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Modeling human gastric cancers in immunocompetent mice
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ABSTRACT	 Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and 
environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular 
origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of 
GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular 
subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse 
models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with 
organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying 
GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current 
progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential 
application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
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Introduction

Gastric cancer (GC) is a major cause of cancer-related mor-
tality worldwide1,2. To date, surgery and radio-chemotherapy 
remain the major clinical treatments for GC. However, these 
treatments are frequently challenged by patients present-
ing in advanced or metastatic disease stages, because of a 
lack of early diagnosis markers3. Recently, immunotherapies 
such as anti-PD1/PD-L14,5 and targeted therapy (anti-Her2/
Claudin18.2)6,7 have entered clinical trials and have been 
used as tumor treatments. However, many or even most 
patients with GC do not respond well to these treatments, 
thus emphasizing the highly heterogeneous nature of GC and 

the urgent need for in-depth understanding of GC pathology. 
Heterogeneity remains a major barrier to GC management8.

The first aspect of GC heterogeneity is the ever-refined 
subtyping. Traditional Lauren classification of GC includes 
intestinal-type, diffuse-type, and mixed-type GC9. Recent 
studies have comprehensively characterized the molecular fea-
tures of gastric adenocarcinoma. In a milestone in this regard, 
The Cancer Genome Atlas project, at the molecular level, has 
revealed 295 primary GCs and defined 4 GC subtypes includ-
ing Epstein-Barr virus-positive, microsatellite instability, chro-
mosomal instability and genomic stability10. Single cell RNA 
sequencing (scRNA-seq) has been applied to decipher the cel-
lular heterogeneity of the tumor microenvironment in primary 
and metastatic lesions of patients with GC11-23. ScRNA-seq of 
primary and peritoneal carcinomatosis cells from patients with 
GC has demonstrated that the diversity in tumor cell lineage/
state compositions is a key contributor to intratumoral heter-
ogeneity11,12. These studies have identified a group of genes 
associated with differentiation and prognosis, and showing 
high diversity within and between tumors. Some subgroups 
show different degrees of differentiation, consistently with the 
histopathological features of the Lauren subtype. Two newly 
identified subgroups show unique transcriptional profiles: 
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one expressing master cell markers and Wnt/β-catenin path-
way signature genes, and the other expressing immune-related 
signature genes associated with Epstein-Barr virus infection. 
Despite progress in understanding of the molecular and cel-
lular mechanisms of GC pathology, the underlying clonal 
evolution dynamics and cellular malignant transformation of 
human GC remain to be fully elucidated.

The second aspect of GC heterogeneity includes cell origin 
and genetic mutations. The homeostasis of the gastric epithe-
lia, which is directly exposed to food intake and gastric acid, 
can be easily disrupted. As a countermeasure, gastric epithelial 
cells are continually renewed to maintain gastric gland struc-
ture and function. The gastric gland is composed primarily of 
pit cells, neck cells, parietal cells, isthmus stem cells, reserve 
stem cells, chief cells, and a small number of endocrine cells 
and tuft cells24. Gastric adenocarcinomas can originate from 
both stem cells and terminal differentiated cells located at 
the cardia, corpus, and antrum of the stomach. Furthermore, 
genetic mutations such as inactivation of tumor suppressors, 
including RNF4325, TP5326,27, and ROHA10,28, as well as acti-
vation of oncogenic Kras29 and YAP30, synergistically initiate 
and drive the tumor evolution of GC. Among them, the Hippo 
signaling pathway has been extensively investigated as a major 
driving force of both gastric tumorigenesis and acquired drug 
resistance31,32. Targeting recovery of Hippo activity, such as 
with SHAP33 and SAIP-1/234 peptide agonists or chemical 
agonists35, is a promising strategy to curb GC. However, the 
specific cellular origins and genetic drivers of human GC 
remain to be clarified, thus hindering the development of pre-
cision medicine and targeted therapies.

The third aspect of GC heterogeneity involves the dynamic 
remodeling of the immune microenvironment associated 
with disease progression and treatment. A comprehensive 
single-cell atlas characterizing the microenvironment across 
various stages of GC progression, from precancerous lesions 
to metastatic tumors, has identified 6 ecotypes associated 
with the phenotypic progression and outcomes of GC14. In 
particular, IgA+ plasma cells accumulate in precancerous 
lesions, whereas immunosuppressive myeloid and SDC2+ can-
cer-associated fibroblasts dominate late-stage GC14. In addi-
tion, scRNA-seq of GC biopsy samples has revealed elevated 
plasma cell proportions in diffuse-type GC, in agreement 
with the upregulation of KLF2 expression in epithelial cells 
mediating plasma cell recruitment15. Using paired pre- and 
on-treatment samples during standard frontline chemother-
apy, Kim et  al.16 have identified chemotherapy-induced NK 

cell infiltration, macrophage repolarization, and increased 
antigen presentation among responders. In contrast, the non-
responders showed increased LAG3 expression and decreased 
dendritic cell abundance, thus suggesting remodeling of the 
tumor microenvironment during chemotherapy response and 
resistance. However, how the immune microenvironment 
regulates GC remains largely unknown. For example, how do 
the unique regional immune properties of the stomach reg-
ulate human GC initiation? How does the heterogeneity of 
the immune microenvironment determine the sensitivity or 
response to immuno-therapy?

A new dimension of GC heterogeneity, nerve-cancer 
crosstalk, is increasingly being implicated in gastric tumori-
genesis. Although the stomach is innervated predominantly 
by the autonomic, non-autonomic, and enteric nervous sys-
tems, to maintain epithelial homeostasis and hormone secre-
tion36, elevated infiltration of other neuronal fibers derived 
from vagal nerves, sympathetic nerves, and choline-acetyl-
transferase positive stromal neurons is frequently observed 
in GC tissues, and neural density positively correlates with 
GC progression and poor survival prognosis37-39. Indeed, 
sole surgical vagotomy or myenteric denervation has been 
found to efficiently decrease the incidence of gastric tumors, 
enhance chemotherapy effects, and prolong overall survival 
in both mouse and rat models, as well as in human patients 
with GC37,40, thus adding a new layer of complexity underly-
ing GC carcinogenosis36-38,41. Exploring how nerves, or even 
emotions, regulate the initiation, progression, and response to 
targeted and/or immunotherapy of human GC should prove 
interesting.

Beyond intrinsic factors, environmental factors, such as 
microorganisms, have been well established to participate in 
GC initiation and development2. For example, gastric tissue 
injury and chronic inflammation triggered by Helicobacter 
pylori infection initiate sequential histopathologic progres-
sion of gastritis to gastric atrophy, intestinal metaplasia, 
dysplasia, and finally gastric adenocarcinoma42. Recently, 
several oral pathogens, including Streptococcus anginosus43, 
Candida albicans44, and intracellular bacteria45, have been 
identified to colonize the stomach and promote gastric 
tumorigenesis. Nevertheless, how these novel microbe-host 
interactions and genetic mutations synergistically drive GC 
tumor evolution awaits further investigation. In addition, 
how microbiota determine the sensitivity or response to tar-
geted treatment and immunotherapy for GC remains poorly 
understood.
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To address GC heterogeneity and uncover its pathologi-
cal nature, multiple model systems can be applied, including 
cell lines, organoids, animal models, and clinical samples. In 
the past decade, organoids have been developed as powerful 
tools for both mechanistic study of tumorigenesis and drug 
screening. Comparisons between patient-derived organoids 
and single cells from primary tumors have highlighted inter- 
and intralineage similarities and differences15, thus suggest-
ing that heterogeneity may decrease or disappear during the 
continuous passage of organoids. Moreover, current organoid 
models do not adequately mimic the complex microenviron-
ment in vivo, where immune cells interact with tumor cells. 
Furthermore, tumorigenesis is increasingly understood to be 
regulated by crosstalk between the stomach and other organs, 
e.g., the liver and brain. Therefore, various GC animal models 
must be developed to meet research needs, including mech-
anistic study and target intervention, genealogical tracing of 
different GC subtypes, and assessment of chemotherapy and 
immunotherapy.

Multiple immunocompetent GC mouse models have been 
developed, including GC cell line transplantation, chemical 
carcinogen administration, and genetic engineered models 
(Figure 1). These models enable study of the cellular origins, 
clonal evolution, relapse, host-microbe interaction, tumor 
immunity, and neuronal/emotional control of tumor immu-
nity during various stages of GC, including initiation, pro-
gression, invasion, and metastasis, with or without therapeutic 
treatment. Herein, we review the roles of well-established and 

emerging GC mouse models, particularly genetically engi-
neered mouse models (GEMMs), in deciphering the hetero-
geneity in human GC; we further compare their pathological 
features, applications, and limitations.

Non-genetically engineered GC 
mouse models

Cell line-derived GC graft model

Cell lines derived from patients with GC and mice provide 
powerful tools to explore the nature of tumor progression, and 
responsiveness to targeted therapy and immunotherapy. In 
addition to the multiple human GC cell lines available for xen-
ograft study in immunocompromised mice, several mouse GC 
cell lines (e.g., MFC, MGCC3I, NCC-S1/3, YTN16, and M12), 
which can be transplanted into immunocompetent mice, have 
been generated to investigate the molecular and cellular mech-
anisms governing gastric tumorigenesis and related immune 
response.

The widely used mouse GC cell line MFC was generated 
from forestomach carcinoma developed in N-methyl-N’-
nitro-N-nitrosoguanidine (MNNG) treated mice on a 615 
inbred background. MFC cells form tumors after orthotopic 
or subcutaneous implantation in mice, and are prone to 
spontaneous metastasis to the lungs46. MFC cells have been 
applied in investigating the molecular mechanisms through 

GC cell lines inoculationA Chemical carcinogenes administrationB

Mutation of oncogenes and/or tumor suppressor genesC

Tumor-suppressor

STOP Oncogene1,2,3...
Loxp Loxp

Figure 1  Immunocompetent mouse models of GC. (A) Allograft GC models generated by subcutaneous and orthotopic transplantation of 
mouse gastric cell lines, such as MFC and YTN16, show favorable replicability and stability, but also induce an unnaturally hyperinflammatory 
response. (B) Chemical carcinogen-induced GC mouse models, such as those using MNU and MNNG, exhibit high mutational burden and 
immunogenicity. (C) Genetically engineered mouse models of GC generated through genetic manipulation within stomach specific cells have 
uncovered genotype-phenotype relationships during GC initiation and progression.
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which tumor cells promote immune evasion47,48 and impede 
responses to anti-PD-1 immunotherapy48-50. For example, 
through SLC6A6-mediated competitive uptake of taurine, gas-
tric cancer cells induce CD8+ T cell exhaustion by increasing 
ER stress and ATF4 mediated upregulation of immune check-
point genes, thus resulting in immune evasion and tumor 
progression47. MGCC3I, another forestomach carcinoma-
derived mouse GC cell line, forms poorly differentiated gastric 
carcinoma after orthotopic transplantation into the stomach 
serosa, and liver metastasis after intrasplenic injection into 
the syngeneic ICR mice51. The NCC-S1 and NCC-S3 cell 
lines were derived from primary GC developed in Smad4fl/fl; 
Trp53fl/fl; Cdh1fl/+; Villincre and Trp53fl/fl; Cdh1fl/fl; Pdx1cre mice, 
respectively52. Metastatic NCC-S1M and NCC-S3M subclones 
were then isolated from lung metastatic foci. Activation of the 
Wnt/β-catenin signaling pathway is required for the meta-
static phenotype52.

Notably, 2 mouse GC cell lines (YTN16 and M12) trans-
plantable into mice with a C57BL/6 background have been 
developed53,54. YTN16 cells were subcloned and established 
from N-methyl-N-nitrosourea (MNU) treated p53 heterozy-
gous knockout mice. YTN16 cells form orthotopic tumors and 
metastasis foci in lymph nodes, the peritoneum, and lungs53. 
YTN16 cells have been used to develop novel mouse mod-
els of lymphatic and peritoneal metastasis55-57, gastric tumor 
immunogenicity58, neoantigen identification59, and response 
to immune checkpoint inhibitors in GC60-62. M12 cells have 
also been derived from gastric carcinoma in p53 knockout 
mice on a C57BL/6 background treated with a zinc-deficient 
diet and MNU administered in the drinking water. M12 cells 
show tumorigenic and metastatic properties in C57BL/6 syn-
geneic mice54. Serine/threonine-protein kinase 24 (STK24) is 
essential for immune regulation during the tumor progression 
of M12 cells in vivo. Knockdown of STK24 promotes myeloid 
derived suppressor cell (MDSC) expansion and tumor growth 
in C57BL/6 mice54.

Chemical carcinogen-induced GC mouse 
models

MNU, one of the best-characterized chemical carcinogens, 
can be supplied in the drinking water to induce GC in mice63. 
By introducing alkyl radicals into DNA, MNU causes DNA 
mutation and dysfunction, thereby promoting gastric tum-
origenesis64. MNU-induced primary GCs are usually local-
ized in the antrum, and involve well to poorly differentiated 

adenocarcinoma63,65. The tumorigenic efficacy of MNU 
varies in mice with different genetic backgrounds; male 
mice on a BALB/c background are relatively susceptible to 
MNU-induced tumors65. In addition, MNU-induced GC is 
significantly enhanced in combination with other GC risk 
factors, such as a high-salt diet66, H. pylori infection67, and 
Streptococcus anginosus infection43. Notably, genetic altera-
tions also significantly influence MNU-dependent tumorigen-
esis. For example, p53 knockout mice are relatively sensitive to 
MNU-induced carcinogenesis68,69.

MNNG is another chemical carcinogen particularly widely 
used in combination with Helicobacter infection to induce 
GC in mice70. MNNG is supplied in the drinking water in 
3 cycles at 2 week intervals to induce GC in mice. MNNG-
induced primary GC varies across model organisms, includ-
ing squamous cell carcinoma in the forestomach in mice46,70 
and adenocarcinomas in the glandular stomach in Mongolian 
gerbils71. Similarly, environmental GC risk factors, including 
a high-salt diet72, calcium-deficient diet71, or catechol73, pro-
mote the incidence and progression of GC induced by MNNG 
administration. Moreover, this model has been extensively 
used to investigate gastric tumorigenesis and targeted therapy 
against GC32,33,74-76.

Genetically engineered GC mouse 
models

Inflammation-induced GC

IL-1ββ transgenic mice
Gastrointestinal cancers are frequently associated with chronic 
inflammation. For example, chronic inflammation triggered 
by H. pylori infection or tissue injury in the stomach can 
initiate sequential histopathologic progression of gastritis to 
gastric atrophy, intestinal metaplasia, dysplasia, and finally 
gastric adenocarcinoma. Interleukin-1 polymorphisms have 
been associated with increased risks of both hypochlorhydria 
induced by H. pylori infection and gastric carcinogenesis77. 
H/K-ATPase:hIL-1β transgenic mice expressing secretory 
human IL-1β specifically in parietal cells have been gener-
ated to explore the pathogenic role of hIL-1β during gastric 
tumorigenesis. These mice spontaneously develop chronic 
gastritis, hyperplasia, and high-grade dysplasia/adenocarci-
noma without invasion into the submucosa or metastasis to 
distant organs78. In a setting of H. felis Infection, IL-1β has 
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been found to accelerate the development of gastric inflam-
mation and carcinoma, thereby indicating a causative effect of 
IL-1β in inflammation-associated GC79. This model has been 
used to explore mechanisms of tumor resistance to immune 
checkpoint blockade of GC. Overexpression of IL-1β in the 
stomach results in recruitment of MDSCs through the IL-1RI/
NF-κB signaling pathway. MDSCs exert an immunosuppres-
sive function through upregulation of PDL1, and anti-PD-1 
treatment does not block GC progression in these IL1β trans-
genic mice78.

NF-κB1-deficient mice
Deficiency in NF-κB1, even loss of a single allele, can lead to 
spontaneous intestinal-type gastric adenocarcinoma in mice. 
Interestingly, such gastric adenocarcinoma is not accelerated 
by H. pylori infection and a high salt diet in these NF-κB1-
deficient mice80, thus indicating a GC pathology independent 
of commensal microorganisms. This model has been used to 
study inflammation associated malignancy in GC. Deficiency 
in NF-κB1 results in increased expression of a variety of 
inflammatory cytokines, including tumor necrosis factor 
(TNF), interleukin-6 (IL-6), IL-22, and IL-11, thereby driv-
ing aberrant activation of signal transducer and activator of 
transcription 1 (STAT1). Further genetic depletion of TNF or 
STAT1 in NF-κB1-deficient mice has been found to prevent 
invasive GC development81. In agreement with these observa-
tions, genetic analysis has identified a significant association 
between the Nfκb1 locus and gastric tumor susceptibility in a 
collaborative cross-mouse population82.

Gp130F/F transgenic mice
Excessive secretion of IL-6 cytokine family members, includ-
ing IL-6, IL-11, IL-27, IL-31, oncostatin M, leukemia inhib-
itory factor, ciliary neurotrophic factor, ardiotrophin-like 
cytokine factor 1, and cardiotrophin 1, promote GC through 
persistent activation of the JAK-STAT1/3 and/or SHP2-Ras-
ERK signaling pathways through the IL-6 cytokine family of 
receptors83. To investigate the role of dysregulated activation 
of STAT3 in regulating gastrointestinal epithelial cell homeo-
stasis, Tebbutt et al.84 have generated gp130F/F mice by using 
a phenylalanine knock-in substitution of the IL-6 receptor 
β-chain Gp130 at the cytoplasmic tyrosine 757 residue, thus 
preventing its binding to the suppressor of cytokine signaling 
3 and enhancing activation of STAT3. Gp130F/F mice spon-
taneously develop gastric adenoma at the antrum by 4–6 
weeks of age, accompanied by splenomegaly and extra-gas-
tric pathologies in the liver and lung84,85. Further knockout of 

STAT3 in Gp130F/F mice alleviates gastric adenoma progres-
sion, thereby highlighting an essential role of STAT3 hyperac-
tivation in GC pathology85.

Among IL-6 cytokine family members, IL-11 is a 
major cytokine promoting gastrointestinal tumorigene-
sis. Pharmacological inhibition of IL-11 signaling through 
mIL-11 Mutein administration or genetic depletion of IL-11 
ligand–binding receptor subunit in Gp130F/F mice has been 
found to inhibit GC development86,87. Beyond the IL-6 
cytokine family, STAT3 activation directly increases Toll-
like receptor (TLR) 2 expression, thereby promoting gastric 
tumor cell survival and proliferation. Accordingly, genetic or 
therapeutic targeting of TLR2 has been found to alleviate gas-
tric tumorigenesis88. Moreover, IL-6/IL-11-gp130-dependent 
mTORC1 activation has been implicated in promoting 
inflammation-associated gastrointestinal tumorigenesis, 
which is druggable through treatment with the mTORC1-
specific inhibitor RAD00189. Finally, Gp130F/F transgenic 
mice have also been used to study the interaction of tumor 
cells with immune cells involved in GC progression. For 
example, mast cells have been found to be activated by GC 
cell-derived alarmin IL-33 and to recruit macrophages via 
secreting attracting chemokines, such as CSF2, CCL3, and 
IL-6; moreover, deletion of macrophages has been found to 
suppress gastric tumorigenesis90.

Transgenic mice with aberrant inflammation 
induced by T cells
Deregulated T cell activation mediates gastritis and promotes 
gastric hyperplasia and adenocarcinomas. For example, 
T cell-specific deletion of the tumor suppressor liver kinase 
B1 (LKB1) results in excessive production of proinflam-
matory cytokines and chemokines such as IL-6, IL-11 and 
CXCL2, which is accompanied by increased STAT3 activation 
and infiltration of inflammatory monocytes and neutrophils. 
The related inflammation promotes development of gastro-
intestinal polyposis, a cancer predisposition syndrome91. 
In  addition, autoimmune gastritis mediated by self-reactive 
CD4+ T cells has been found to promote GC development. 
In a T cell receptor transgenic mouse model of autoimmune 
gastritis, the T  cell receptor targets a peptide from the H+/
K+ ATPase proton pump, which is highly expressed on pari-
etal cells in the stomach. Transgenic mice display chronic 
gastritis with intensive CD4+ T cell infiltration, and elevated 
IFNγ and IL1-17 production, which is followed by initia-
tion and progression of GC from oxyntic atrophy, mucinous 
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hyperplasia to spasmolytic polypeptide-expressing metapla-
sia, and intraepithelial neoplasia92. Collectively, these mouse 
models illustrate a causal link between gastric inflammation 
and GC development.

Gastrin/gastric acid disorder-induced GC

INS-GAS mice
Gastrin, produced by antrum G cells, is crucial for gastric acid 
secretion and parietal cell differentiation. A transgenic mouse 
model termed INS-GAS expressing human gastrin specifi-
cally in β islet cells under control of the insulin promoter was 
originally generated to investigate the potential role of gastrin 
in regulating islet differentiation93,94. INS-GAS mice show 
a twofold elevation of serum amidated gastrin and gastroin-
testinal mucosal hyperplasia94. These mice have been further 
used to examine the role of hypergastrinemia in GC pathol-
ogy and have shown elevated maximal gastric acid secretion 
and parietal cell number within 4 months old, but progressive 
sustained loss of parietal and hypochlorhydria95. Eventually, 
INS-GAS mice develop metaplasia, dysplasia, and invasive GC 
at 20 months of age (Figure 2).

Notably, INS-GAS mice exhibit accelerated progression 
to gastric carcinoma in the presence of H. felis infection95. 
Moreover, this tumor progression is influenced by sex, 
genetic background, and commensal flora. Female INS-GAS 
mice are more resistant than male INS-GAS mice to H. felis 

infection-induced GC96-98. Ovary derived estradiol may 
contribute to the protective role of this sexual dimorphism, 
because ovariectomized female mice develop more severe 
gastritis and gastrointestinal neoplasia than intact female 
mice97. In addition, INS-GAS mice on an FVB/N back-
ground have been found to be susceptible to H. felis infec-
tion-induced GC, whereas those on a C57BL/6 background 
develop only metaplasia and dysplasia99. In addition, H. 
felis-infected INS-GAS mice raised in germ-free conditions 
develop mitigatory gastritis and delayed intraepithelial neo-
plasia, in contrast to those raised in specific-pathogen-free 
conditions100. Moreover, gastric colonization with restrict 
altered Schaedler’s flora in male germ-free INS-GAS mice is 
sufficient to promote gastric inflammation and dysplasia to 
a similar extent as diverse intestinal microbiota in the pres-
ence of H. pylori infection101. In the setting H. felis infection, 
INS-GAS mouse models have served as an important tool for 
validation of anti-inflammatory strategies for GC treatment. 
The combination of the nonsteroidal anti-inflammatory drug 
sulindac and antibiotic mediated H.  pylori eradication has 
been found to alleviate the production of pro-inflammatory 
cytokines in the stomach, as well as the progression from H. 
pylori-associated severe dysplasia to GC102. In addition, the 
combination of the gastrin receptor antagonist YF476 and the 
histamine H2-receptor antagonist loxtidin has been found to 
completely suppress gastric acid secretion and progression to 
neoplasia103.

Homeostasis Tumorigenesis

1. MNU, MNNG, H. pylori, S. anginosus infection

2. Inflammation dysregulation (H/K-ATPase:hIL-1β,
    NF-κB1–/–, Gp130F/F, TxA23)

3. Gastrin/Gastric acid disorder (INS-GAS, Gastrin–/–)

4. Mutations of oncogenes (NICD, Rhoa, Kras) and
    suppressor genes (Trp53, Apc, Cdh1, Tff1) in
    epithelial (Claudin18, Anxa10, Lgr5, Mist1, Pgc, Sox2, Atp4b)
    and interstitial (Kit, Etv1) cells   

Atp4b+Mist1+ Pgc+ Lgr5/Aqp5+Anxa10/Claudin18.2+ Sox2+Tff1+ Interstitial cell Tumor cell

H. pylori

S. anginosus

Figure 2  Mouse GC models induced by chemical carcinogen administration and/or genetic engineering in immunocompetent mice. 
Modeling of gastric tumorigenesis by genetic manipulation within distinct cell types has revealed the high heterogeneity in cell origin during 
human GC initiation. Infection with microorganisms such as H. pylori and S. anginosus accelerates GC tumorigenesis.
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Gastrin−/− mice
Gastrin-deficient mice (gastrin−/−) have been generated to 
investigate the role of gastrin in regulating the development 
and function of the gastrointestinal tract104,105. Gastrin−/− mice 
show impaired gastric acid secretion, accompanied by marked 
abnormalities in gastric gland architecture, with diminished 
numbers of parietal and enterochromaffin-like cells, and 
enhanced numbers of mucous neck cells104,105. The loss of 
parietal cells in gastrin−/− mice has been attributed to bacterial 
overgrowth and chronic gastritis, and the parietal cell number 
has been found to normalize after antibiotic treatment106. The 
chronic inflammation resulting from gastric acid secretion 
disorder in gastrin−/− mice promotes intestinal metaplasia of 
the gastric epithelium, which eventually develops into polyps 
by the age of 12-month107-109 (Figure 2).

GCs induced by mutation of oncogenes and/or 
tumor suppressor genes

GCs induced by genetic mutations in gastric 
epithelial cells

Genetically engineered mice with genetic mutations in 
pan-epithelial cells  Claudin18.2 is a tight junction mem-
brane protein specifically expressed in the gastric epithelium. 
Claudin18.2 knockout mice (CLDN18KM) exhibit prene-
oplastic lesions at 7 weeks and eventually develop high-
grade intraepithelial neoplasia at 2 years of age110. However, 
CLDN18KM mice are resistant to H. pylori colonization and 
are not suitable to investigate pro-tumor of H. pylori infection. 
Of note, the yes-associated protein 1 (YAP1) signaling path-
way has been found to be up-regulated and to contribute to 
the proliferation of metaplastic cells in CLDN18KM mice110. 
Given that Wnt/β-catenin signaling, receptor tyrosine kinase, 
and Trp53 pathways are commonly perturbed pathways in 
GC, Fatehullah et  al.111 have developed a claudin18.2-IRES-
CreERT2 allele to selectively drive conditional knock in of 
KrasG12D and deletion of Apc and Trp53 (Cldn18-ATK) in 
the gastric epithelium. Cldn18-ATK mice develop high grade 
CIN GC, which metastasizes to the liver, lymph nodes, and 
diaphragm111. This model has been used to evaluate the roles 
of Lgr5+ stem cells in GC initiation and distant metastasis111.

Expression of Anxa10, a member of the annexin fam-
ily of calcium-dependent phospholipid-binding proteins, is 
restricted to the gastric epithelium. Mutations in oncogenes 
and/or tumor suppressor genes specifically in Anxa10+ cells 

result in mouse GCs with various subtypes possibly mimicking 
human GC. Knock in of KrasG12D and Trp53R172H, and deletion 
of Smad4 in Anxa10+ cells leads to intestinal-type GC, which 
is prone to metastasis to the liver and the lungs. Knock in of 
KrasG12D and deletion of Cdh1 and Smad4 in Anxa10+ cells 
result in poorly differentiated signet ring cell carcinoma, and 
metastasis to the lung and peritoneum; moreover, knock in of 
KrasG12D and deletion of Cdh1 and Apc in Anxa10+ cells lead 
to serrated adenomatous GC112. Tumor organoids have been 
derived from these models to test responses to conventional 
chemotherapeutics and targeted therapeutics. Intestinal-type 
CIN organoids are relatively sensitive to docetaxel treatment 
but resistant to trametinib treatment targeting the EGF recep-
tor (EGFR). In addition, overexpression of peroxisome prolif-
erator-activated receptor delta (Ppard1/2) in Villin+ cells pro-
motes gastric inflammation and tumorigenesis113.

Genetically engineered mice with genetic mutations in stem 
cells  With their capabilities of self-renewal, proliferation, 
and differentiation into various types of functional cells, stem 
cells play important roles in tissue homeostasis and injury 
repair24,114. Moreover, stem cells have been found to be the cel-
lular origins of gastric tumorigenesis and metastasis24,114. Lgr5 
marks homeostatic stem cells in multiple tissues including the 
gastrointestinal tract. In the human and mouse stomach, Lgr5 
is expressed in a subpopulation of chief cells located at the base 
of the corpus gland. Lgr5-expressing chief cells drive epithelial 
renewal after injury and are the cells of origin of GC115. Knock 
in of KrasG12D or Trp53 deletion in Lgr5-expressing chief cells 
promotes metaplastic lesions in the corpus69,115. In Cldn18-
ATK mice, Lgr5+ cells function as cancer stem cells in gastric 
tumorigenesis and distal metastasis111.

Recently, Aqp5 has been identified as a new pyloric-specific 
marker of Lgr5-expressing stem cells. Hyperactivation of the 
WNT/β-catenin, PI3K, and KRAS signaling pathways by dele-
tion of Apc and Pten and knock in of KrasG12D in Aqp5+ stem 
cells cooperatively drives invasive gastric tumorigenesis116. 
In addition, pepsinogen C (PGC) is a predominant marker 
secreted by gastric chief cells, and successive activation of 
KrasG12D and depletion of Apc and Trp53 in Pgc+ chief cells 
have been found to result in progressive development of 
metaplasia, dysplasia, and invasive and metastatic gastric 
carcinoma117. Recently, knock in of KrasG12D alone in zymogen-
secreting chief cells has been reported to lead to the develop-
ment of precancerous metaplasia and high-grade dysplasia. 
Metabolic rewiring from glycolysis to fatty acid metabolism 
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occurs during the progression from metaplasia to dysplasia118. 
Stearoyl-coenzyme A desaturase dependent production of 
monounsaturated fatty acids fuels dysplastic cells118.

Mist1 expression marks the stem cells located in the isth-
mus of the gastric corpus24. Knock in of KrasG12D and Apc 
deletion in Mist1-expressing stem cells give rise to intestinal-
type metaplasia and cancer. In addition, depletion of Cdh1 in 
Mist1+ stem cells may cause diffuse-type GC. Importantly, 
Cxcl12+ endothelial cells recruit Cxcr4+ innate lymphoid 
cells (ILCs), which form a peri-vascular inflammatory niche 
supporting diffuse-type GC development from Mist1+ cells 
through Wnt5a produced by ILCs119. ILC-derived Wnt5a 
mediates RhoA activation and promotes tumor cell sur-
vival. Concordantly, RHOA gain of function through knock 
in RHOAY42C combined with Cdh1 deletion in Mist1+ cells 
induces metastatic diffuse-type GC120. Mechanistically, Cdh1 
loss and RHOAY42C mutation induce cytoskeletal rearrange-
ments and focal adhesion kinase activation, which in turn 
further promote the activation of YAP/TAZ, PI3K/AKT, and 
WNT/β-catenin signaling120.

The transcription factor Sox2 marks adult stem cells in 
multiple epithelial tissues, including the glandular stomach, 
anus, cervix, testes, and lens121. Sox2 is highly expressed in 
the basal progenitor cells of the stratified epithelium in the 
esophagus and forestomach121, and drives gastric specifica-
tion and regionalization by maintaining chromatin accessibil-
ity of forestomach lineage-specific genes122. Overexpression 
of Sox2 in basal progenitor cells results in the development of 
invasive squamous cancer in the forestomach and is involved 
in inflammation-mediated Stat3 activation123. However, 
deletion of Apc in Sox2+ cells leads to gastric adenoma for-
mation in the corpus, and loss of Sox2 enhances gastric tum-
origenesis, thus suggesting that Sox2 may also act as a tumor 
suppressor by restraining Wnt/β-catenin signaling and intes-
tinal genes124. Moreover, activation of KRAS in Sox2+ cells 
also leads to precancerous lesions in gastric tissues, accompa-
nied by accumulation of Sox9+ cells in the stomach. A com-
bined Cre-loxp and Flipase-Frt system to specifically activate 
Kras and deplete Trp53 in Sox2+Sox9+ cells has been found to 
result in the development of aggressive GC, in which SOX9 
promotes the transformation of SOX2+ stem cells through 
biased symmetric cell division125. In addition, SOX9 in epi-
thelial tumor cells promotes M2 macrophage polarization and 
CD8+ T cell functional inhibition through paracrine secretion 
of LIF, thus driving the progression and metastasis of gastric 
adenocarcinoma.

Genetically engineered mice with genetic mutations in termi-
nally differentiated cells
Tff1−/− mice  Trefoil factor 1 (TFF1) is a tumor suppressor 
gene that belongs to the trefoil factor family and is expressed 
predominantly in gastric pit cells. TFF1 transcription is pos-
itively regulated by the gastrin hormone126, and decreased 
abundance of TFF1 resulting from epigenetic silencing is 
involved in gastric carcinogenesis127,128. TFF1 knockout mice 
(Tff1−/−) have been generated by Lefebvre et  al.129 to inves-
tigate the roles of this factor in gastrointestinal homeostasis 
and tumorigenesis. Tff1−/− mice develop severe hyperplasia 
and dysplasia, marked by elongated pits and enlarged nuclei. 
Moreover, 30% of Tff1−/− mice develop invasive pyloric ade-
noma, but no metastatic dissemination to the lung or liver, at 
the age of 5 months129. In line with the role of dysregulated 
inflammation in promoting GC, knockout of TFF1in mice and 
progressive loss of TFF1in human gastric tissues have been 
associated with activation of NF-κB-mediated inflammation 
and progression to gastric tumorigenesis130. This model has 
been used to investigate the role of prostanoid metabolism in 
GC progression. Expression of cyclooxygenase-2 (Cox-2) is 
elevated in pyloric adenoma in Tff1−/− mice, and is involved 
in the conversion of arachidonic acid to prostanoid precur-
sors. Moreover, inhibition of Cox-2 through genetic deletion 
or treatment with the selective inhibitor celecoxib decreases 
adenoma size and ulceration in Tff1−/− mice131,132.

Mutations in parietal cells  Parietal cells, marked by Atp4b 
expression, account for one-third of all gastric epithelial cells. 
Parietal cells secrete gastric acid in response to gastrin stimula-
tion, thereby maintaining the acidic environment of the stom-
ach and inhibiting the invasion of pathogenic microorganisms. 
Manipulation of oncogenes and/or tumor suppressor genes 
in parietal cells also contributes to gastric tumorigenesis. For 
example, activation of Notch signaling by knock in of Notch1 
intracellular domain (NICD1) in Atp4b+ parietal cells induces 
dedifferentiation into multipotential progenitors that populate 
the gastric epithelium. Sustained Notch activation within parietal 
cells eventually induces adenomas characterized by focal Wnt/β-
catenin signaling activation133. In addition, loss of AT-rich inter-
action domain 1A (Arid1a), a key subunit of the chromatin 
remodeling BAF complex in Notch-signaling-activated parietal 
cells, further accelerates GC progression in a dose-dependent 
manner134. Mechanistically, homozygous depletion of Arid1a 
leads to a competitive disadvantage through activation of the p53 
pathway and thus promotes gastric tumorigenesis134.
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Multiple studies have shown that the Cdh1 gene, encoding 
E-cadherin, displays hypermutation in diffuse-type GC10,135. 
Deletion of Cdh1 alone in Atp4b+ parietal cells leads to 
mucosal hyperplasia and spasmolytic polypeptide-expressing 
metaplasia136. Synergistic depletion of Cdh1 and Trp53 in pari-
etal cells results in the development of invasive diffuse-type 
GC, thus leading to a high frequency of lymphatic metasta-
ses and tumorigenic activity in immunodeficient mice137. 
In addition to specific deficiency in Cdh1 and Trp53, knock 
in of oncogenic KrasG12D in parietal cells accelerates intesti-
nal and diffuse-type gastric tumorigenesis, and lymphatic 
and hematogenous metastasis in the lymph nodes, liver, and 
lungs138. In this regard, KRAS activation promotes epithelial-
to-mesenchymal transition and the generation of cancer stem 
cells, and consequently metastasis to the lungs139.

Mutations in neuroendocrine cells  Neuroendocrine cells 
in Neurogenin 3-expressing progenitor cells in the gastric 
epithelium play an essential role in maintaining gastroin-
testinal homeostasis and have been proposed as a potential 
cellular origin of gastric neuroendocrine neoplasms140-142. 
Neuroendocrine neoplasms are characterized by the expres-
sion of neuroendocrine markers and are divided into sub-
classes of well-differentiated neuroendocrine tumors, aggres-
sive poorly differentiated neuroendocrine carcinoma, and 
mixed neuroendocrine/non-neuroendocrine neoplasia143. A 
missense mutation (p.R703C) in the human ATP4a gene has 
been identified in aggressive familial gastric neuroendocrine 
tumors. Mice with knock in of human ATP4aR703C develop 
severe metaplasia and dysplasia in the stomach144. Recently, 
by characterizing the genomic landscapes and transcrip-
tional subtyping of human gastric neuroendocrine carcinoma 
(G-NEC), Griger et  al.145 have identified MYC as a critical 
driver of G-NEC. The Cγ1-cre allele was used to drive overex-
pression of MYC in the gastric neuroendocrine compartment. 
MYC-driven mouse G-NECs develop aggressive malignancies 
and distal metastatic foci in the lungs and liver145. The G-NEC 
cell line and organoid resources derived from this GC model 
were generated to perform genome-scale CRISPR and phar-
macologic screens.

Gastrointestinal stromal tumors (GISTs)
GISTs are among the most common human sarcomas in 
human gastrointestinal tracts. GIST originates from the inter-
stitial cells of Cajal (ICC) which depends on high expression of 
KIT for lineage commitment. GIST is characterized primarily 
by activating mutations in KIT or PDGFRA receptor tyrosine 

kinase146,147. Multiple mouse models of GIST have been estab-
lished through knock in of KIT mutations. For example, knock 
in of KitV558∆ or KitK641E results in the development of human 
GIST-like tumors marked by ICC hyperplasia within the 
myenteric plexus of the GI tract148,149. Imatinib (Gleevec), a 
multitargeted tyrosine kinase inhibitor targeting KIT/PDGFR, 
is the standard first-line therapy for advanced GIST. However, 
patients with GIST frequently develop imatinib resistance 
resulting from second-site mutations of KIT. Further knock in 
of KitT669I or KitK653A in KitV558∆ mice promotes GIST develop-
ment and induces resistance to imatinib150,151.

The ETS family member ETV1 is another lineage survival 
factor of ICC. Activating mutation of KIT stabilizes the ETV1 
protein through constitutive activation of the KIT-MAPK sig-
naling pathway, and augments ETV1 transcriptional output, 
thus promoting GIST152. In the KitV558∆ mouse model, ETV1 
ablation inhibits GIST initiation and progression153. Moreover, 
the Forkhead family member FOXF1 directly controls the 
transcription of KIT and ETV1, and is required for tumor 
growth and maintenance via regulating the GIST lineage-spe-
cific transcriptome154. Combining knock in of BrafV600E with 
Trp53 deletion in ETV1+ ICC or smooth muscle cells drives 
ICC hyperplasia and multifocal GIST-like tumor formation in 
the mouse gastrointestinal tract155,156.

Conclusions and perspectives

Although gastric anatomy differs between mice and humans, 
many mouse models have been established to study GC 
pathology and related immune responses. In combination 
with gastric disorders, such as H. pylori infection, sophisti-
cated GC mouse models—including cell line-derived graft 
tumors, treatment with chemical carcinogens, and genetic 
engineering—have laid an important foundation for explor-
ing GC pathogenesis and antitumor immunity (Figure 1). 
Mutation of oncogenes and tumor suppressor genes in gastric 
epithelial and interstitial cells induces different types of GC, 
thus contributing to the high heterogeneity in GC (Table 1). 
Therefore, illustrating the pathogenesis and molecular features 
of GC induced by specific genetic mutations in specific types 
of gastric cells will not only uncover cell signaling networks 
crucial for GC development, but also promote accurate diag-
nosis and efficient treatment of GC.

Mouse GC cell lines provide powerful tools to explore the 
molecular mechanisms regulating immune responses. The 
most widely used mouse GC cell line is MFC, derived from 
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squamous carcinoma in the forestomach from mice on a 615 
background. However, mice with conditional knockout of cer-
tain immune system genes (e.g., Cd4cre in T cells and Cd19cre 
in B cells) are usually bred on a C57BL/6 background, which 
is not suitable for MFC cell tumorigenicity. In this regard, the 
development of mouse gastric adenocarcinoma cell lines, par-
ticularly those with a C57BL/6 background, has become an 
urgent need for tumor immunity research in GC. In addition, 
graft tumor models usually induce an unnaturally hyperin-
flammatory state after tumor cell transplantation157. Without 
high spatial and temporal specificity, chemical carcinogens 
such as MNU induce a high mutational burden and immu-
nogenicity, but also dampen the immune system, including T 
cells. In contrast, GEMMs of GC provide multiple advantages 
for studying tumor cell initiation, progression, and antitumor 
immunity (Figure 2). The advantages of GEMMs include the 
following: (1) Modeling gastric tumorigenesis through genetic 
manipulation within distinct cell types aids in understanding 
the high heterogeneity arising from different cell origins and 
the genotype-phenotype relationships during human GC pro-
gression. (2) In combination with the lineage tracing strategy, 
the gastric local spontaneity of GEMM helps reveal the clonal 
evolution of tumor cells within a complete immune system. (3) 
GEMMs of GC can replicate the effects of the gastric immune 
microenvironment and the crosstalk between the stomach and 
other organs, such as the brain and liver, in GC initiation and 
metastasis. However, the extent to which currently available 
genetically engineered GC mouse models reflect the patholog-
ical nature of human GC is questionable. Systemic comparative 
studies defining the similarity between human and mouse GC 
subtypes at single cell-resolution are lacking. Moreover, use of 
GEMMs is usually time- and resource-consuming, because 
of the need to intercross multiple germline strains. Recently, 
Leibold et al.158 have developed somatic mouse models of GC 
by introducing various oncogenic lesions into the murine gas-
tric epithelium through an electroporation-based approach. 
This strategy accelerates the development of GC mouse mod-
els, although the cellular origin of GC is in suspense and the 
injury is unavoidable during surgery158.

In addition, patient-derived xenografts (PDXs) and human 
gastric cell line-derived xenografts in immunocompromised 
mice are crucial tools for GC research159,160. Originating from 
human gastric tumor tissue, PDXs retain the genetic and phe-
notypic characteristics of tumors in the presence of stroma 
and immune cells, thus favorably modeling the natural tumor 
microenvironment. These models reflect the heterogeneity G
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in patients’ cancers as well as the biological characteristics 
and mutational landscape of cancer cells161,162. Additionally, 
humanized mouse models are an important GC research tool 
providing a humanized immune microenvironment for PDX 
and gastric cell line-derived xenograft growth, which may 
serve as a platform for the evaluation of drugs modulating the 
anti-tumor immune response159.

Given the heterogeneity in GC, no single GC model can 
answer all GC-associated scientific questions. Taking advan-
tage of GEMM in GC research, further endeavors may focus 
on clarifying the cellular origins and clonal evolution of tumor 
cells during GC initiation and metastasis, through intercross-
ing with lineage tracing germline strains; the molecular and 
cellular mechanisms driving GC invasion, metastasis and 
metastatic organ tropism, by using cell lines and organoid 
resources derived from GEMMs; the heterogeneity in the 
immune microenvironment of primary GC located in the 
distinct anatomy of the stomach; the roles of stomach-brain 
and stomach-liver organ communication in regulating GC 
progression; the mechanisms mediating T cell exhaustion, 
formation of tertiary lymphoid structures, and resistance to 
immunotherapy; and the effects and mechanisms of emotions, 
biological rhythm, nerves, and microorganism infections in 
regulating GC tumorigenesis, immune evasion, and responses 
to targeted treatments and immunotherapy.
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