows better empirical power than JEL and AJEL, whereas for the distributions having
tail equivalent to normal distribution such as Rayleigh, Weibull and Half-Normal the V'
test have relatively less power as compare to JEL and AJEL for large sample size. In addi-
tion to this, we generate random variables from a stable distribution with skew parameter
B =1, and stability parameter values were varied from 0.05 to 0.99 using the R-package
‘stabledist’. InFigure 6, the empirical power curve for V¥ test is presented. The empir-
ical power was computed using samples of sizes n = 200 and for 10,000 repetitions. As
observed from Figure 6, the empirical powers of the tests decrease as stability parameter
approaches 0.5 and increase as the values of deviate from 0.5. It is noteworthy that when
stability parameter is 0.5, the empirical power is close to 0.05, consistent with the case of
the one-sided Lévy distribution, as anticipated.

5. Application

In this section, we illustrate the use of test proposed in Section 4 with the help of two
real datasets discussed in Ref. [3]. The first dataset is from Ref. [8], which represents
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Table 3. Proportion of samples falls in the critical region for different family of distributions from
alternative class.

Lognormal (0, 1) Chi-square (4) Gamma (2, 3)
n vy JEL AJEL vy JEL AJEL vy JEL AJEL
10 0.401 0.116 0.119 0.649 0.248 0.255 0.652 0.250 0.257
20 0.704 0.212 0.217 0.818 0.437 0.445 0.814 0.423 0.432
30 0.831 0.297 0.304 0.869 0.638 0.643 0.869 0.636 0.644
50 0.938 0.524 0.482 0.917 0.903 0.905 0.913 0.895 0.899
100 0.988 0.868 0.856 0.949 0.934 0.942 0.959 0.948 0.948
Fréchet Pareto (0.75, 1) Log-Gamma (3, 2)
n vy JEL AJEL vy JEL AJEL vy JEL AJEL
10 0.165 0.056 0.054 0.483 0.087 0.092 0.827 0.163 0.171
20 0.313 0.066 0.066 0.845 0.109 0.112 0.998 0.270 0.279
30 0.429 0.072 0.072 0.964 0.158 0.161 1.000 0.433 0.439
50 0.636 0.076 0.077 0.999 0.302 0.308 1.000 0.725 0.731
100 0.895 0.094 0.091 1.000 0.631 0.612 1.000 0.973 0.938
Pareto (1.5, 1) Burr (1.5,0.5,0.5) Inverse-Gaussian (1, 1.5)
n vy JEL AJEL vy JEL AJEL vy JEL AJEL
10 0.981 0.347 0.357 0.921 0.086 0.082 0.481 0.112 0.116
20 1.000 0.526 0.539 0.997 0.138 0.136 0.872 0.173 0.179
30 1.000 0.777 0.785 1.000 0.184 0.184 0.977 0.285 0.289
50 1.000 0.977 0.977 1.000 0.292 0.294 0.999 0.514 0.520
100 1.000 1.000 1.000 1.000 0.527 0.506 1.000 0.866 0.853
Rayleigh (1) Weibull (1.75, 1) Half-Normal (1)
n vy JEL AJEL vy JEL AJEL vy JEL AJEL
10 0.832 0413 0.423 0.723 0.448 0.371 0.722 0.326 0.332
20 0.913 0.669 0.678 0.854 0.583 0.532 0.844 0.543 0.553
30 0.952 0.853 0.863 0.886 0.761 0.713 0.886 0.772 0.779
50 0.969 0.993 0.991 0.912 0.968 0.958 0.919 0.965 0.967
100 0.973 1.000 1.000 0.976 1.000 1.000 0.978 0.992 1.000

the lifetime of the pressure of n = 20 constructed vessels subjected to a certain con-
stant pressure. While fitting the gamma distribution to this data, the ML estimator of
shape parameter is close to 0.5 and as the one-sided Lévy distribution is a special case
of inverse of Gamma distribution, we consider the inverse of these observations for our
purpose. The second dataset comprises a n = 31 weighted average of rainfall (in mm)
data in January for the whole country starting from 1981 to 2011 released by Meteoro-
logical Department, Ministry of Earth Sciences, Government of India. This data is based
on more than 2000 rain gauge readings spread over the entire country, and it is available at
www.data.gov.in. To get the preliminary idea of model fitting to these data. For param-
eter estimation, maximum likelihood estimation method is used. The gg-plot between
the sample quantiles and fitted one-sided Lévy quantiles are presented in Figure 7 for
both datasets. The Kolmogorov-Smirnov test values K, = max{D", D™}, where DT =
maxj—1,...(j/n — ﬁ(X(,-))),D_ = maszl,,.,,n(f:(X(]-)) — (j—1)/n)and I:"(X(,-)) is estimated
cdf of one sided lévy rv, with bootstrap p-value (pgootstrapl) for datasets 1 and 2 are 0.154
(0.498) and 0.461 (< 0.0001), respectively.

For the first dataset, the KS-ppootstrap-value is larger than the 5% significance level hence
confirming that the one-sided Lévy distribution could be a plausible choice for modeling.
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Figure 6. Empirical power curve of the V;' test for sample size 200.
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Figure 7. gg-plot between the empirical cdf and fitted one-sided Lévy CDF.

Whereas for dataset 2 the KS-ppootstrap-value is very low as compared to the 5% significance
level, hence this rejects the null hypothesis. The same conclusion can also be drawn from
qq-plots, for dataset 1 the empirical and theoretical cdf values falls near to diagonal line
whereas they depart from the diagonal line for dataset 2. We now apply the proposed V-
test to these two datasets, and for comparison purposes, we use JEL and AJEL tests given by
Ref. [3]. These tests will be compared with reference to the size of the tests. Nevertheless,
the size of the tests based on asymptotic critical value may not be close to the nominal
significance level, this behavior depends on the parent family of distribution. Hence in such
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cases Bootstrap method, introduced by Ref. [6], can be used effectively. By construction,
the bootstrap method is efficient in approximating the cut-off points of the test’s critical
region. Despite the fact that the bootstrap method is computationally time consuming, it
gives more accurate value of critical levels, as compared to obtaining asymptotic critical
values. In our framework, to compute the bootstrap p-value, we present following brief
outline of the bootstrap procedure. Denote the data by x1, . . ., x,. We fit the model to the
data. Then,

Step 1 Compute the test statistic values, say tvx, tjgr, tAJEL-
Step 2 Use the fitted model to perform parametric bootstrapping.
(a) Generate B set of resampled data, denote it as Ag’),. .. ,&5,’), i=12,...,B.
(b) For each set of the resampled data, compute the test statistics values tﬂfz, t}EL,
tjq]EL statistics, fori = 1,2, ..., B.
Step 3 For the two-tailed hypothesis, the equal-tail ppootstrap-value of the V; test statistic
is computed by following relation (see Ref. [7])

5 <Z?:1 Iy, < tvy} 2, Iy, > tVﬁ)
min >

B ’ B

where () is an indicator function, and for JEL and AJEL test, the ppootstrap-Values are,
respectively, be given as

Py Wtjg, = tyer) d > {t)ypr = tajer}
B an B .

The test statistic values and their ppootstrap-value are presented in Table 4. We observe
from Table 4 that the ppootstrap-value for Dataset 1 for all the three tests is higher than the
significance value 0.05, hence confirming that the one-sided Lévy distribution cannot be
rejected for modeling. However, for Dataset-2, ppootstrap-value for V; test is less than the
significance value 0.05 and hence the null hypothesis is rejected, which means the one-
sided Lévy distribution is not a good choice to model this dataset. In addition to this, the
simulated critical points, discussed in Section 4, at 5% SL obtained by V; -test for Datasets 1
and 2 are (—1.204, 2.555) and (—1.273, 2.309), respectively, and V}-test value for Dataset
1 lies within these critical points whereas for Dataset 2, it lies outside the critical points
which gives evidence of accepting and rejecting the null hypothesis for Datasets 1 and 2,
respectively. Further, on the contrary, the JEL and AJEL tests retain the null hypothesis at
5% SL, but reject the null hypothesis at 10% SL for Dataset 2.

Table 4. Observed value of test statistic values along with their

p-values.
Vy-test JEL AJEL
Dataset 1 TS-value 0.782 0.316 0.269
PBootstrap-Value 0.547 0.554 0.554
Dataset 2 TS-value 10.952 3.083 2.770

PBootstrap-Value < 0.001 0.081 0.079
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6. Conclusion

Realizing that there are few tests available to test the one-sided Lévy distribution, the pro-
posed test is useful to practitioners. Our Monte Carlo simulation study also supports the
claim that the proposed tests show higher power than JEL and AJEL based tests for various
alternatives. Finally, the applicability of the proposed test has been shown by considering
two real-world datasets. The proposed test is obtained to test whether the sample belongs
to one-sided Lévy distribution with zero location parameter, however, this test can be
extended to inverse gamma distribution which nests one-sided Lévy distribution.

Notes

1. The bootstrap-p value is obtained similar to the procedure provided in this section later.
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