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Pianno: a probabilistic framework
automating semantic annotation for spatial
transcriptomics

Yuqiu Zhou1, Wei He1, Weizhen Hou1 & Ying Zhu 1

Spatial transcriptomics has revolutionized the study of gene expressionwithin
tissues, while preserving spatial context. However, annotating spatial spots’
biological identity remains a challenge. To tackle this, we introduce Pianno, a
Bayesian framework automating structural semantics annotation based on
marker genes. Comprehensive evaluations underscore Pianno’s remarkable
prowess in precisely annotating awide array of spatial semantics, ranging from
diverse anatomical structures to intricate tumormicroenvironments, aswell as
in estimating cell typedistributions, across data generated fromvarious spatial
transcriptomics platforms. Furthermore, Pianno, in conjunction with cluster-
ing approaches, uncovers a region- and species-specific excitatory neuron
subtype in the deep layer 3 of the human neocortex, shedding light on cellular
evolution in the human neocortex. Overall, Pianno equips researchers with a
robust and efficient tool for annotating diverse biological structures, offering
new perspectives on spatial transcriptomics data.

Recent advancements in spatial transcriptomics techniques such as
10× Visium1, Slide-seq2, and Stereo-seq3, have revolutionized the study
of gene expression patterns within tissues while preserving their spa-
tial information. However, merely obtaining gene expression profiles
at specific physical coordinates within a tissue is insufficient to fully
understand the complexity of biological systems. To gain deeper
insights, it is imperative to discern the biological identity of each
spatial spot within the tissue, a process referred to as pattern
annotation4. These patterns can represent brain regions, tumor or
normal tissue, and cell types. This concept mirrors the idea of
“semantic segmentation” in computer vision, where pixels are cate-
gorized into patterns to elucidate visual content5,6. In light of this
analogy, we introduce the concept of spatial transcriptomics semantic
annotation, which assigns spatial spots within tissue to patterns of
predefined structures or cell types. By implementing this concept, our
primary objective is to enhance the interpretation of intricate biolo-
gical systems by incorporating information frommultiple dimensions.

For biological interpretation of spatial transcriptomics,
many machine learning-based approaches have been developed to
identify clusters of spatial units (spots) and interpret their biological

identities using marker genes7–11. However, despite incorporating
spatial information, these approaches typically yield clusters that
primarily consist of groups of transcriptomically similar spots,
thereby lacking the ability to establish a clear connection between
these clusters and the known structures. Taking the human neo-
cortex as an example, which is known to consist of gray matter
comprising six layers and white matter, representing the anatomical
level patterns12,13. On the other hand, it comprises different types of
neurons and glia, representing the cell-type level patterns14,15. Data-
driven clustering methods may not always be able to identify all
neocortical layers or cell types. Instead, they may identify clusters
representing different levels of patterns, i.e., some clusters based on
layers and some others based on cell types. In some cases, these
methodsmay even group spatial spots together due to the combined
effects of layers and cell types. While this feature may assist in
the identification of novel structures, additional procedures are
necessary to supplement their biological interpretation. Manual
annotation is often employed as a supplementary approach to label
known anatomical structures and aid in the interpretation of unsu-
pervised clusters16. However, manual annotation heavily relies on the
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researchers’ expertise, introducing subjectivity and posing chal-
lenges when attempting to scale up in large-scale analyses.

At the cell-type level, commonly used tools to explore the spatial
distribution of cell types relies heavily on deconvolution approaches
that establish a mapping between single-cell and spatial tran-
scriptomics data17–21. However, these tools are constrained by the
requirement of single-cell RNA-seq data from the same tissue and the
potential interference from batch effects. Recently, marker-gene-
driven approaches started to emerge for cell segmentation of multi-
plexed in situ imaging data22, and for cell-type deconvolution in spatial
transcriptomics23. However, there is still a lack of marker-gene-driven
spatial semantic annotation tools.

To address the limitations in existing approaches, we developed
Pianno (Pattern image annotation), a Bayesian framework that auto-
matically annotates biological identity of spots in spatial tran-
scriptomics using pre-defined marker lists. Pianno has the unique
capability to automatically label patterns, including both anatomical
structures and cell types, with just a fewmarker genes. This framework
is applicable to data generated by various spatial transcriptomics
techniques. In our evaluation, Pianno demonstrated superior perfor-
mance when compared to state-of-the-art spatial clustering methods,
accurately identifying patterns that closely resemble manual labeling.
Additionally, Pianno outperformed over deconvolution methods in
reconstructing the spatial distribution of cell types. By implementing
Pianno, we uncovered brain region- and species-specific spatial
expression patterns of neurofilament genes in layers 3 and 5 of the
neocortex. Further analysis of these gene expression patterns revealed
intriguing insights into regional specification and evolutionary chan-
ges of these neurons.

Results
Workflow of Pianno
Pianno employs a probabilistic framework to perform semantic anno-
tation on spatial transcriptomics based on a set ofmarker genes (Fig. 1).
The input to Pianno includes spatial transcriptomic data, comprising
spatial coordinates, rawgene counts, and an initialmarker gene list with
as few as one knownmarker provided for each pattern. The annotation
process consists of two sequential steps: the initial segmentation step
and the refinement step. In the initial step, each gene’s spatial expres-
sion is transformed into a grayscale image. Then, for each target pat-
tern, a pattern image is created by aggregating the grayscale images of
the marker genes associated with that pattern. The initial marker list is
then updatedby identifying additional candidatemarker genes for each
pattern, considering their distinct expression patterns across the initi-
ally annotated structures. This refined marker list is integrated into the
subsequent refinement step. Within this refinement stage, a Bayesian
classifier is built to estimate the posterior probability of each spatial
spot belonging to different patterns. The annotation is then updated
based on the posterior probabilities. Pianno offers two methods for
updating the annotation. For continuous patterns in semantic annota-
tion, it is recommended to take the probability distribution as a pattern
image and return it to the pattern detector for updated annotation. For
dispersed or sharp-shaped patterns, directly updating the label based
on the probability value is recommended, as it preserves detailed
information. Overall, Pianno not only streamlines the annotation pro-
cess but also employs a heuristic approach to identify additionalmarker
genes using the initial single marker gene, thereby minimizing the
requirement for the number of knownmarkers as input. Further details
can be found in the Methods.

Fig. 1 | Overview of Pianno. a Pianno’s inputs include spatial coordinates, an initial marker gene list with as few as one knownmarker labeling each pattern, and raw gene
counts. DEG differentially expressed gene. b Workflow of pattern detector. c Workflow of Bayesian classifier. MRF Markov random field.
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Superiority of Pianno over clustering-based tools in anatomical
structure annotation
The performance of Pianno was first evaluated using 12 samples from
the human dorsolateral prefrontal cortex (dlPFC)16, and compared to
another marker-based but non-spatial-aware annotation method
CellAssign24. The widely-used unsupervised clustering approach, Lei-
den algorithm25, and five widely-used spatial clustering methods
(SpaGCN8, SEDR9, BayesSpace7, DeepST10, and STAGATE11, Supple-
mentary Fig. S1) were also considered in the evaluation process. In
order to match the known layers in the human neocortex, the number
of clusters was set to seven. Pianno demonstrated the highest agree-
ment with manual annotation conducted by experienced researchers
based on morphological features and markers16 (Fig. 2a), out-
performing all other tested methods in 11 out of 12 samples, as indi-
cated by the Adjusted Rand Index (ARI)26 (Fig. 2b). Our analysis also
highlighted the pivotal role of the Bayesian classifier in refining the
initial annotations generated within the Pianno pipeline by the pattern
detector (Fig. 2b). Notably, even the initial annotations remained
superior to other methods according to ARI (Fig. 2b, e). Furthermore,
Pianno’s superior performance was reaffirmed through comprehen-
sive evaluation using additional classification metrics, including

accuracy (ACC),macro-averaging precision (P),macro-averaging recall
(R),macro-averaging F1-score (F1), andnormalizedmutual information
(NMI) (Fig. 2e, Supplementary Fig. S2, Supplementary Data 1).

Apparently, non-spatial-aware marker-based or clustering meth-
ods have difficulties in recognizing spatial domains (Fig. 2d). While
Pianno consistently exhibited high performance across the diverse
samples, clustering-based tools occasionally encountered challenges
in identifying all known structures accurately. For instance, Bayes-
Space and SEDR failed to identify clusters that resembled layer-like
structures in certain samples (Fig. 2d and Supplementary Fig. S2).
Some other tools identified clusters that did not correspond precisely
to known neocortical layers, causing issues such as missing annota-
tions (Fig. 2d, e.g., SpaGCN, BayesSpace, and DeepST) or one-to-many
mappings (Fig. 2d and Supplementary Fig. S2), ultimately resulting in
matching ambiguities.

As Pianno adopts SAVER for denoising spatial transcriptome data
in the preprocessing step, we compared Pianno’s performance with
other approaches (except CellAssign which only accepts raw counts as
input) (Fig. 2c), bothwith andwithout SAVERpreprocessing applied to
the data. We observed that except for SCANPY, other methods using
denoised inputs do not improve the clustering accuracy, and are even

Fig. 2 | Evaluation of Pianno’s performance in cortical architecture recon-
struction. a Manual annotation of anatomical structures, including cortical layers
(L1-L6) and white matter (WM), within a representative dlPFC section (sample
151673). b Adjusted rand index (ARI) assessing the concordance between labels
predicted by different methods and the manual annotation. The black lines inside
the violin indicate the quartiles. c Comparison of dlPFC samples (n=12) with and
without SAVER preprocessing. d Cortical architecture segmentation by
CellAssign24, SCANPY25, SpaGCN8, SEDR9, BayesSpace7, DeepST10, STAGATE11, and
Pianno. The clusters identifiedby spatial clusteringapproachesweremapped to the
manual annotation using Kuhn-Munkres algorithm59. e Boxplot summarizing

annotation metrics across all 12 samples. The box bounds the interquartile range
(IQR)dividedby themedian,with thewhiskers extending to amaximumof 1.5 × IQR
from the box, and values beyond thewhiskers are considered outliers,markedwith
diamonds. ACC: accuracy; P:macro-averaging precision; R:macro-averaging recall;
F1: macro-averaging F1-score; NMI: normalized mutual information. f Confusion
matrix normalized by column depicting the comparison between Pianno and
manual annotations in all 12 samples (including sample 151669–151672, left) and
8 samples (excluding sample 151669–151672, right). Diagonal values in the matrix
represent theprecisionof each layer. Source data are provided as a SourceDatafile.
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worse than using raw counts (Fig. 2c, e.g., STAGATE, SpaGCN). Pianno
consistently demonstrated superior performance compared to the
other tools overall. In terms of Pianno’s performance at the individual
layer level, we observed that the precision of layer 2 (L2) and layer 4
(L4) was relatively lower compared to other layers (Fig. 2f). Upon
closer inspection, we found that Pianno labeled L2 in four samples
(151669-151672), in which L2 could not be distinguished by manual
annotation. The lower accuracy in labeling L4 can be attributed to its
continuity with L3 (Supplementary Fig. S3). These observations will be
extensively explored in the final section, wherein Pianno is coupled
with an unsupervised approach and multimodal data to delve deeper
into the underlying biological intricacies.

Together, the benchmarking results demonstrated Pianno’s
superior capability in accurately identifying and establishing corre-
spondence with anatomical structures, surpassing the performance of
the present spatial and non-spatial-aware methods.

Accurate estimation of cell-type spatial distribution by Pianno
The ability of Pianno to estimate cell-type spatial distribution was
then assessed using a Stereo-seq dataset of an adult mouse hemi-
brain coronal section3, and the results were compared with the cell

type distribution inferred through distinct strategies: cell segmen-
tation followed by unsupervised clustering, and three widely-used
tools for spatial deconvolution based on spatial and single-cell
transcriptomics integration18 (Fig. 3a). Given the well-established
knowledge of the cell type composition in the mouse primary visual
cortex (VISp) from previous studies and the cumulated single-cell
RNA-seq data from this region27–30, we first employed Pianno to
annotate the anatomical structure of the hemibrain and subse-
quently focused on the VISp region as our region of interest (ROI)
(Fig. 3a). To define cell-type-specificmarkers for Pianno, we utilized a
well-annotatedmouse VISp single-cell dataset30 (Fig. 3b). This dataset
was also adopted as a reference for the deconvolution methods.
Our specific investigation centered around the spatial distribution
of excitatory neurons, which are known to display laminar
distribution31,32 (Fig. 3a, b).

We found that Pianno’s predictionof the distribution of excitatory
neuron subtypes displayed similar pattern as Tangram17 and RCTD33

(Supplementary Fig. S3), exhibited a high level of consistency with
their known locations across the various layers (Fig. 3c). In contrast,
the spatial distribution obtained from unsupervised clustering of cell
bins in the original paper presented clusters containing neurons from

Fig. 3 | Benchmarking Pianno’s performance in cell type annotation within the
mouse cortex. a Visualization of the Stereo-seq dataset from an adult mouse
coronal hemibrain3. Left: cell bin followed by unsupervised clustering revealed
distinct cell type clusters, including astrocytes (Astro); excitatory neurons (EX) and
others. Right: Pianno provides a detailed structural annotation of cortical layer (L1-
L6), cortical amygdala area (CAA), midbrain (Mb), thalamus (Th), substantia nigra/
ventral tegmental area (SN/VTA), hippocampal region (Hip), fiber tract (FT), and
lateral-ventral cortex (Lat-ven). The black box highlights the VISp selected as the
ROI. bUMAP visualization of single-cell RNA-seq data from themouse VISp colored

by cell type30. Labeled cell types include astrocytes (Astro), as well as intrate-
lencephalic (IT), pyramidal tract (PT) and corticothalamic (CT) neurons. c Spatial
distribution of mouse VISp cell types annotated by Pianno usingmarkers identified
from the single-cell RNA-seq data in panel b. d Bar plot summarizing the frequency
distribution of excitatory neurons on each layer annotated by unsupervised clus-
tering (striped bar) and Pianno (solid bar), respectively. The Jensen-Shannon
divergence (JSD) quantifies the dissimilarity between the two distributions, with
values ranging from 0 to 1. Closer to 0 indicates greater similarity. Source data are
provided as a Source Data file.
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both L5/6 and L2-3. These clusters included neurons assigned as EX L5/
6 but displayed a significant enrichment also in upper layers (Fig. 3d).
Ectopic mapping of L5/6 neurons to L2-3 was also observed in the
results obtained fromCell2location18 (Supplementary Fig. S3), the tool
showing top-performance in a previous benchmarking study of spatial
deconvolution methods34. These results suggest that even the most
advanced deconvolution tool available at the time struggled with
precisely assigning these neurons to their correct layers. The mis-
positioning of L5/6 neurons to L2-3 can likely be attributed to the fact
that L2-3 and L5 pyramidal neurons share some similar electro-
physiological properties, morphological features, and connectivity
patterns, leading to an increased transcriptomic similarity between
them35,36.

Overall, our results demonstrated the robustness and accuracy of
Pianno in estimating intricate cell-type distributions in spatial datasets,
particularly in situations where unsupervised approaches encounter
challenges.

Effective annotation of complex structures on diverse spatial
transcriptomics platforms
In addition to the neocortex, we further assessed the performance of
Pianno in annotating variously shaped structures in spatial tran-
scriptomics data from different platforms. Pianno’s performance was
compared with that of STAGATE11, which exhibited the highest per-
formance in the aforementioned benchmarking. Through these eva-
luations, we demonstrated the effectiveness and efficiency of Pianno.

Firstly, we applied Pianno to annotate anatomical structures in a
Stereo-seq dataset of the mouse olfactory bulb (MOB)3 (Fig. 4a). The
dataset contains 10,747 spatial spots, including tissue-covered areas
and the background area. Pianno was able to complete both back-
ground removal aswell as structure annotation at the same timewithin
a couple of minutes (Fig. 4b). The structures identified by Pianno dis-
played good correspondence with known anatomical structures based
on cytoarchitecture andmarker genes (Fig. 4c, Supplementary Fig. S4).
In contrast, STAGATE failed to identify clusters corresponding to all

Fig. 4 | The performance of Pianno in annotating various-shaped structures
across different platforms. a 4’,6-diamidino-2-phenylindole (DAPI) staining of a
mouse olfactory bulb (MOB) analyzed by Stereo-seq3. bMOB structure inferred by
Pianno and STAGATE respectively. The ‘n’ denotes the number of unsupervised
clusters obtained by STAGATE. Annotated structures include subependymal layer/
subventricular zone (SEZ), granule cell layer (GCL), internal plexiform layer (IPL),
mitral cell layer (ML), outer plexiform layer (OPL), glomerular layer (GL), and

olfactory nerve layer (ONL). c Alignment of each MOB structure annotated by
Pianno with DAPI-stained images. d Proportion of spatial domains obtained by
STAGATE in each structure forn = 7 andn = 10, respectively. eAnatomical structure
of the hippocampus obtained from the Allen Mouse Brain Atlas. f Subregions in
hippocampus annotated by Pianno and STAGATE respectively. g Visualization of
the hippocampal subregions annotated by Pianno and the expression patterns of
corresponding markers. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47152-4

Nature Communications |         (2024) 15:2848 5



anatomical structures when setting the cluster number equal to the
number of structures (seven). While it managed to identify most
structures, it was not able to distinguish the granule cell layer (GCL)
from the internal plexiform layer (IPL). Moreover, it had an additional
cluster likely representing blood contamination (Cluster 7–6).
Increasing the cluster number to 10 improved the detection of known
anatomical structures, with GCL identified from IPL. However, it also
included some clusters that were challenging to assign a specific
structural identity, potentially representing blood contamination
(Cluster 10-8) or background noise (Cluster 10–6) (Fig. 4d).

Additionally, we assessed the implementation of Pianno to
annotate subregions, namely field CA1, CA2, CA3, and DG (dentate
gyrus), within the mouse hippocampus using data from a higher
resolution spatial transcriptomics platform Slide-seq V237 (Fig. 4e).
Unsupervised approaches, such as STAGATE, failed to locate the filed
CA2 even when the number of clusters was increased to 18 (Fig. 4f). In
contrast, Pianno successfully identified all subregions, corresponding
to anatomical structures defined in reference brain atlases based on
cytoarchitecture and marker expressions (Fig. 4g).

Overall, these results highlight the advancement of Pianno in
annotating anatomical structures of interest. While unsupervised
clustering approaches identify clusters based on transcriptome simi-
larity, potentially including some clusters that are challenging to

interpret with prior knowledge, Pianno provides a valuable tool for
precisely locating desired anatomical structures.

Accurate semantic annotation of complex microenvironments
While the previous sections focused on tissues with continuous
structures, the tumor microenvironment presents a highly hetero-
geneous landscape, comprising a mixture of immune cells, stromal,
blood vessels, and extracellularmatrix, spread throughout the tissue38.
To assess Pianno’s performance in annotating tissues with such com-
plex and dispersed structures, we applied the tool to analyze the
microenvironments of two human pancreatic ductal adenocarcinomas
(PDAC) samples and two breast cancer (BRCA) samples39. Since the
identification of stroma markers is challenging given the complex
composition of stromal tissue, we refrained from specifying stroma
markers in our analysis. Instead, we designated spots assigned to the
“undefined” category as stromal regions. Pianno accurately inferred
patterns within the PDAC samples that closely aligned with manual
annotations provided by pathologists based on histology and marker
expression (Fig. 5a). Pianno’s alignment with the manual labeling sur-
passed the results obtained from unsupervised clustering methods,
including SCANPY25 and STAGATE.

Invasive ductal carcinoma (IDC) represents the most common
type of invasive breast cancer, while ductal carcinoma in situ (DCIS) is

Fig. 5 | Annotation of tumor microenvironments. a Microarray-based spatial
transcriptomics (ST) of two human pancreatic ductal adenocarcinoma samples39,
PDAC-A (top) and PDAC-B (bottom). From left to right, the panels display pathol-
ogist annotations on hematoxylin and eosin (H& E) images, Pianno’s annotations,
unsupervised clustering by SCANPY, and clusters identified by STAGATE incor-
porating spatial information, respectively. b Annotations of two breast cancer
samples, BRCA-A (top) and BRCA-B (bottom). From left to right, panels display

pathologist annotations on H& E images and Pianno annotations, respectively.
DCIS, ductal carcinoma in situ; IDC, invasive carcinoma; Myoepi., myoepithelial.
c Co-occurrence score between DCIS and the rest of the cell types in BRCA-A (top)
and BRAC-B (bottom). d Co-occurrence score between IDC and the rest of the cell
types in BRCA-A (top) and BRAC-B (bottom). Source data are provided as a Source
Data file.
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considered a non-invasive or pre-invasive form of breast cancer and is
regarded as a precursor to IDC. Understanding the microenvironment
in BRCA samples is crucial in determining cancer progression and,
consequently, guiding treatment decisions. In our analysis, Pianno
identified small areas of IDCs, scattered DCIS regions and a high level
of immune cell infiltration in sample A. Conversely, in sample B, IDC
covered a large area, with only small DCIS regions and minimal
immune cell infiltrations. Notably, Pianno’s automatic labeling closely
matched the manual annotations made by pathologists (Fig. 5b). Fur-
ther analysis of cell-type co-occurrence in bothBRCA samples revealed
a positive correlation between myoepithelial cells and DCIS, but a
negative correlation between myoepithelial cells and IDC (Fig. 5c, d).
These findings align with previous research that links decreased
myoepithelial cells to tumor invasion, indicating potential implications
for BRCA diagnosis40–42.

Overall, our results showcase Pianno’s potential in annotating
irregular and complex structures, particularly within heterogeneous

tumor microenvironments. These accurate and informative annota-
tions are expected to provide valuable assistance to pathologists in
understanding the intricate nature of tumor biology and may hold
promise in guiding personalized treatment strategies.

Revealing new biological insights through multimodal data
integration and tool synergy
The aforementioned results demonstrated the complementary
strengths and purposes of Pianno and unsupervised clustering
approaches. In this section, we showcase how the integration of these
twomethods facilitates the discovery of new insights into regional and
species divergence in cellular diversification within the neocortex.

In the previous section, we noticed a lower precision in the
annotation of L2 and L4 by Pianno. This observation prompted us to
conduct further exploration. We, therefore, integrated Pianno’s
annotationwith spatial clustersproducedby SCANPY in dlPFC samples
(Fig. 6a). Taking dlPFC 151671 as an illustrative case, where manual

Fig. 6 | Pianno’s semantic annotation uncovering novel regional and species-
specific cellular organization. a Spatial distribution of unsupervised clusters by
SCANPY within each structure on the H&E stained image of dlPFC sample 151671.
The red arrow pinpoints cluster A-11 in deep L3. b Top 5 gene ontology (GO)
biological process terms enriched in cluster A-11. The raw P-values are estimated by
DAVID website using one-sided Fisher’s exact test without adjustment.
c Visualization of the raw counts ofNEFH in dlPFC sample 151671. d Visualization of
the raw counts of Nefh in the Stereo-seq dataset of the mouse cortex3 (as shown in
Fig. 3a). e Visualization of single-nucleus RNA-seq data from multiple human cor-
tical areas by tSNE (top)32. The expression of NEFH across L2-3 IT neurons is

highlighted and displayed (bottom). The subcluster with high NEFH expression is
indicated by the red arrow. f Raw counts of NEFH (top) and the spatial distribution
of unsupervised clusters identified by SCANPY (bottom) in the human primary
motor cortex (M1C), and anterior cingulate cortex (ACC). g Dot plot depicting the
expression of the top 5 marker genes of the NEFH-enriched L3 IT subcluster across
M1C spatial clusters. The spatial cluster B-4 is highlighted by the red arrow.
h Pearsoncorrelation coefficients (R) between theNEFH expression pattern and the
probability distribution of each L5 excitatory neuron subtypes in ACC. ET extra-
telencephalic, NP near-projecting neurons. Source data are provided as a Source
Data file.
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annotation failed to distinguish L2, we assigned clusters to specific
layers based on their predominant layer locations (Supplementary
Fig. S5a). This analysis revealed the presence of clusters distinctly
positioned in L2 (Clusters A-0, A-1, A-2, A-3). Importantly, Pianno’s
allocation of L2 labels aligned with the distinct cytoarchitecture of L2,
characterized by its composition of smaller and sparser neurons
(Supplementary Fig. S5b). Moreover, the high expression of L2 mar-
kers further substantiates the accuracy of Pianno’s L2 annotations
(Supplementary Fig. S5c, d).

However, when considering L4, we did not identify clusters
exclusively linked to L4 in the dlPFC spatial transcriptome. Clusters
with a substantial presence in L4 also exhibited considerable presence
in L3 (Clusters A-11 andA-12), or L5 and L6 (Clusters A-15 andA-16). This
observation may provide a plausible explanation for the reduced
precision in L4 annotation by Pianno.

Of particular interest, we noted the presence of a cluster (Cluster
A-11) in deep L3 (Fig. 6a) enriched with genes associated with func-
tional terms such as intermediate filament bundles and neurofilaments
(Supplementary Data 2, 3 and Fig. 6b). Within these terms, a notable
member is NEFH, which encodes the neurofilament heavy chain,
known for its role in the maintenance of neuronal caliber43,44. NEFH
exhibited significant enrichment at the boundary of deep L3 and L4,
and a secondary enrichment in L5 (Fig. 6c, Supplementary Fig. S5e).
Intriguingly, this pattern was not conserved in the mouse cortex,
where the expression of Nefh spread across L2-6, with a primary
enrichment in L5 (Fig. 6d). These findings aligned with previous
immunohistochemistry observations, showing that NEFH labels a
group of human (or primate)-specific large pyramidal neurons in deep
L3 of the secondary visual cortex, whereas, in the mouse neocortex,
Nefh is predominantly expressed in L512,14.

To further explore whether this cross-species differential
expression pattern is regional-specific, we generated and analyzed
spatial transcriptome data from the human primary motor cortex
(M1C) and the anterior cingulate cortex (ACC). Our analysis uncovered
a cluster in M1C (Cluster B-4), analogous to cluster A-11 in dlPFC,
characterized by a high expression of neurofilament genes and resid-
ing in deep L3 (Supplementary Data 4). In contrast, no analogous
cluster was identified in L3 of ACC. Furthermore, while the expression
pattern of NEFH across layers in M1C closely resembled that of dlPFC,
in ACC, NEFH exhibited higher expression only in L5, without a cor-
responding presence in deep L3. This regional pattern was further
confirmed through in situ hybridization (Supplementary Fig. S5e).

To delve deeper into the identity of neurons expressing NEFH,
we examined the expression of NEFH across neuronal subtypes in
single-nucleus RNA-seq (snRNA-seq) data obtained from multiple
neocortical regions32. We identified a distinct cluster of L2-3 intra-
telencephalic (IT) neurons that exhibited high NEFH expression. The
concurrent high expression of other neurofilament genes that were
upregulated in the deep L3 spatial cluster of dlPFC and M1C sug-
gested the existence of a subpopulation of long-projection L3 IT
neurons exclusive to specific areas in the human neocortex, but not
in mice. In contrast, we did not observe a distinct cluster of L5 neu-
rons showing NEFH enrichment. Therefore, we calculated the corre-
lation between NEFH expression and the laminar distribution of cell
types inferred by Pianno. This analysis revealed the highest correla-
tion of NEFH expression with the distribution of L5 extra-
telencephalic (ET) neurons in M1C and ACC (Supplementary Fig. S5f,
Fig. 6f), suggesting thatNEFH tends to exhibit higher expression in L5
ET neurons, which have large size and long projections. This
enrichment was not observed in snRNA-seq data is likely due to the
low quantity of L5 ET in the human neocortex45.

In summary, these results unveil the species-specific and region-
specific presence of a subtype of neurons in deep L3 of the human
neocortex, likely linked to the expansion of upper layers in the pri-
mate neocortex, particularly in regions associated with human- or

primate-specific functions14. These include the dlPFC, known for its
involvement in high cognitive functions, and M1C, which likely
evolved to accommodate fine motor control in humans46,47. The
enrichment of NEFH and other neurofilament genes implies the
expansion of long-range projection neurons in L3, potentially
increasing the connections between neocortical areas and other
telencephalic brain regions, thereby facilitating more complex
information integration and processing.

These findings provide valuable insights into the evolution of
cellular diversification and regional differences within the human
neocortex, emphasizing the power of combining Pianno with unsu-
pervised approaches and multimodal data analysis to reveal novel
biological phenomena.

Discussion
In this study, we demonstrated the remarkable performance of
Pianno in semantic segmentation and annotation of diverse-shaped
anatomical structures, as well as pathological foci and cell types,
across data generated from various spatial technology platforms.
Our study also showcased Pianno as a valuable tool for replacing
labor-intensive manual annotation procedures and facilitating the
revelation of novel biological insights, when integrated with unsu-
pervised clustering methods.

The augmentation in the performance of Pianno can be attrib-
uted to the innovative treatment of marker genes as a pseudo-image
within the pattern detector module, furnishing a robust prior dis-
tribution for the Bayesian classifier. This classifier seamlessly inte-
grates the Markov random field (MRF) with the spatial Poisson point
process (sPPP), leveraging sPPP’s capability to model count data
from RNA-seq while accounting for the covariance between spatially
neighboring spots. In the subsequent MRF design, Pianno carefully
considers both transcriptomic and spatial similarities, coupled with
the global consistency between spots. This meticulous approach
ensures the accurate refinement of labels, marking a key factor in
Pianno’s improved performance.

While Pianno has demonstrated remarkable power in spatial
semantic annotation, it is imperative to acknowledge that its efficacy
is inherently linked to the availability of well-defined initial markers
and the existing molecular knowledge of the tissue, which may limit
the algorithm’s ability to uncover unknown biological patterns.
Therefore, future endeavors should prioritize investigations that
incorporate supplementary dimensions of information, such as cell
size and density obtained by integrating hematoxylin and eosin
(H&E) or 4’,6-diamidino-2-phenylindole (DAPI) images. These aug-
mentations could conceivably curtail Pianno’s reliance on markers,
thereby enhancing its overall robustness. Moreover, we envision a
compelling avenue for advancing Pianno by integrating it with mar-
ker identification pipelines. This fusion presents an opportunity for
Pianno to automatically refine its selectionofmarkers. Consequently,
it holds the potential to augment Pianno’s ability to withstand noise
in marker selection while reducing its dependency on prior knowl-
edge. These advancements may collectively enhance the overall
robustness and applicability of Pianno.

In conclusion, Pianno represents a powerful and efficient tool for
spatial data analysis, and its potential can be further amplified by
exploring marker refinement and the integration of complementary
staining information. By continually advancing and refining the cap-
abilities of Pianno, we can pave the way for more comprehensive and
precise spatial analysis.

Methods
Ethical approval
Ethical approval for this study was obtained from the School of Basic
Medical Sciences, Fudan University (Approval No. 2020-C006).
Informed consent was obtained from the legal guardian of the donor.
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Data preparation
For spatial transcriptomics (ST) applications involving counts-based
data from diverse platforms2,3, Pianno leverages the gene-by-spot raw
countsmatrix in conjunctionwith two-dimensional spatial coordinates
of each spot to initialize a Pianno object. This object is constructed
atop the Anndata framework25. Subsequent to initialization, a two-fold
data curation process unfolds. First, employing the SCANPY toolkit25,
low-quality genes detected in less than 1% of spots, as well as gene-
sparse spots devoid of meaningful gene counts, are sieved out. Given
the inherent sparsity of ST data, the application of SAVER48 facilitates
the derivation of a denoised gene expression matrix, which is subse-
quently subject to min-max normalization, thereby rescaling the
denoised expression values. We suggest utilizing the spatial_autocorr
function in Squidpy during preprocessing to retain the top 35% of
genes with high spatial autocorrelation based on Moran’s I Score.

The quality control is integrated in the CreatePiannoObject func-
tion of Pianno. Denoising can be achieved by calling the R package
SAVER through Pianno. A Pianno object housing three pivotal data
constituents:
1. S= fsg: The set of spatial spot (location) captured in the region of

interest (ROI). jSj=S,8s 2 S can be uniquely specified by its Car-
tesian coordinates (xs, ys).

2. C 2 NG×S: The gene-by-spot raw counts matrix, wherein the raw
expression vector of spot s is denoted as cs 2 NG.

3. D 2 RG×S: The denoised gene expression matrix, with each ele-
ment Dgs∈ [0, 1] and the denoised expression vector of spot s is
denoted as ds 2 RG.

Pattern detector
Suppose there exists a total of R distinct spatial patterns to be dis-
cerned, with each pattern distinctly characterized by a collection of
markers constituting a “marker list”. Within this context, Pianno
undertakes the transformation of the denoised marker gene expres-
sions into pseudo-images, facilitating the initial label assignment for
each spatial spot through the utilization of digital image processing
techniques49.

Create binary mask. An image is essentially a matrix. In addressing
varying tissue coverage areas and spatial spots misalignment, a binary
mask is created to assist in generating pseudo-images by establishing a
mapping between spatial spots S � R2 and image pixels IðSÞ � Z2 via
a coordinate mapping function f: (xs, ys)↦ (i, j) (see Supplementary
Note). 8ði,jÞ 2 IðSÞ specified a pixel in row i, column j on the image and
correspond to at least one spatial spot located in the ROI.

The binary mask M is initialized as an all-zero matrix with I rows
and J columns, where I and J denote the maximum indexes of i and j in
IðSÞ respectively. Then let Mij = 1, if ði,jÞ 2 IðSÞ and 0 otherwise to dif-
ferentiate the ROI and background in themask. Themask orchestrates
the transformation of given spatial gene expression into a I × J digital
image, on which the ROI’s pixel value reflects average gene expression
of its related spots, while the background remains steadfastly at “0”.

Create pattern image. To generate the image representation for the
rth pattern (r∈ {1, 2,…, R}) defined by G markers (G ≥ 1), a series of
steps are performed. The outcome is a grayscale image denoted as P(r),
with dimensions I × J.

Initially, the denoised gene expression values of the Gmarkers are
fused together using the median value. Notably, the background
values remain at 0. Consequently, the ensuing discussion solely per-
tains to the pixel values within the ROI. i.e. 8ði,jÞ 2 IðSÞ,9S* � S,S*≠+,
s.t.

PðrÞ
ij =

1

jS*j
X
8s2S*

Median fdsg: ð1Þ

Subsequently, the scikit-image50 is harnessed for the purpose of
conducting median filtering on P(r). The specific operation is per-
formed using the filter.median function, implemented with a 3 × 3
kernel. Mathematically, the process can be expressed as follows:
8ði,jÞ 2 IðSÞ,

PðrÞ
ij = Median fPðrÞ

ij ,P
ðrÞ
i± 1j ± 1g: ð2Þ

The resulting image P(r) is then utilized as the rth pattern channel,
ultimately yielding amultichannel pattern image denoted as P. Pattern
image P possesses dimensions I × J × R, with individual elements given
by Pijr = P

ðrÞ
ij .

Mask-based feature extraction. The subsequent phase involves the
extraction of features from the pattern image P, aimed at the identi-
fication of each target pattern. Within the context of the rth pattern
channel P(r), a segmentation procedure is enacted, subdividing P(r) into
n (n is set to 3 as default, representing high, medium and low gene
expression levels) distinct regions. This segmentation is achieved
through Multi-Otsu thresholding51. The process yields n − 1 thresholds
denoted as τ1 > τ2 >⋯ > τn−1, effectively partitioning pixel intensities
into n levels.

The region within P(r) characterized by the highest intensity level
corresponds to the most probable location of the rth pattern, thus
designated as the positive image denoted P(r)+. This can be mathema-
tically represented as: 8ði,jÞ 2 IðSÞ

PðrÞ+
ij =

Pijr , Pijr > τ1
0, Pijr ≤ τ1:

(
ð3Þ

The complementary image, termed P(r)−, is defined as follows:

PðrÞ�
ij =

0, Pijr > τ1
Pijr , Pijr ≤ τ1:

(
ð4Þ

Given the potential influence of noise on P(r)+, the emergence of
false positive responses or minor discontinuities is plausible. To
address this, the subsequent steps are undertaken:
1. Identification of Connected Components in P(r)+: Connected

components within P(r)+ are labeled. Subsequently, small compo-
nents with an area less than 2 (user-specified) are filtered out.
Pixels are connected when they are neighbors in an 8-connected
sense and neither has a value of 0.

2. Denoising of P(r)+: The denoise_tv_chambolle function from the
scikit-image library is employed for denoising P(r)+. Notably, this
step involves the calculation of the average pixel intensity p+

k for
each positive component k in P(r)+, along with the average pixel
intensity n− of a negative component drawn from P(r)−. Subse-
quently, K-means clustering with K = 2 is performed on the set
C=n� ∪ fp+

k gk ≥ 1, incorporating the negative component to
enhance the detection of false positive responses. This strategy
ensures the robustness of 2-means clustering, even in scenarios
involving only one positive connected componentwithinP(r)+. The
outcome of the clustering operation classifies connected compo-
nents within P(r)+ into positive and negative categories based on
their respective clustering centers. Consequently, components
belonging to the negative class are removed from P(r)+, serving to
eliminate false positive responses.

3. Binarization and Dilation49: Binarization of P(r)+ generates a bin-
ary mask denoted as M(r)+ for the rth pattern. Subsequently, dila-
tion is applied to expand the positive region and bridge minor
gaps, facilitatedbya user-defineddilation radius (to beoptimized,
default value is 2).

4. Feature Extraction: The rth feature F(r) is extracted from P(r)

by employing M(r)+ as a mask. Mathematically, 8ði,jÞ 2 IðSÞ, the
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process is represented as:

F ðrÞ
ij = Pijr ×M

ðrÞ+
ij : ð5Þ

5. Post-Processing of Features: The extracted feature F(r) under-
goes a sequence of operations, including sharpening, Gaussian
smoothing, and noise reduction49,50. Subsequently, the intensity
of F(r) is rescaled to fall within the range [0, 1].

Collectively, the rth feature channel is established as F(r), thereby
culminating in the creation of a composite feature image F
with dimensions I × J × R, where individual elements are denoted
by Fijr = F

ðrÞ
ij .

Label initialization. The initialization of labels involves the assignment
of initial patterns to spatial spots, facilitated by the representation of a
spatial spot s using anR-dimensional feature vector denoted as fs. Each
component within this vector (rth component) measures the like-
lihood of spot s being associated with the rth pattern.

Given the correspondence between spatial spots and pixelswithin
the feature image F ,8s 2 S, 9!ði,jÞ 2 IðSÞ, s.t.

f s = Fij1, Fij2, � � � , FijR
� �>

: ð6Þ

The initial label ls for each spot s is determined by selecting the
pattern with the highest score on the corresponding feature vector f s.
Mathematically, this process can be expressed as:

ls = argmax
r

ff sg= r*, r* 2 f1,2,:::,R:g ð7Þ

In certain scenarios, the exact number of spatial patterns present
in the tissue may be unknown, or only specific patterns are of interest.
Additionally, instances might arise where information regarding a
pattern’s marker is unavailable. To accommodate such cases, Pianno
offers theflexibility to incorporate anundefinedpattern, characterized
by an uncertainty parameter u∈ [0, 1] (default is 0.5). The corre-
sponding feature F(u) for this undefined pattern is calculated as follows:

F ðuÞ
ij =u� 1

R

XR
r = 1

Fijr : ð8Þ

Bymerging this undefined featurewith the remainingR features, a
I × J × (R + 1) feature image F is constructed, featuring an additional
channel for the undefined pattern. This undefined pattern can be
designated as “Background” and Pianno accommodates the option to
disregard it, considering it as part of the background.

Automated pattern detection and marker selection. The pattern
detection process necessitates the provision of markers correspond-
ing to patterns to be identified, with each image processing step–such
as Multi-Otsu thresholding, dilation, sharpening, Gaussian blurring,
and noise reduction–requiring configuration of relevant parameters.
To enhance user-friendliness, we employ the NNI (Neural Network
Intelligence)52 toolkit for automating hyperparameter optimization.
Users are only required to specify as few as one knownmarker for each
pattern as a priori information, with up to one pattern allowed to have
no initial marker.

Assuming that the set of all parameters to be optimized isH and
the search space isΩ, for the tth trial, the tuner (default is TPE) selects a
parameter set HðtÞ from the search space according to the sampling
strategy. Then pattern detector can label the spatial spots with pat-
terns based on the initial markers andHðtÞ. Then we can compute the
average expression in each type of spots for each initial marker and
perform min-max normalization by category to obtain the specificity

matrix TðHðtÞÞ 2 ½0,1�R×R of the initial marker on the current annota-
tion. The closer TðHðtÞÞ is to the identity matrix IR, the better the cur-
rent annotation matches the known information, and thus the most
suitable parameter set HðtÞ is automatically selected. The objective
function of the optimization is defined as the Euclidean distance
between the specificity matrix TðHðtÞÞ and the identity matrix I:

mindðtÞ = k TðHðtÞÞ � IR k ð9Þ
NNI facilitates the identification of the optimal parameter set

within a reasonable timeframe, achieving the automatic initialization
of annotation. Furthermore, Pianno generates additional candidate
markers based on the initial annotation through the Wilcoxon rank-
sum test in SCANPY. Users can then expand the marker list through
selection from the candidate list. The configuration of all experimental
parameters and the list of initial and updated marker genes in this
paper are detailed in GitHub project of Pianno.

Bayesian classifier
The initial annotation is obtained through pattern detection. However,
many operations such as noise reduction, smoothing, and sharpening
during image processing may destroy the original biological features.
Therefore, a Bayesian classifier is built based on the raw counts to fine-
tune the initial annotation. To annotate spots into patterns, we cal-
culate the posterior probability pðls = rjcs,Θ̂Þ that each spot s is of a
given pattern r, where Θ̂ is the maximum a posterior (MAP) of model
parameters.

High-order MRF prior model. The spot-type prior p(ls = r) is char-
acterized through a high-order Markov random field (MRF) model
based on the initial annotations53. 8s 2 S, the neighborhood
N ðsÞ=N U ðsÞ∪N SðsÞ is divided into two components: the K-nearest
neighbors N U ðsÞ in the UMAP space determined by transcriptomic
similarity, and the spatial neighbors N SðsÞ determined by the spatial
proximity.

To quantify the cost of assigning label r to spot s concerning local
similarity, the unary term Φ(ls = r) is formulated as:

Φðls = rÞ= � ½ω1 lnpðls = rjN U ðsÞÞ+ ð1�ω1Þ lnpðls = rjN SðsÞÞ�, ð10Þ

where ω1∈ [0, 1] is a hyperparameter. Here, pðls = rjN U ðsÞÞ and
pðls = rjN SðsÞÞ represent the frequency of spots labeled r withinN U ðsÞ
and N SðsÞ, respectively. The term Φ(ls = r) takes into account both
transcriptomic similarity and spatial proximity, acknowledging that
spots with similar gene expressions might share the same label even if
they are spatially distant.

To assess the cost of assigning label pairs ðr,r0Þ to spot pairs ðs,s0Þ
from a global perspective, a pairwise termΨðls = r,ls0 = r0Þ is established:

Ψðls = r,ls0 = r0Þ= �Dð f s, f s0 Þ× lnprr 0 , ð11Þ

Here,prr0 signifies the co-occurrence rate of label r and r0, computedby
tallying the frequency of label pairs ðr,r0Þ from neighboring spots s and
s0. If prr 0 is lower in the whole initial annotation, then the cost of
assigning the label of spot swhose neighborhood label is r0 to rwill be
higher. The penalty term Dð f s, f s0 Þ takes the Euclidean distance
between the feature vectors fs and f s0 into account:

Dð f s, f s0 Þ= Ifr = r0 g � ekf s�f s0 k2 + ð1� Ifr = r0 gÞ � ð1 + e�kf s�f s0 k2 Þ, ð12Þ

In this equation, Ifr = r0g is an indicator function that equals 1 when
r = r0 and 0 otherwise. If two neighboring spots look similar on the
feature image (k f s � f s0 k2 ≈0), then assigning different labels to them
will be penalized more heavily (Dð f s, f s0 Þ≈ 2) than assigning the same
label (Dð f s, f s0 Þ≈ 1). If two neighboring spots look different on the
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feature image (k f s � f s0 k2 ≫0), then assigning same labels to them
will be penalized more heavily (Dð f s, f s0 Þ≫ 1) than assigning the dif-
ferent labels (Dð f s , f s0 Þ≈ 1).

Introducing the hyperparameter ω2∈ [0, 1] as the weight of
Ψðls = r,ls0 = r0Þ, the high-order energy function Esr is obtained by
combining the unary and pairwise terms:

Esr = ð1�ω2ÞΦðls = rÞ+ω2

X
8s02N ðsÞ

Ψðls = r,ls0 = r 0Þ: ð13Þ

Notably, in order to make sense of the weighted summation (Eq. (13)),
each component is scaled to the range [0,1] using Min-Max normal-
ization. Therefore, 8s 2 S,Esr 2 ½0,1�. Consequently, the MRF prior
model can be expressed as a Gibbs distribution54:

πsr =
eκ × EsrPR
r = 1 eκ × Esr

: ð14Þ

Here, κ serves as a scale factor (default is 3) to adjust the strength of the
prior. 8s 2 S,πs = ðπs1,πs2, � � � ,πsRÞ. By integrating Equations (10) to
(14), the spot-type prior p(ls = r ∣πs) =πsr can be initialized using
specificω1 andω2 values based on the initial annotations generated by
the pattern detector.

Spatial Poissonpoint processmodel. Existing researchdemonstrates
that the negative binomial distribution can aptlymodel the raw counts
from single-cell sequencing24,48. However, in the context of spatial
transcriptomics, the gene expression Cgs and spatial location (xs, ys) of
each spot s must be jointly considered. Therefore, we adopt a homo-
geneous spatial Poisson point process (sPPP) model for the Cgs ∣ ls = r
distribution55,56:

Cgsjls = r ∼ Poisson ðσs � λgsrÞ: ð15Þ

Here, σs represents the size factor of spot s, calculated using scran57.
The intensity function λgsr of the sPPP denotes the average expression
count of gene g per spot and varies with spatial location (xs, ys).

By establishing a connection between the Poisson distribution
and the negative binomial distribution, where if a random variable
x ~ Poisson(kλ) and λ∼Gammaðα, αμÞ, then x ~ NB(α, kμ), we can assume
that the intensity function λgsr follows a Gamma distribution:

λgsr ∼Gamma αgsr ,
αgsr

μgsr

 !
: ð16Þ

In this equation,αgsr is the shapeparameter of theGammadistribution,
and μgsr is the mean of the intensity function λgsr. This leads to:

Cgsjls = r ∼ NB ðαgsr ,σs ×μgsrÞ: ð17Þ

Consequently, the probability distribution of Cgs given ls = r is:

pðCgsjls = rÞ= NB ðCgs;αgsr ,σs ×μgsrÞ

=
ΓðCgs +αgsrÞ

ΓðαgsrÞΓðCgs + 1Þ
αgsr

αgsr +σs ×μgsr

 !αgsr σs ×μgsr

αgsr + σs ×μgsr

 !Cgs

:

ð18Þ

Here, αgsr and σs × μgsr correspond to the inverse dispersion and the
mean of the negative binomial distribution, respectively. The inverse
dispersion αgsr can be calculated based on σs × μgsr

24,58:

αgsr =
XB
i= 1

ai × expf�b× ðσs ×μgsr � xiÞ2g, ð19Þ

where ai represents the parameters of the radial basis functions to be
estimated. B signifies the total number of radial basis function centers,
and xi is the center i. These centers are evenly spaced from 0 to
maxfCgsg. The constant b is set as twice the square difference between
the first and second centers.

To parameterize the negative binomial distribution, Pianno
defines the mean μgsr of the intensity function in sPPP as follows:

μgsr =βgs +βgrρgrδgr : ð20Þ

In this equation, βgs signifies the baseline expression of gene g in spot s,
estimated to capture the influence of spatial location on gene expres-
sion. βgr represents themean of the raw counts of gene gwithin an area
encompassing all spots belonging to pattern r. βgr corresponds to the
average raw counts of gene g on the skeleton of pattern r, which char-
acterizes the impact of spot biological identity on gene expression. The
skeleton is derived using the morphology. skeletonize function in scikit-
image, representing the central locations of a pattern49,49,50. Thus, spots
located on the skeleton hold a higher confidence in representing a
pattern compared to other spots. All input genes are derived from the
marker list. An indicator variable ρgr indicates the binary relationship
between gene g and pattern r. When gene g is a marker of pattern r,ρgr
equals 1; otherwise, it’s 0. The spot-pattern-specific overexpression
term δgr > 1 is introduced. It indicates that the expression of gene g in
spots of pattern r is above average when gene g is a marker of pattern r,
while it fluctuates primarily with spatial location otherwise.

Inference
To optimize the introduced hidden variable l = {ls}, Pianno employs the
Expectation-Maximization (EM) algorithm to refine its parameter
space Θ = {ω, β, δ, a,π}, where ω = {ω1,ω2}, β = {βgs}, δ = {δgr},a = {ai},
and π = {πs}. The spot-pattern prediction for each spot is facilitated by
the conditional posterior pðls = rjcs ,Θ̂Þ, under the assumption that the
raw counts of different genes on each spot are independent and
identically distributed (i.i.d.). This posterior probability is denoted as
psr:

pðls = rjcs,Θ̂Þ= pðls = rjπsÞ
Q

gpðCgsjls = rÞP
r0 pðls = r 0jπsÞ

Q
gpðCgsjls = r0Þ

≜psr ð21Þ

Parameter initialization. Pianno initializes its parameters as follows:
1. Both initial ω1∈ [0, 1] and ω2∈ [0, 1] are user-specified (default

values are 0.5).
2. Dirichlet(0.01, 0.01,⋯ , 0.01) is used as a hyper-prior on πs

24, and
πs is initialized using the MRF prior model (Eq. (10) - Eq. (14)).

3. βgs is randomly initialized using a draw from N ð0,1Þ.
4. ai is initialized to 1.

E step. The log-likelihood of the complete-data is calculated as:

LðΘÞ=
XG
g = 1

log½pðCgsjls = r,ΘÞpðls = rjπsÞpðπsÞ�: ð22Þ

Let Θ(t) be the parameter estimate at iteration t. Let pðtÞ
sr represent the

conditional posterior p(ls = r∣cs,Θ(t)). TheQ function is then defined as:

QðΘ,ΘðtÞÞ=
XS
s = 1

XR
r = 1

pðtÞ
sr

XG
g = 1

log½pðCgsjls = r,ΘÞpðls = rjπsÞpðπsÞ�: ð23Þ

M step. The goal is to maximize the Q function to determine the
updated parameter estimate Θ(t+1) at the (t + 1)-th iteration:

Θðt + 1Þ = argmax
Θ

QðΘ,ΘðtÞÞ: ð24Þ
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The parameters of the Q function are optimized using the Adam
optimizer in the M-step, with a default learning rate of 0.1 and a
maximum of 105 iterations. The iteration stops when kQðΘðt + 1Þ,ΘðtÞÞ�
QðΘðtÞ,Θðt�1ÞÞk<104, and the final parameter estimate is denoted
as Θ̂=Θðt + 1Þ.

Label renewal. There are two methods for renewing the labels. The
first method is to assign the label of a spot s as the pattern with the
highest posterior probability (method = “argmax”), i.e.,

ls = argmax
r

pðls = rjcs,Θ̂Þ: ð25Þ

The second method, referred to as “imgbase”, treats the obtained
posterior probability distribution as an optimized pattern image and
uses it to update the annotation from the pattern detector. These two
methods are suitable for different scenarios. The “argmax” method is
recommended for cell type annotation since it can capture subtle
features, while the “imgbase” method is better suited for structural
annotation as it maintains the continuity of the structure.

Sensitivity analysis
We designed three control variable experiments using the dlPFC
dataset to investigate the impacts of (a) the number of marker genes;
(b) the number of thresholds of theMulti-Otsu thresholding algorithm;
and (c) ω1 and ω2 of the High-Order MRF Prior Model on Pianno’s
performance.

(a) We first constructed a total marker list of 10 markers per
pattern that appear in the top 10 candidate marker genes for at least
one sample. For each trial, we fixed the other parameters, while ran-
domly selected N (N increments from 1 to 10) genes from the total
marker list. Subsequently, we evaluated Pianno’s performance by
varying the number of marker genes per pattern randomly selected
from the total marker list. Notably, we observed an improvement in
Pianno’s accuracy with an increasing number of markers, surpassing a
commendable accuracy (ACC>0.6) when the number of markers per
pattern exceeded 50% (Supplementary Fig. S6a). This trend is likely
attributed to the inclusion of noise marker genes in each sample,
where certain genes may rank among the top marker genes in one
sample but fail to exhibit pattern-specific expression in other samples
due to technical variations like dropouts.

To further explore the impact of noise inclusion in the marker list
on Pianno’s accuracy, we calculated the percentage of noise
genes–those not included in the top 10 marker list of a given sample
when using the totalmarker list (Supplementary Fig. S6b). The average
percentageofnoise geneswas found tobe47%. Thuswhen thenumber
of markers is more than 50%, the mean value of ACC can be stable
above 0.6. This suggests that the inclusion of randomly selected noise
genes may be compensated for by the increased number of genes,
presenting a higher chance to include high-quality markers. In con-
trast, selecting a small number (1-3) of personalized markers for each
sample resulted in an enhanced accuracy of Pianno (Supplementary
Fig. S6b). Overall, these results underscore the importance of the
inclusion of high-quality markers, which can be achieved by either
increasing the number of top marker genes with potential noise or by
adopting individualizedmarker selection for each sample startingwith
minimal prior information.

(b)Whilemaintaining other parameters unchanged and utilizing a
manually curated marker list, the performance of Pianno was eval-
uated by systematically increasing the values of thresholds in the
Multi-Otsu thresholding algorithm from 1 to 5. The accuracy of Pian-
no’s annotations for each sample was then calculated. Notably, when
n = 1, no thresholding segmentation is performed, and for excessively
large n values (n > 5), segmentation was impractical due to restricted
gene expression value ranges. The optimal performance of Piannowas

observed when n equaled 2 or 3, reflecting the states of presence and
absenceor categorization into high,medium, and low gene expression
levels, respectively (Supplementary Fig. S6c).

(c) While keeping other parameters constant, the performance of
Pianno was assessed by increasing the values ofω1 and ω2 from 0 to 1
with a step size of 0.01. This was done to calculate the accuracy of
Pianno’s annotation specifically for sample 151673. The hyperpara-
meterω1 represents the effects of transcriptome and spatial similarity,
while ω2 represents the global consistency of the prior distribution.
The experimental results indicated that a larger ω1 combined with a
smaller ω2 achieved the best annotation results (Supplementary
Fig. S6d). It’s noteworthy that, in studies in this manuscript, we default
to using ω1 = 0.99 and ω2 = 0.01

Benchmark analysis of layer structure annotation
In the benchmark analysis of layer structure annotation for the human
dlPFC16, multiple other spatial clustering methods were employed.
These methods utilized the same number of clusters (7) as the actual
layers, following the parameter settings recommended by the author
in the original paper or tutorial for each method (CellAssign24,
SCANPY25, SpaGCN8, SEDR9, BayesSpace7, DeepST10, and STAGATE11).
We used the data with and without preprocessing by SAVER as input,
respectively. The performance of these methods was evaluated using
the Adjusted Rand Index (ARI), whichmeasures the similarity between
the spatial domains (i.e. regions with similar spatial expression pat-
terns) obtained by these methods and the manual annotation.

To facilitate a comprehensive comparison of Pianno’s perfor-
mancewith other spatial clusteringmethods, the spatial domain labels
obtained from thesemethodsweremapped to themanually annotated
structural labels using the Kuhn-Munkres algorithm59. This mapping
ensured a fair comparison of the results. Various classification metrics
were then computed to assess the performance of different methods,
including accuracy (ACC), macro-averaging precision (P), macro-
averaging recall (R), macro-averaging F1-score (F1), and normalized
mutual information (NMI). These metrics provided a multifaceted
evaluation of how well each method aligned with the manual
annotation.

Differentially expressed analysis
We used the Wilcoxon rank-sum test implemented in SCANPY25 to
identify differentially expressed genes for each cluster/cell-type/
structure with default parameters.

Cell-type deconvolution of VISp
We compared the cell-type deconvolution results of three methods:18,
Tangram17, and RCTD33, with the results obtained by Pianno using
spatial transcriptome data from the mouse primary visual cortex
(VISp). The cell-type marker genes utilized by Pianno were derived
from the differentially expressed analysis of scRNA-seq data, employ-
ing the default parameter settings.18, Tangram17, and RCTD33 were
executed with the parameter settings recommended by the authors in
their original papers or official tutorials.

Assign clusters to structures
After Pianno’s structure annotation, we calculated the proportion of
unsupervised clusters within each structure. By assigning clusters to
the structure with the highest proportion, we gained a better under-
standing of the distribution and composition of unsupervised clusters
within different anatomical structures. This information contributes to
our insights into the complexity and organization of tissue structures.

Cell-type co-occurrence analysis
We computed and visualized co-occurrence probability of cell-type
clusters in the breast cancer samples through the co-occurrence
function implemented in Squidpy60 with default parameters.
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Gene ontology (GO) enrichment analysis
We conducted Gene Ontology (GO) enrichment analysis using the top
100 differentially expressed genes of cluster A-11 in the human dlPFC
sample 151671. This analysis was performed by the “Functional Anno-
tation Tool” implemented in the database for annotation, visualization
and integrated discovery (DAVID, https://david.ncifcrf.gov/). The raw
P-values are estimatedbyDAVIDwebsite usingone-sided Fisher’s exact
test without adjustment.

Spatial transcriptome data generation and analysis
Experimental model and subject details. To obtain spatial tran-
scriptomedata, the primarymotor cortex (M1C) and anterior cingulate
cortex (ACC) samples were obtained from a healthy adult humanbrain
specimen (female, 73 years old) at the FudanUniversity BodyDonation
Receiving Station of Shanghai Red Cross, under the approval from the
ethics committee at the School of Basic Medical Sciences, Fudan Uni-
versity (Approval No. 2020-C006).

Tissue processing and Visium data generation. Tissue RNA integrity
(RIN) was assessed using Bioanalyzer 2100 (Agilent), while tissue
morphology was examined through hematoxylin (51275, Sigma-
Aldrich) and eosin (109844, Sigma-Aldrich) (H&E) staining. All proce-
dures were carried out in accordance with the instructions outlined in
the Methanol Fixation, H&E Staining & Imaging for Visium Spatial
Protocols providedby 10×Genomics. Tissues that exhibitedRINvalues
above 7.0 and displayed a well-organized structure were selected for
subsequent procedure. To prepare the tissue for sectioning, Tissue-
TekⓇ O.C.T. Compound (4583, SAKURA) was applied onto dry ice for
embedding, and the tissues were then stored at -80 °C until further
processing. For brain samples, they were thawed from -80 °C storage
and allowed to stabilize at -20 °C in a cryostat (CM1950, Leica) for
30min before sectioning. Subsequently, sections with a thickness of
10 μm were collected.

To prepare the libraries for sequencing, we utilized the Tissue
Optimization andSpatial Gene ExpressionKits fromVisiumSpatial Gene
Expression Slide&Reagent Kit (1000184, 10xGenomics). All procedures
were performed in accordance with the manufacturer’s instructions.
Briefly, brain tissue section underwent initial processing through H&E
staining and imaging. Subsequently, tissue permeabilization was con-
ducted to capture mRNA. This was followed by reverse transcription,
second strand synthesis, cDNA amplification, fragmentation, and final
library amplification. The resulting libraries were then sequenced on a
NovaSeq6000 platform, targeting approximately 400 million reads
from tissue-specific spots using paired-end, dual indexed sequencing.
The run parameters consisted of a read1 length of 150 bp, an i7 index
length of 10bp, an i5 index length of 10bp, and a read2 length of 150 bp.

Downstream analysis. After raw data preprocessing, the layer struc-
tures of M1C and ACC were initially annotated using Pianno. Subse-
quently, the gene expressionmatrices ofM1C andACCwere integrated
based on the top 2000 highly variable genes using the scanorama
method61. The layer labels assigned by Pianno for these two brain
regions were successfully combined on the UMAP plot, indicating the
effectiveness of the integration process.

Afterwards, the integrated gene expression matrix was subjected
to clustering using the Leiden algorithm, implemented in SCANPY25

with default parameters (resolution=1). The goal was to identify dis-
tinct clusters and assess differences in their composition betweenM1C
and ACC. Then differential expression analysis was performed on
cluster B-4, which was exclusive to the M1C deep layer 3.

Statistics & reproducibility
No statistical method was used to predetermine sample size. The
number of samples were chosen for this exploratory study based on the
availability of materials at study time. The spatial transcriptome data

generated in this study was isolated from a single donor as a validation.
We did not include data that were clearly outliers in spatial tran-
scriptome in the analysis. Low-quality genes detected in less than 1% of
spots, as well as spots without gene counts detected, are sieved out. All
experimental steps are detailed in the methods to ensure replication. A
reproducible tutorial for each experiment is accessible at https://pianno-
tutorials.readthedocs.io/en/latest/index.html. The study is exploratory
and descriptive to demonstrate the utility of a computational method,
and no case control comparisons were performed, so no randomization
was considered. No blinding as no case-control comparisons are made.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The raw
spatial transcriptome data of human M1C and ACC generated in this
study have been deposited in the Genome Sequence Archive (GSA)
under accession code HRA004425. The raw data are available under
controlled access for the nature of human genomics data, can be
requested through the GSA platform. Additionally, the processed
spatial transcriptome data are available at https://github.com/
yuqiuzhou/Pianno62.

All public datasets utilized in this study are accessible in their raw
form from the respective original authors. Specifically, the human dlPFC
dataset16 is available within the spatialLIBD63 (https://research.libd.org/
spatialLIBD/). The processed Stereo-seq datasets from adult mouse
coronal hemibrain and olfactory bulb are available at the Spatial Tran-
script Omics DataBase (STOmics DB) (https://db.cngb.org/stomics). The
pre-processed Slide-seqV2 dataset from mouse hippocampus37 is
accessible within the Squidpy package (https://github.com/scverse/
squidpy). The STdatasets of humanpancreatic ductal adenocarcinoma39

are available at the Gene Expression Omnibus under accession number
GSE111672. The Visium datasets of human breast cancer are collected
from the 10× Genomics website (https://support.10xgenomics.com/
spatial-gene-expression/datasets). The scRNA-seq dataset from mouse
primary visual cortex is available at the NCBI Gene Expression Omnibus
(GEO) under accessionGSE115746. The snRNA-seq dataset frommultiple
human cortical areas is available at Allen BrainMap (https://portal.brain-
map.org/). The DAPI staining image of mouse olfactory bulb is acces-
sible on https://github.com/JinmiaoChenLab/SEDR_analyses. The con-
figuration of all experimental parameters and the list of initial and
updated marker genes used in this paper are available at https://github.
com/yuqiuzhou/Pianno62.

Source data are provided in this paper64.

Code availability
Pianno is available as a Python package at https://github.com/
yuqiuzhou/Pianno62.
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