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Abstract

Objective.—A data-driven technique for parsimonious modeling and analysis of dynamic 

cerebral autoregulation (DCA) is developed based on the concept of diffusion maps. Specifically, 

first, a state-space description of DCA dynamics is considered based on arterial blood pressure, 

cerebral blood flow velocity, and their time derivatives. Next, an eigenvalue analysis of the 

Markov matrix of a random walk on a graph over the dataset domain yields a low-dimensional 

representation of the intrinsic dynamics. Further dimension reduction is made possible by 

accounting only for the two most significant eigenvalues. The value of their ratio indicates 

whether the underlying system is governed by active or hypoactive dynamics, indicating healthy or 

impaired DCA function, respectively. We assessed the reliability of the technique by considering 

healthy individuals and patients with unilateral internal carotid artery (ICA) stenosis or occlusion. 

We computed the sensitivity of the technique to detect the presumed side-to-side difference in the 

DCA function of the second group (assuming hypoactive dynamics on the occluded or stenotic 

side), using McNemar’s chi square test. The results were compared with transfer function analysis 

(TFA). The performance of the two methods was also compared under the assumption of missing 

data.

Main results.—Both diffusion maps and TFA suggested a physiological side-to-side difference 

in the DCA of ICA stenosis or occlusion patients with a sensitivity of 81% and 71%, respectively. 

Further, both two methods suggested the difference between the occluded or stenotic side and 
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any two sides of the healthy group. However, the diffusion maps captured additional difference 

between the unoccluded side and the healthy group, that TFA did not. Furthermore, compared to 

TFA, diffusion maps exhibited superior performance when subject to missing data.

Significance.—The eigenvalues ratio derived using the diffusion maps technique can be 

potentially used as a reliable and robust biomarker for assessing how active the intrinsic dynamics 

of the autoregulation is and for indicating healthy versus impaired DCA function.
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1. Introduction

The term ‘dynamic cerebral autoregulation’ (DCA) refers to the ability of the cerebral 

vasculature to regulate cerebral blood flow in response to rapid changes in blood pressure. 

DCA is impaired in several neurological disorders (Donnelly et al 2015, Marshall et al 
2016). Its dysfunction is associated with delayed cerebral ischemia after subarachnoid 

hemorrhage (Budohoski et al 2012), poor neurological outcomes in patients with traumatic 

brain injury (Rangel-Castilla et al 2008), and development of dementia in patients with 

mild cognitive impairment (Tarumi et al 2014). Devising precise and accurate techniques for 

DCA analysis, monitoring, and control is of importance to patient care, as it may allow for 

targeted and personalized management of blood pressure in patients with acute neurological 

illness (Petersen et al 2019).

Diverse techniques have been developed to assess and quantify DCA performance; see 

Czosnyka et al (2009) and Liu et al (2020) for some indicative reviews. Several of 

these techniques use continuous monitoring of arterial blood pressure (ABP) and cerebral 

blood flow velocity (CBFV), typically measured by transcranial Doppler. The methods 

aim to determine the extent to which changes in ABP correlate with changes in CBFV 

and, as a by-product, identify potentially impaired DCA function. Adopting a signals and 

systems terminology (Mitra 2016), a popular modeling approach considers an input–output 

relationship between ABP and CBFV to be identified. Additional input variables, such as the 

level of CO2 (Kouchakpour et al 2010), have been used to more accurately model the input–

output relationship. Regarding measurement methods, alternatives to transcranial Doppler 

include near-infrared spectroscopy (NIRS); see Fantini et al (2016) for a broad perspective.

The identified ABP-CBFV (input–output) functional relationship can be used as a diagnostic 

tool to inform clinicians of a patient’s state relative to the limits of autoregulatory function. 

A broad range of methodologies has been developed in the literature with varying degrees 

of success for modeling and, ultimately, quantifying DCA performance. For example, the 

widely used method of transfer function analysis (TFA) (Blaber et al 1997, Claassen et al 
2016) employs estimates of the auto- and cross-spectra of ABP and CBFV to determine 

the relationship between ABP (input) and CBFV (output). These auto- and cross-spectra 

estimates are used to obtain the phase shift, which quantifies the time-lag of the output 

signal compared to the input and is used for assessing the DCA performance. The TFA 

method assumes inherently not only a linear but also a time-invariant system and treats the 
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measured data as stationary (i.e. with time-invariant statistics). However, most measured 

CBFV and ABP time-histories are transient, aperiodic, and intermittent by nature, and 

demonstrate non-stationary behavior (Marmarelis et al 2014, Panerai 2014), particularly 

in the presence of variations in CO2 (Liu et al 2010, Kostoglou et al 2014). In this 

regard, traditional time-invariant signal processing techniques, such as Fourier transform 

analysis used in TFA, are unable to capture the time-variant frequency content of the system 

dynamics.

Alternative methods capable of performing joint time-frequency analyses (Tian et al 2016, 

Chalak and Zhang 2017, Aleksandrin et al 2018) employ wavelet families (e.g. Morlet 

wavelet) requiring, typically, two parameters for their definition, characterizing the scale and 

the translation level (Mallat 1999, Latka et al 2005, Addison 2015). Recent work by Miller 

et al (2020) used another alternative—a joint time-frequency analysis technique based on 

generalized harmonic wavelets (GHWs) for DCA performance quantification. In comparison 

to existing wavelet-based techniques available in the literature that employ standard dyadic 

decompositions (Addison 2015), the advantage of GHWs is that they possess an additional 

coefficient which decouples the wavelet resolution in the frequency domain from the central 

frequency of the wavelet allowing enhanced resolution in frequency regions of interest. 

However, although the GHW-based methodology can account for the temporal dynamics of 

the DCA function, its validity remains restricted to cases satisfying the assumption of linear 

relationship between input–output (ABP-CBFV) data.

To account for nonlinear system modeling in the input–output relationship between 

ABP and CBFV, other methodologies have been proposed, such as the ones based on 

Volterra–Wiener representations of nonlinear systems (Panerai et al 1999, Kouchakpour 

et al 2010); see also Schetzen (2006) for a broad perspective. However, the success of 

such methodologies, especially for real-time analysis and diagnostics, is hindered by the 

significant computational cost related to the numerical integration of multi-convolution 

integrals. The time correlation method yields a coefficient quantifying the correlation degree 

between ABP and CBFV (Liu et al 2020). Positive values indicate impaired autoregulation, 

whereas zero or negative values imply intact autoregulation. Although this method has 

proved to be a relatively reliable instantaneous descriptor of autoregulation, it provides no 

information about the underlying governing DCA dynamics and no insight regarding the 

autoregulation mechanism.

In recent years, a novel paradigm of data-driven model discovery has emerged (Bongard 

and Lipson 2007, Brunton and Kutz 2019) employing machine learning approaches, such as 

neural networks and various regression schemes, for modeling time-series data in a broad 

range of scientific disciplines (Vlachas et al 2018, Raissi et al 2019, Zhu et al 2019). 

This framework can readily account for arbitrary nonlinear and time-variant behaviors, 

and is driven by the fact that in many problems, particularly physiological mechanisms, 

purely physics-based, first-principles based the modeling of the governing dynamics may 

be untenable. Research efforts toward data-driven DCA modeling and analysis include 

work by Tan (2012), where a projection pursuit regression scheme was employed, and by 

Panerai et al (2004) and Al-Abed et al (2019), where extrapolation approaches based on 

artificial neural networks were proposed. However, for data-driven modeling to be effective, 
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the identified model should exhibit sparsity in the sense that the fewest possible terms 

are considered for the description of the system dynamics. This approach enhances the 

interpretability of the model, and provides balance between model complexity and accuracy. 

The rationale for such data-driven discovery of governing equations and identification 

of parsimonious system dynamics relates to the fact that the dynamics of most physical 

systems, including physiological mechanisms, can be described accurately by considering 

only a few relevant terms in an appropriate expansion basis, thus rendering the governing 

equations sparse in a high-dimensional nonlinear function space.

Here, we develop a data-driven technique for parsimonious modeling and analysis of DCA 

by relying on the concept of diffusion maps (Coifman and Lafon 2006, Nadler et al 2006). 

Specifically, the strong and restrictive assumption of an input–output relationship between 

ABP and CBFV is circumvented. A more general state-space description of DCA dynamics 

based on variables ABP, CBFV, and their time derivatives is considered, yielding a low-

dimensional representation of the intrinsic dynamics. This is accomplished by performing 

an eigendecomposition of the Markov matrix of a random walk on a graph constructed over 

the dataset domain. The obtained eigenvectors and eigenvalues determine a new coordinate 

set embedding the high-dimensional information into a low-dimensional space (Coifman et 
al 2008, Singer et al 2009). Further dimension reduction is possible by accounting only for 

the two most significant eigenvalues (Dsilva et al 2018). The value of their ratio indicates 

whether active or hypoactive dynamics govern the underlying system. This ratio has the 

potential to be used as a clinical biomarker for diagnosing healthy versus impaired DCA 

function. We aimed to demonstrate the efficacy of this approach by considering healthy 

individuals and patients with unilateral internal carotid artery (ICA) stenosis or occlusion 

whose DCA function is presumed to be poorer on the stenotic or occluded side (Reinhard et 
al 2003b).

2. Materials and methods

2.1. Subjects

Two groups of volunteers were considered to assess the performance of the developed 

technique: 46 healthy people under 60 years of age (19 men and 27 women), and 31 patients 

with unilateral ICA stenosis or occlusion (80%–100% occlusion) without stroke history (22 

men and 9 women). In the second group, 14 (45%) had a completely occluded ICA, and 

17 (55%) had 80%–99% stenosis. ICA stenosis >70% is associated with impaired DCA 

(Reinhard et al 2003a). We used this known asymmetry of the stenosis/occlusion in the two 

sides of the brain to demonstrate the sensitivity of the technique.

2.2. Data acquisition and processing

Participants’ data were collected at Columbia University Irving Medical Center (CUIMC) 

from August 2011 to January 2019. All volunteers provided written informed consent. 

Unilateral ICA stenosis or occlusion was confirmed by carotid duplex Doppler, computed 

tomographic angiography, or magnetic resonance angiography. The study protocol was 

approved by the Institutional Review Board of CUIMC.
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During the data acquisition process, the participants lay supine wearing a head frame 

connected with a 2 MHz transcranial Doppler probe and a properly-sized finger 

cuff attached with servo-controlled in-phase finger plethysmography (Finometer Pro, 

Amsterdam, Netherlands). Transcranial Doppler was used to measure the CBFV by 

insonating the left and right proximal cerebral arteries at a depth of 45–60 mm. The 

plethysmography measured the ABP non-invasively. ABP and CBFV signals were recorded 

for 10 min at 100 Hz. Both ABP and CBFV signals were filtered with a band-pass filter in 

the frequency range [0.01–0.13] Hz (Fantini et al 2016.

2.3. Mathematical aspects of diffusion maps and reduced-order modeling of DCA 
dynamics

Data obtained by observing the evolution in time of a dynamic system can be succinctly 

represented in many cases in low-dimensional domains, providing insights about the 

intrinsic dynamics, and facilitating the interpretation of complex phenomena (Roweis and 

Saul 2000, Tenenbaum et al 2000, Donoho and Grimes 2003, Dos Santos et al 2022). 

The current analysis made use of the concept of diffusion maps (Nadler et al 2006, 

Coifman et al 2008, Singer et al 2009, Dsilva et al 2018). This technique relies on an 

eigendecomposition of the transition probability of a random walk on a graph constructed 

over the dataset. The obtained eigenvectors and eigenvalues are associated with a new 

coordinate set embedding the high-dimensional information into a low-dimensional space. 

An efficacious representation of the resulting lower-dimensional model considers the two 

most important eigenvectors only.

2.3.1. Reduced-order modeling—DCA is typically modeled by relying on an input–

output relationship of the form v = ℳ p ; where p = ABP, v = CBFV, and ℳ ⋅  represents 

the mathematical model to be identified relating the input p to the output v. An alternative 

modeling approach that does not assign a priori the roles of an input and an output to p and 

v, respectively, offers more versatility. Here, p, v, and their respective time derivatives, ṗ and 

v̇, are considered to describe the observed state of the DCA model in a four-dimensional 

space. Consider a dataset S = x1, …, xN  comprising N discrete observations of the DCA 

state xi = vi, pi, v̇i, ṗi
T . A fully connected graph is constructed over this dataset where the 

nodes are the observed state xi = vi, pi, v̇i, ṗi
T , and the edges have weights given by the 

pairwise similarity of the elements in S determined by the Gaussian kernel

k xi, xj = exp − ∥ xi − xj ∥2
2

ε2 .

(1)

In equation (1) ∥ xi − xj ∥2 is the Euclidean distance between xi and xj, and ε is a length-scale 

parameter, estimated as the median of the pairwise distance of the points in S. The transition 

probabilities Mij = P xj ∣ xi  of the Markov matrix M ∈ ℝN × N are constructed as

dos Santos et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2024 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mij = kij
⋆

∑k = 1
N kik

⋆ ,

(2)

where Dii = ∑j = 1
N kij and kij

⋆ = kij/ DiiDjj. In Eq.(2) the notation k xi, xj = kij is used for 

simplicity. According to the diffusion maps theory, the reduction of the high-dimensional 

system into a low-dimensional Euclidean space is performed by determining a new 

coordinate system ξ xi = λ1ψ1 i , …, λNψN i , where Ψ = ψ1, …, ψN  and λ1, …, λN  are the 

eigenvectors and eigenvalues of M, respectively. Note that only the eigenvectors associated 

with significant eigenvalues, i.e. ∑i = 1
q λi ⩾ 0.95 ⋅ ∑j = 1

N λj, are considered. This yields a subset 

of q < N eigenvectors. Additional reduction of this subset is possible by identifying only 

those eigenvectors that are linearly independent. This is done by employing a local linear 

regression scheme (Dsilva et al 2018). Specifically, a given eigenvector is expressed as a 

linear combination of the remaining eigenvectors, i.e.

ψk i ≈ αk i + βk
T i Ψk − 1 i ,

(3)

where i is the entry index of ψk, Ψk − 1 i = ψ1 i , …, ψk − 1 i T , αk i ∈ ℝ, βk i ∈ ℝk − 1, and 

k ⩽ q. Next, the coefficients αk i  and βk i  are determined by solving the optimization 

problem

αk i , β k i = argmin
α, β

∑
j ≠ i

kk − 1
ij ⋅ ψk j − αk + βk

TΨk − 1 j 2,

(4)

where kk − 1
ij = k Ψk − 1 i , Ψk − 1 j  is computed using equation (1). Further, the residuals rk are 

estimated by the normalized leave-one-out cross-validation error for the local linear fit, i.e.

rk =
∑i = 1

q ψk i − αk i + β k
T i Ψk − 1 i 2

∑i = 1
q ψk

2 i
.

(5)

Large values of rk correspond to eigenvectors that are linearly independent from the rest of 

the eigenvectors.

2.3.2. Proposing a biomarker for indicating healthy versus impaired DCA 
function—Following Dsilva et al (2018), the ratio

γ = log λ1
⋆

log λ2
⋆
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(6)

can approximately determine the effective dimensionality of the underlying dynamic 

system, where λ1
⋆ and λ2

⋆ denote the two leading eigenvalues corresponding to unique eigen-

directions. In fact, γ can be potentially used as a metric for assessing the dynamic behavior 

of cerebral autoregulation. Specifically, for γ 0 the data become 1-dimensional since only 

one eigendirection is most dominant, whereas for γ 1 the data become 2-dimensional 

indicating more active dynamics. Therefore, we conjecture that 0 ⩽ γ ⩽ 1 can to classify the 

DCA function into healthy (i.e. more active dynamics as γ 1) and impaired (i.e. less active 

dynamics as γ 0).

2.3.3. Mechanization of the technique—The mechanization of the proposed 

technique based on diffusion maps for DCA parsimonious modeling and analysis comprises 

the following steps (see also figure 1):

1. ABP and CBFV time-histories corresponding to both sides of the brain are 

acquired and a band-pass filter is applied to extract only the low-frequency 

content in the range [0.01,0.13] Hz.

2. The Gaussian kernel is determined using equation (1) for a random sample of 

states.

3. The Markov matrix M is estimated using equation (2), and its eigenvalues and 

eigenvectors are computed.

4. The parsimonious representation of the underlying dynamics is determined by 

selecting only k ⩽ q < N eigenvalues based on the local linear regression scheme 

and the magnitude of the residuals in equation (3).

5. Compute the dimensionality ratio γ using equation (6).

6. If the dimensionality ratio γ 0 and, equivalently, a single diffusion coordinate 

λk
⋆ ⋅ ψk i  is dominant, figure 1 (top right), the system exhibits hypoactive 

dynamics indicating a potentially impaired DCA function. If the dimensionality 

ratio γ 1, the system exhibits more active dynamics, considered to be 

indicative of a healthier DCA function (bottom right).

2.4. Statistical analysis

The reliability of the developed technique for identifying impaired DCA is assessed by 

considering two groups of volunteers (healthy and unilateral ICA stenosis or occlusion 

patients). The statistical analysis of γ includes the estimation of the median and the 

interquartile range (IQR) for both healthy and ICA stenosis or occlusion volunteers. We 

compared the medians of the two sides within the same group (left versus right cerebral 

hemispheres for the healthy individuals, and occluded/stenotic versus unoccluded side of 

the brain for the ICA stenosis or occlusion patients). In addition, we compared median 

values between 3 groups: cerebral hemispheres in the territory of occluded or stenotic 

carotid arteries; hemispheres in the territory of unoccluded carotid arteries in participants 

with unilateral ICA stenosis or occlusion, and hemispheres in the territory of the healthy 
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(unoccluded) carotid arteries. Medians were compared between groups using the Kruskal–

Wallis test with an alpha level of 5%.

We then compared standard TFA (Claassen et al 2016) with the diffusion maps 

technique. Median phase shift was calculated for the aforementioned groups. We compared 

the sensitivity of the two techniques to accurately differentiate occluded/stenotic from 

unoccluded sides using the McNemar’s chi square test (Trajman and Luiz 2008, Kim and 

Lee 2017), with an alpha level of 5%. TFA was considered to successfully identify impaired 

autoregulation if the phase shift of the occluded/stenotic side was lower compared to the 

unoccluded side (Reinhard et al 2003b). The diffusion maps technique was considered to 

detect the occluded/stenotic side if the γ was lower compared to the unoccluded side.

Lastly, the effect of the number N of the randomly selected samples on estimating the 

dimensionality ratio γ was investigated. In figure 2, the mean and the standard deviation of 

the estimated dimensionality ratio γ are plotted as a function of N for a randomly selected 

healthy volunteer and a randomly selected patient with carotid stenosis/occlusion. Note that 

the length of the recorded signals is 55 000. The process is repeated 20 times for each 

volunteer. It is seen that the variability in the estimates reaches a minimum at 3000 samples, 

approximately, and does not decrease further with larger sample numbers. Therefore, in the 

ensuing analysis, the value N = 3000 is used.

3. Results

3.1. Application to synthetic data

The dimensionality ratio γ is obtained for an example considering synthetic data, simulating 

one side of the brain as occluded, i.e.

ABP = cos 2π2t + 2cos 2π0.1t + 3cos 2π0.05t
CBF1 = cos 2π2t − ϕ1 + 2cos 2π0.1t − ϕ1 + 3cos 2π0.05t − ϕ1

CBF2 = cos 2π2t − ϕ2 + 2cos 2π0.1t − ϕ2 + 3cos 2π0.05t − ϕ2 ,

(7)

where ϕ1 = π/12t0.1 and ϕ2 = π/6t0.1 are the time-dependent phase shifts of CBF1 and CBF2, 

respectively, that simulate the blood flow in the two sides of the brain. The blood flow 

with the smallest phase shift, i.e. CBF1, corresponds to the occluded side of the brain, since 

the flow is less efficient to counter-regulate the pressure, whereas the largest phase shift 

corresponds to the unoccluded side (Marshall et al 2016). Further, the synthetic ABP-CBF 

signals in equation (7) are discretized into 55 000 time points, simulating the actual length of 

the recorded signals.

First, the signals are filtered (figure 3) with a band-pass filter in the frequency range 

[0.01–0.13] Hz, which is equivalent to deleting the first cosine term of frequency 2 Hz in 

each signal. According to the diffusion maps technique, N = 3000 samples are randomly 

selected from each signal. Next, following the eigendecomposition of the estimated Markov 

matrix M and the parsimonious representation of each side of the brain, the selected 
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eigenvalues λ1
⋆, λ2

⋆ corresponding to the largest residual values yield the dimensionality 

ratios γ1 = log λ1
*

log λ2
* = 0.66 and γ2 = log λ1

*

log λ2
* = 0.90. Therefore, as anticipated based on the 

constructed signals and according to the rationale developed in section 2.3.2, smaller 

values of γ indicate lower-dimensional, hypoactive, dynamics corresponding to impaired 

DCA function, whereas larger values of γ indicate higher-dimensional, active, dynamics 

corresponding to healthy DCA function.

3.2. Eigenvalue analysis for an indicative patient

The dimensionality ratio γ is obtained for an indicative ICA stenosis patient with the left 

side of the brain occluded. Specifically, an ensemble of signals comprising 10 minutes of 

ABP-CBFV time-histories are considered discretized into 55 000 time points, out of which 

only 3000 samples are randomly selected (figure 4). Next, following the eigendecomposition 

of the estimated Markov matrix M, the q = 5 largest eigenvalues are plotted in figure 5 

referring to the occluded side (top), and to the unoccluded side (bottom). Higher color 

intensity indicates larger residual values calculated by equation (6). For the occluded side, 

the 1st and the 4th eigenvalues correspond to the largest residual values yielding a ratio 

γ = 0.65, whereas for the unoccluded side the 1st and the 2nd eigenvalues correspond to the 

largest residual values yielding a ratio γ = 0.86. Further, the diffusion coordinates λk
⋆ ⋅ ψk i

of the largest residual values are plotted in figure 6, where for the occluded side it is 

seen that one coordinate is significantly more dominant than the other. Therefore, based 

on the rationale developed in section 2.3.2, smaller values of γ indicate lower-dimensional, 

hypoactive, dynamics corresponding to impaired DCA function, whereas larger values of γ
indicate higher-dimensional, active, dynamics corresponding to healthy DCA function.

3.3. Healthy volunteers

Among healthy volunteers, the median (IQR) of the dimensionality ratio γ was 0.78 (0.71–

0.84) for the left side and 0.76 (0.67–0.83) for the right side, as shown in figure 7 and table 1 

with no significant between-group difference p = 0.47 .

3.4. Carotid stenosis or occlusion volunteers

Among all participants with unilateral ICA stenosis or occlusion, the median (IQR) of the 

dimensionality ratio γ was 0.62 (0.54–0.74) for the occluded/stenotic side and 0.66 (0.58–

0.77) for the unoccluded side, as shown in figure 7 and table 1 p = 0.05 . The dimensionality 

ratio for each side in the carotid stenosis or occlusion subjects was significantly lower than 

healthy controls (p = 10−5 for the occluded/stenotic versus healthy controls and p = 0.005 for 

the unoccluded side versus healthy controls) suggesting significant physiological differences 

between the unoccluded side of ICA stenosis or occlusion patients and any of the two sides 

of healthy patients.

3.5. Comparison with standard TFA

Among healthy subjects, median (IQR) phase shift was 41.0(31.8–52.2) and 46.3(33.6–55.2) 

degrees for the left and the right sides, respectively p = 0.61  as shown in figure 8 and table 
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2. Among unilateral ICA stenosis or occlusion participants, median (IQR) phase shift was 

28.8(19.5–42.9) degrees for the occluded/stenotic side and 42.7(30.6–50.8) degrees for the 

unoccluded side p < 0.05 . Similar results were found in Reinhard et al (2003a). Comparing 

each side of the ICA stenosis or occlusion participants with the healthy participants, TFA 

estimates did not suggest impairment of the unoccluded side.

3.6. Sensitivity and specificity comparison of the two techniques

The sensitivity of the diffusion maps technique to correctly identify the occluded/stenotic 

from the unoccluded side was 25 out of the 31 (81%) by comparing γ for both sides of the 

brain. The TFA method correctly identified 22 out of the 31 occluded/stenotic sides (71%) 

by comparing phase shifts for both sides of the brain. According to the McNemar’s test, the 

chi-squared is equal to 0.8 and the p = 0.36 > 0.05, when comparing γ with phase shifts.

The specificity of the diffusion maps technique to correctly identify the sides of the brain as 

healthy was 43 out of the 46 (93%) by comparing γ for both sides of the brain with a 10% 

margin of error. The TFA method specificity to correctly identify the sides of the brain as 

healthy was 31 out of the 46 (71%) by comparing phase shifts for both sides of the brain 

with a 10% margin of error. According to the McNemar’s test, the chi-squared is equal to 9 

and the p = 0.003 < 0.05, when comparing γ with phase shifts.

3.7. Robustness of the technique subject to missing data

The diffusion maps technique does not require any information regarding the position of 

the measured data in time. The considered dataset is selected randomly and constitutes a 

small subset of the total measured data. This provides flexibility in avoiding time intervals 

with incomplete data or areas in the time domain with apparent artifacts. This is not the 

case with a TFA treatment, where the time sequence of the data points matters and needs 

to be accounted for. We anticipated that the diffusion map technique would exhibit superior 

performance and provide more robust estimates compared to TFA when subject to missing 

data.

To support the above argument, a numerical example is considered. First, three blocks of 

missing data of varying length are considered in the measured CBFV signals, whereas the 

length of the blocks is expressed as a percentage of missing data over the total length of 

the signal, i.e. 55 000 samples; see also figure 9 for an indicative illustration. Second, the 

missing data are replaced with the mean value of the signal and a band-pass filter is applied 

to extract only the low-frequency content in the range [0.01, 0.13] Hz. Lastly, the process is 

repeated for 20 randomly selected healthy patients and estimates of the dimensionality ratio 

γ are obtained based on diffusion maps, and estimates of the phase shift are obtained based 

on TFA. The average relative errors based on comparisons with analyses using the complete 

set of data are shown in figure 10. The TFA-based estimates were considerably affected 

by the missing data. Even for a relatively small percentage of missing data (e.g. 5%), the 

error in estimating the phase shift approached 7%. All 55 000 samples were used for the 

TFA analysis. In contrast, selecting randomly only 3000 samples, i.e. 5% of the total 55 

000 samples for the diffusion maps analysis yielded γ estimates for which the corresponding 

error was not more than 2%–3% in the worst case scenario.
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4. Discussion

In this paper, we developed a data-driven technique for reduced-order modeling and analysis 

of DCA based on the concept of diffusion maps. Specifically, we considered a state-space 

description of DCA dynamics based on variables ABP, CBFV, and their time derivatives, 

yielding a low-dimensional representation of the intrinsic dynamics. This was done by 

performing an eigendecomposition of the Markov matrix of a random walk on a graph 

constructed over the dataset domain. The obtained eigenvectors and eigenvalues determine 

a new coordinate set embedding the high-dimensional information into a low-dimensional 

space. Our results demonstrate that the ratio of the two most significant eigenvalues, i.e. 

the dimensionality ratio, successfully indicates active or hypoactive dynamics for each 

side of the brain. This method could be potentially employed as a diagnostic tool and a 

biomarker for indicating healthy versus impaired DCA function and successfully identifying 

side-to-side differences due to pathological conditions.

One advantage of the diffusion maps technique versus other techniques is its accuracy, since 

it realistically accounts for nonlinear and non-stationary relationships between ABP and 

CBFV data. In our analysis, diffusion maps captured impaired intrinsic dynamics even for 

the unoccluded side of carotid stenosis or occlusion patients, in contrast to the TFA which 

classifies them as unaffected. Such a finding is reasonable (Marshall et al 2017), due to 

additional pathological conditions that may exist in this clinical group, e.g. cerebral small 

vessel disease, that affects both sides of the brain.

Another important advantage of this technique is that diffusion maps require only a 

relatively small number of randomly selected points from the measured ABP and CBFV 

signals. This renders the process more robust in the case of missing data. The diffusion maps 

method exhibited smaller relative error under conditions of incomplete data in the signals 

since it does not rely on the sample sequence, in contrast with the TFA. This is particularly 

important in clinical measurements where missing data and noise are significant and as a 

result, a large amount of data may not be usable.

Additionally, diffusion maps exhibited a higher degree of accuracy in correctly classifying 

the two sides of the brain as occluded/stenotic and unoccluded compared to TFA. However, 

additional subjects are needed to support the statistical significance of the argument, as well 

as to define a more accurate range of the ratios corresponding to occluded/stenotic and 

unoccluded sides of the ICA patients. Lastly, limitations of our study relate to the fact that 

analysis of the direct agreement of the proposed technique with TFA in the healthy group is 

not feasible, e.g. Bland–Altman plots, since the two techniques have different metrics. Also, 

we did not account for continuous capnography during the data acquisition, and neither for 

hypercapnia to capture time-variant behavior. Yet we believe that the presented technique 

will be suitable for those cases since it accounts for non-stationarity in the signals.
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Figure 1. 
Mechanization of the proposed technique based on diffusion maps for parsimonious 

modeling and analysis of DCA.
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Figure 2. 
Dimensionality ratio γ estimates based on various numbers of sample points.
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Figure 3. 
Synthetic ABP and CBF signals before and after filtering for the first 100s.

dos Santos et al. Page 17

Physiol Meas. Author manuscript; available in PMC 2024 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Indicative ABP-CBFV time-history: 3000 samples randomly selected (right) out of the 55 

000 points (left).
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Figure 5. 
Computed eigenvalues λk and their residuals rk corresponding to the two sides of an ICA 

patient: occluded side with a ratio γ = log λ1
*

log λ2
* = log 0.25

log 0.04 = 0.65 (top); unoccluded side with 

a ratio γ = log λ1
*

log λ2
* = log 0.18

log 0.10 = 0.86 (bottom).
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Figure 6. 
Diffusion coordinates λk

⋆ ⋅ ψk i  corresponding to the two sides; In the occluded side (left), 

a smaller γ value γ = 0.65  relates to lower-dimensional, hypoactive, dynamics (impaired 

DCA), whereas in the unoccluded side (right), a larger γ value γ = 0.86  relates to higher-

dimensional, active, dynamics (healthy DCA).
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Figure 7. 
Box plots of dimensionality ratios γ.
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Figure 8. 
Box plots of phase shifts based on standard TFA.
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Figure 9. 
Demonstration of missing data in the CBFV signal.
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Figure 10. 
Average relative errors referring to diffusion maps- and TFA-based biomarkers due to the 

presence of incomplete data in CBFV signals.
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Table 1.

Diffusion maps-based statistical analysis of γ referring to carotid stenosis or occlusion patients and to healthy 

volunteers.

Sides Occluded/stenotic Unoccluded Healthy left Healthy right

Number of subjects 31 46

Median (γ) 0.62 0.66 0.78 0.76

(IQR) (0.54–0.74) (0.58–0.77) (0.71–0.84) (0.67–0.83)

p-values

Two sides 0.05 0.47

ICA occlusion/stenosis versus healthy group 10−5 —

Occluded/stenotic versus healthy group 10−5 — —

Unoccluded versus healthy group — 0.005 —
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Table 2.

TFA-based statistical analysis of phase shifts referring to carotid stenosis or occlusion patients and to healthy 

volunteers.

Sides Occluded/ stenotic Unoccluded Healthyleft Healthy right

Number of subjects 31 46

Median (degrees) 28.8 42.7 41 46.3

(IQR) (19.5–42.9) (30.6–50.8) (31.8–52.8) (33.6–55.2)

p-values

Two sides 0.03 0.61

ICA occlusion/stenosis versus healthy group 0.01 —

Occluded/stenotic versus healthy group 4 · 10−3 — —

Unoccluded versus healthy group — 0.59 —
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