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Personalized brain circuit scores identify 
clinically distinct biotypes in depression  
and anxiety

Leonardo Tozzi    1, Xue Zhang    1, Adam Pines1, Alisa M. Olmsted1,2, 
Emily S. Zhai    1, Esther T. Anene3, Megan Chesnut1, Bailey Holt-Gosselin4, 
Sarah Chang5, Patrick C. Stetz1,2, Carolina A. Ramirez6, Laura M. Hack1,2, 
Mayuresh S. Korgaonkar    7,8, Max Wintermark9, Ian H. Gotlib10, Jun Ma11 & 
Leanne M. Williams    1,2 

There is an urgent need to derive quantitative measures based on coherent 
neurobiological dysfunctions or ‘biotypes’ to enable stratification of patients 
with depression and anxiety. We used task-free and task-evoked data from a 
standardized functional magnetic resonance imaging protocol conducted 
across multiple studies in patients with depression and anxiety when 
treatment free (n = 801) and after randomization to pharmacotherapy or 
behavioral therapy (n = 250). From these patients, we derived personalized 
and interpretable scores of brain circuit dysfunction grounded in a theoretical 
taxonomy. Participants were subdivided into six biotypes defined by distinct 
profiles of intrinsic task-free functional connectivity within the default mode, 
salience and frontoparietal attention circuits, and of activation and connectivity 
within frontal and subcortical regions elicited by emotional and cognitive 
tasks. The six biotypes showed consistency with our theoretical taxonomy 
and were distinguished by symptoms, behavioral performance on general and 
emotional cognitive computerized tests, and response to pharmacotherapy as 
well as behavioral therapy. Our results provide a new, theory-driven, clinically 
validated and interpretable quantitative method to parse the biological 
heterogeneity of depression and anxiety. Thus, they represent a promising 
approach to advance precision clinical care in psychiatry.

Depression and associated anxiety disorders are an important global 
public health burden1, the treatment of which has been hindered by 
etiological and phenotypic heterogeneity. The current psychiatric 
diagnostic system assigns a single label to syndromes that may involve 
the dysfunction of multiple and overlapping neurobiological processes 
which, in turn, would probably each require a different treatment. This 
is evident from the fact that more than a third of patients diagnosed 
with major depressive disorder, and approximately half of patients diag-
nosed with generalized anxiety disorder, do not respond to first-line 

treatment2,3. Unlike the ‘one-size-fits-all’ approach, a precision medicine 
approach to care requires standardized metrics that are personalized 
for individual patients and are interpretable to clinicians. However, the 
promise of this approach is currently limited by a lack of personalized 
and interpretable measures for quantifying neurobiological dysfunc-
tions in patients with depression and associated anxiety disorders. 
We believe that such measures should help to elucidate the underly-
ing neurobiological dysfunctions within a neuroscientific theoretical 
framework, rather than remain an algorithmic black box. Using these 
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profiles and performance on general and emotional, cognitive, com-
puterized behavioral tests. Furthermore, a substantial portion of the 
participants were enrolled into randomized clinical trials of antidepres-
sants or behavioral therapy, which enabled us to demonstrate that our 
biotypes differ in their outcomes across multiple treatments.

Results
Personalized brain circuit scores define six biotypes
We began by implementing a new standardized image-processing pro-
cedure called ‘the Stanford Et Cere Image Processing System’ which 
quantified task-free and task-evoked brain circuit function at the level 
of the individual participants (Methods). We applied this procedure 
to a baseline dataset that consisted of brain scans acquired from both 
task-free and task conditions, utilizing identical scanning protocols, 
from 801 participants with depression and related anxiety disorders, 

measures, patients could be stratified prospectively into subgroups 
that share similar neurobiological dysfunctions, or ‘biotypes’, each of 
which would possibly implicate a different set of treatment approaches 
or a different treatment trajectory.

Efforts to characterize biotypes of depressed and anxious patients 
with similar brain circuit dysfunctions have typically used task-free 
functional magnetic resonance imaging (fMRI)4–7. For example, one 
pioneering study has found biotypes characterized by aberrant connec-
tivity in frontostriatal and limbic networks that respond differently to 
repetitive transcranial magnetic stimulation (TMS)4. Other researchers 
have found biotypes characterized by hyper- and hypoconnectivity of 
the default mode network5, biotypes that distinguish comorbid anxiety 
within the context of depression6 and biotypes that are associated with 
a poorer response to standard antidepressants7.

Nevertheless, we lack evidence about biotypes in depression 
and anxiety that are based on the participant-level quantification of 
measures derived from task-evoked imaging modalities. Patients with 
depression and anxiety exhibit dysfunction in the activity and connec-
tivity of brain circuits in response to specific probes of general and emo-
tional cognition. In other words, in depression and anxiety, the brain 
continually and flexibly engages different circuits under task-evoked 
and task-free conditions. Therefore, both sources of information may 
be useful in delineating biotypes and biotype-guided treatments. This 
is analogous to cardiac imaging being collected during both rest and 
task conditions in which the activity of the heart is elicited (for example, 
stress tests) to enable precise diagnoses and treatment plans, a neces-
sity given the complexity of this organ and its functions8. Indeed, clini-
cal trials have found that measures derived from task-based fMRI often 
predict response in depression treatment (for example, refs. 9–12) and 
have recently been the biomarker of choice for new pharmacotherapy 
development (for example, ref. 13).

Foundational studies using whole-brain, task-free connectivity 
biomarkers have often taken an unsupervised whole-brain approach 
that uses thousands of features for biotyping. However, we posit that 
clinical translation requires a theoretically informed approach that 
relies on a well-defined, tractable set of inputs. Such an approach 
also addresses the potential for obtaining overly optimistic results 
(overfitting) when thousands of inputs are used in a fully unsupervised 
manner—an issue that has been raised in the field14 (but see ref. 15, which 
addresses overfitting11).

Finally, previous studies have assessed the ability of biotypes to 
predict response to a single treatment (for example, TMS4 or antide-
pressants7), rather than comparing responses across different classes 
of treatments. To maximize the translational value of biotypes, the 
optimal treatment for each biotype should eventually be determined 
by comparing how different biotypes respond when receiving the 
same treatment.

In the present study, we demonstrate a new approach to gener-
ating biotypes of depression and anxiety based on task-evoked and 
task-free imaging data, quantified at the individual patient level and 
evaluated in the context of transdiagnostic symptoms, behaviors and 
outcomes with multiple types of treatments. Our approach relies on 
a standardized circuit quantification system that enables us to com-
pute a manageable number of task-evoked and task-free measures of 
circuit function on an individual participant basis. These measures are 
firmly grounded in a theoretical synthesis of functional brain imaging 
studies that implicate dysfunction across large-scale circuits in the 
clinical features of depression and anxiety16,17. Thus, our theoretically 
driven approach provides unique insights that may have been missed 
by previous studies that either relied only on task-free data or mined 
large numbers of features using exploratory data analysis techniques. 
In our sample of 801 participants with depression and anxiety (95% 
of whom were unmedicated), the use of the same fMRI sequences, 
symptoms and behavioral measures enabled us to clinically validate 
theory-driven biotypes and demonstrate that they differ in symptom 

Table 1 | Demographics and diagnostic features of the 
sample used in the analyses

Feature Clinical Controls

Number 801 137

Sex

  Female, n (%) 461 (58) 67 (49)

  Male, n (%) 329 (41) 70 (51)

  Other, n (%) 11 (1) 0 (0)

Age (years), mean (s.d.) 34.24 (13.40) 32.10 (12.57)

Race

  American Indian/Alaska Native, n (%) 3 0 (0%)

  Asian, n (%) 181 (23) 29 (21)

  Black/African American, n (%) 16 (2) 1 (1)

  Hawaiian/Pacific Islander, n (%) 1 (0) 0 (0)

  More than one race, n (%) 31 (4) 4 (3)

  Other, n (%) 103 (13) 6 (4)

  White, n (%) 462 (58) 97 (71)

Treated at baseline, n (%) 40 (5) 0 (0)

Treatment arm

  Escitalopram, n (%) 46 (12) 0 (0)

  Sertraline, n (%) 55 (11) 0 (0)

  Venlafaxine, n (%) 50 (10) 0 (0)

  I-CARE, n (%) 46 (9) 0 (0)

  U-CARE, n (%) 40 (8) 0 (0)

Diagnoses

  Major depressive disorder, n (%) 375 (48) 0 (0)

  Generalized anxiety disorder, n (%) 192 (28) 0 (0)

  Panic disorder, n (%) 75 (10) 0 (0)

  Social anxiety disorder, n (%) 179 (26) 0 (0)

  Obsessive–compulsive disorder, n (%) 47 (7) 0 (0)

  Post-traumatic stress disorder, n (%) 37 (5) 0 (0)

  Comorbidity (2+ diagnoses) 221 (28) 0 (0)

For detailed information on the individual datasets used, see Supplementary Tables 1 and 2.  
Diagnostic and Statistical Manual of Mental Disorders, 4th edn, text revision (DSM-IV-TR) 
(RAD)31, DSM-5 (HCP-DES)32 or DSM-IV (iSPOT-D)33 criteria for major depressive disorder, 
anxiety disorder, post-traumatic stress disorder or obsessive–compulsive disorder were 
ascertained by a psychiatrist, general practitioner or research personnel using the structured 
interview, the Mini-International Neuropsychiatric Interview (MINI)34. In the ENGAGE sample, 
patients were considered eligible if they scored ≥10 on the Patient Health Questionnaire 9 
(PHQ-9), a threshold with 88% specificity for major depressive disorder35, and had a qualifying 
BMI at study screening. Comorbidities were ascertained from electronic health records.
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as well as 137 healthy controls (Table 1 and Supplementary Table 1). 
At the time of baseline scanning, 95% of participants were not receiv-
ing any antidepressant treatments and none of the participants was 
diagnosed with a substance-dependent disorder. We used the same 
image-processing procedure in a treatment dataset consisting of 250 
participants who were reassessed after completing treatment trials. 
During these trials, the participants were randomly assigned to receive 
one of three commonly prescribed antidepressant medications (escit-
alopram, sertraline or venlafaxine extended release (XR)18 (n = 164)) or 
an established behavioral intervention that integrated problem-solving 
with behavioral activation, compared with treatment as usual19 (n = 86) 
(Supplementary Tables 1 and 2).

Using our image-processing system, we obtained 41 measures of 
activation and connectivity of 6 brain circuits of interest for each par-
ticipant20. We have previously shown that these circuit measures satisfy 
psychometric criteria for construct validation, internal consistency and 
generalizability20. A unique feature of our image-processing system 
is that quantified circuit measures are expressed in terms of s.d. units 
from the mean of a healthy reference sample, and thus are interpret-
able for each individual. We refer to the resulting measures as ‘regional 
circuit scores’ (Fig. 1 and see Supplementary Methods for details).

To generate biotypes based on regional circuit scores of clinical 
participants, we used these scores as inputs for a hierarchical cluster-
ing algorithm (Fig. 1 and Methods). We generated solutions for 2–15 
clusters and evaluated them as shown in Fig. 2.

Biotype validation
We validated our biotypes using six convergent sources of evidence: 
the elbow method (Fig. 2a); two procedures proposed by Dinga 
et al.14 to evaluate the evidence for biotypes of depression and anxiety 
(simulation-based significance testing of the silhouette index (Fig. 2b) 
and stability using leave-one-out, and leave-20%-out crossvalidation 
(Fig. 2d,e)); an additional permutation-based significance testing of 
the silhouette index (Fig. 2c); split-half reliability of the cluster profiles 
(Fig. 2f); and the match of the solution to a theoretical framework of 
circuit dysfunction in depression and anxiety supported by previous 
brain imaging research17 (Fig. 2g).

The elbow method showed an elbow at five clusters and another, 
smaller elbow, at nine clusters, which suggested that the opti-
mal solution lay between these two values (Supplementary Fig. 1). 
Simulation-based significance testing of the silhouette index showed 
that solutions with five or more clusters had a silhouette index that was 
significantly higher than that obtained by clustering data from a mul-
tivariate normal distribution (all P < 0.05; Supplementary Fig. 2) and 
significantly higher than that obtained by a permutation of the circuit 
scores across participants (P < 0.05; Supplementary Fig. 3). Assessment 
of cluster stability using crossvalidation showed that all solutions had 
good stability (adjusted Rand index (ARI) > 0.75 for leave-one-out and 
ARI > 0.28 for leave-20%-out) (Supplementary Fig. 4).

Across all validation analyses, six emerged as a viable number of 
clusters. The silhouette index tests comparing the data with data from 
a multivariate normal distribution and with a permutation of the circuit 
scores across participants were significant for this solution (mean 
silhouette = 0.065, P = 0.016 and P < 0.0001, respectively) and cross-
validation showed that it had good stability (leave-study-out ARI = 0.80 
and leave-20%-out ARI = 0.35). Also, in the six-cluster solution, a cluster 
emerged that was characterized by reduced task-evoked activation 
during cognitive control, which we had specifically hypothesized16,17.

The six resulting biotypes were distinguished by specific profiles 
of both task-free and task-evoked activity and/or connectivity, relative 
both to each other and to our healthy reference sample. To assign a 
name to these distinctive circuit profiles, we determined which circuit 
features, activity or connectivity were distinguished by a difference of 
at least 0.50 s.d. in magnitude away from the healthy reference sample. 
The distinct activity and connectivity profiles of each biotype are illus-
trated using a circuit schematic and numerical plot in Fig. 3 with further 
details illustrated in bar plots in Supplementary Fig. 5. We named each 
biotype according to the circuits and circuit features that specifically 
differentiated them at this threshold relative to each other and to the 
healthy reference sample. We used the following nomenclature (each 
circuit is indicated with a letter): D, default mode; S, salience; A, atten-
tion; NS, negative affect circuit evoked by sad stimuli; NTC, negative 
affect circuit evoked by conscious threat stimuli; NTN, negative affect 
circuit evoked by nonconscious threat stimuli; P, positive affect circuit; 
C, cognitive circuit. The distinguishing circuit feature is indicated as a 
subscript: C, connectivity; A, activity, and the direction of dysfunction 
is indicated by + or −. These distinct profiles were also replicated when 
conducting the clustering procedure on a random half of the data and 
assigning participants in the second independent half of the data to 
each cluster (Supplementary Fig. 6).

Biotype DC+SC+AC+ (n = 169) was distinguished by relative intrinsic 
hyperconnectivity within the default mode circuit, as well as in the 
task-free salience and attention circuits (Fig. 3a). In contrast, biotype 
AC− (n = 161) was distinguished by a relative reduction in intrinsic con-
nectivity specific to the attention circuit (Fig. 3b). Biotype NSA+PA+ 
(n = 154) was characterized by heightened activity during conscious 
emotion processing, specifically within the negative affect circuit 
evoked by sad stimuli and within the positive affect circuit evoked by 
happy stimuli (Fig. 3c). Biotype CA+ (n = 258) was distinguished specifi-
cally by increased activity within the cognitive control circuit during 
the inhibition of NoGo stimuli (Fig. 3d). Biotype NTCC-CA− (n = 15) was a 
smaller cluster differentiated by a relative loss of functional connectiv-
ity within the negative affect circuit during the conscious processing 
of threat faces, as well as by reduced (rather than heightened) activity 
within the cognitive control circuit during the inhibition of NoGo stimuli 
(Fig. 3e). Biotype DXSXAXNXPXCX (n = 44) was not differentiated by a sub-
stantial circuit dysfunction relative to other biotypes or to the healthy 
norm; we indicated this by using the subscript x instead of + or − (Fig. 3f).

Fig. 1 | Overview of the participant-level image-processing and analysis 
pipeline. a, Measures of task-based activation and functional connectivity 
and task-free connectivity derived from regions belonging to six circuits for 
which we have established relevance to depression and anxiety. (i) Default 
mode (D), salience (S) and attention (A) circuits were derived from the task-free 
periods of the fMRI. The Negative and Positive (P) circuits were engaged by a 
facial expressions task. In particular, the Negative circuit was engaged in Threat 
Conscious (NTC), Threat Non-conscious (NTN) and Sad (NS) conditions. The 
cognitive control circuit (C) was engaged by a Go–NoGo task. (ii) We defined 
the regions of interest comprising each circuit from the meta-analytic platform 
Neurosynth and refined them based on quality control, a set of psychometric 
criteria and whether they were implicated in depression and anxiety. (iii) 
We extracted functional connectivity between circuit regions for task-free 
circuits, and activation and connectivity of regions for task-engaged circuits 
(regions shown as sphere, connectivity shown as lines). b, We then expressed 

these measures as s.d. values compared with healthy participants to obtain 
personalized regional circuit scores for each individual. See Supplementary 
Table 18 for the full list of scores. c, We computed the distance between each 
pair of individuals as 1 − the correlation of their regional circuit scores. d, We 
show the distance matrix between the first 100 participants as a heatmap for 
illustrative purposes. e, We then used the distances obtained as input for a 
hierarchical clustering analysis. The individuals depicted have given permission 
to be included in published facial emotion stimulus sets36,37. AG, angular gyrus; 
aI, anterior insula; aIPL, anterior inferior parietal lobule; amPFC, anterior 
medial prefrontal cortex; Amy, amygdala; dACC, dorsal anterior cingulate 
cortex; DLPFC, dorsolateral prefrontal cortex; LPFC, lateral prefrontal cortex; 
msPFC, medial superior prefrontal cortex; PCC, posterior cingulate cortex; 
PCU, precuneus; pgACC, pregenual anterior cingulate cortex; sgACC, subgenual 
anterior cingulate cortex; vmPFC, venteromedial prefrontal cortex.
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These distinct biotype circuit profiles were not explained by differ-
ences in scanners, because we removed scanner effects from our data 
using ComBat (Methods) and verified that the distribution of biotypes 
did not differ across scanners (χ2 = 12.773, two-sided P = 0.237).

Biotypes differ on symptoms, behavior and treatment 
response
To further characterize the clinical phenotypes distinguished by each 
circuit biotype, we evaluated the biotype profiles on three different 

domains of clinically meaningful measures (Fig. 4): severity of symp-
toms, performance on general and emotional cognitive tests and dif-
ferential treatment response. We highlight that the circuit biotypes 
derived from clustering were differentiated using only circuit inputs 
assessed independently from these domains of clinical information 
such that symptoms, performance and treatment response represented 
external validation measures.

We first asked whether the biotypes were distinguished by the 
severity of symptoms of depression and anxiety. To address this 

Intrinsic Intrinsic Intrinsic
Threat

conscious
Threat

nonconscious Happy Inhibition

PRESS

Sad

amPFC

(i)

a    Imaging features extraction

d    Distance between clinical participants

b    Referencing to healthy norm c    Generation of personalized regional circuit scores

e    Hierarchical clustering

(ii)

(iii)

Neurosynth-
derived regions

Condition

Activation and
connectivity

Distance
2.0

1

r = –0.072
Distance = 1 – (–0.072) = 1.072

0

–1

D
2D

1 C
D

1D
3 C

D
1D

4 C
D

2D
4 C

D
3D

4 C
S1

S3
C

S2
S4

C
S1

S2
C

A1
A2

C
A3

A1
C

A4
A2

C
A5

A3
C

A4
A6

C
A5

A7
C

N
S1

A
N

S2
A

N
S3

A
N

S4
A

N
S5

A
N

S2
N

S1
C

N
S3

N
S1

C
N

S4
N

S1
C

N
S5

N
S1

C
N

TC
1 A

N
TC

2 A
N

TC
3 A

N
TC

2N
TC

1 C
N

TN
3N

TN
1 C

N
TN

1 A
N

TN
2 A

N
TN

3 A
N

TN
2N

TN
1 C

N
TN

3N
TN

1 C P1
A

P2
A

P3
A

C
1 A

C
2 A

C
3 A

C
1C

2 C
C

3C
2 C

Pe
rs

on
al

iz
ed

 re
gi

on
al

 c
irc

ui
t s

co
re

1.5

1.00 0.75 0.50

Height

0.25 0

1.0

0.5

0

aI

Amy Amy aIPL aIPL

LPFCLPFC

AG

D1

D2 D4 D3 S3 S4 A4
A6 A7

A5
NS4 NS5 NTC2 NTC3 NTN2 NTN3

S1 S2
A2

A1
A3

NS2

NS1 NTC1 NTN1 P1

P2 P3

C2

C3C1NS3

AGPCC PCU

Amy Amy Amy Amy Amy Amy Striatum

aI aI aI
msPFC pgACC dACC/sgACC dACC/sgACC vmPFC DLPFC dACC DLPFC

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | July 2024 | 2076–2087 2080

Article https://doi.org/10.1038/s41591-024-03057-9

question, we used Mann–Whitney U-tests to compare the symptom 
severity of each biotype to the median symptom severity of all clinical 
participants not in the biotype (Supplementary Fig. 10 and Supplemen-
tary Tables 3 and 4). For insomnia and suicidality, these comparisons 
were conducted using χ2 tests instead (Supplementary Fig. 11 and Sup-
plementary Table 5). We considered significant tests for which P < 0.05. 

We then replicated significant findings in split-half and leave-study-out 
analyses (Fig. 2h,j).

Second, we assessed whether biotypes are distinguished by perfor-
mance on a computerized battery of general and emotional cognitive 
tests relevant to daily social and occupational function. We conducted 
these analyses as described above for symptoms (Supplementary 
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Fig. 2 | Overview of biotype validation. a, We selected candidate biotype 
solutions selected based on the sum of within-cluster distances. b, We evaluated 
the silhouette index of our solutions relative to a null multinormal distribution 
with conserved covariance between individuals14. c, We compared the silhouette 
index of our solutions relative to a solution using permuted participant labels, 
such that participant–brain correspondence was broken. d,e, We repeated our 
clustering approach leaving one participant out, 801× (d), as well as leaving out 
20% of participants, 10,000× (e). In each iteration, we subsequently evaluated 
the overlap between participant biotype assignment in our original solution 
and each iterative solution by calculating the ARI. f, We evaluated the circuit 
measurements associated with each biotype across our original dataset and in 
two random halves of our original dataset separately. Circuit measurements that 
were consistently >0.5 s.d. from the mean across all these three samples were 
considered to be stable. g, We referenced the profile of circuit dysfunction to 
those found in the literature. h,i, To establish the clinical validity of our biotypes, 

we evaluated the cluster-specific differences in reported symptoms (h) and 
performances in a computerized cognitive battery (i). After establishing these 
differences in the full sample, we evaluated the stability of these symptom and 
behavioral profiles across two random half-splits of our data, deriving, each 
time, biotypes from the first half and assigning participants in the second half to 
a biotype derived from the first. We also followed the same procedure in a leave-
study-out framework, leaving one of four of our studies out in each iteration. 
j,k, We subsequently evaluated the stability of biotype-specific symptom (j) and 
cognitive (k) differences relative to out-of-biotype participants in each iteration. 
We considered a difference to be stable when it was statistically significant in 
the whole sample and in each of the two random half-splits or in each of the two 
splits of a leave-study-out iteration. l, To evaluate the clinical utility of our cluster 
biotypes, we tested for differential symptom severity of each biotype to multiple 
depression treatments. Plots in this figure are only for illustrating the steps of our 
analysis.
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Fig. 12 and Supplementary Tables 6 and 7). We then replicated sig-
nificant findings in split-half and leave-study-out analyses (Fig. 2i,k).

Third, we assessed whether the biotypes predicted differential 
treatment response to one of the three pharmacotherapies or to 
behavioral therapy versus usual care. We conducted these analyses as 
described above for symptoms and behavior (Fig. 2l, Supplementary 
Fig. 13 and Supplementary Tables 8–10).

Biotype DC+SC+AC+, characterized by task-free circuit hyperconnec-
tivity, had slowed behavioral responses in identifying sad faces (effect 
size (ES) = 0.289, P = 0.001, confidence interval (CI) = (−0.072, 0.289), 
replicated in leave-study-out), increased errors in an executive function 
task (ES = 0.175, P = 0.044, CI = (9−0.182, 0.166)), fewer commission 
errors in a cognitive control task (ES = −0.275, P = 0.002, CI = (−0.505, 
−0.217), replicated in leave-study-out) slowed responses to target stimuli 
in a sustained attention task (ES = 0.336, P = 0.0001, CI = (0.714, 1.099)) 
(see Fig. 4a and Supplementary Figs. 10–12 for detailed visualization 
and Supplementary Tables 3–7 for comparisons). The biotype DC+SC+AC+ 
responded better to I-CARE compared with other biotypes (ES = −0.612, 
P = 0.037, CI = (0.137, 0.306), responders = 42%, remitters = 25%) (Fig. 4a, 
Supplementary Fig. 13 and Supplementary Tables 8–10).

Biotype AC-, characterized by task-free attention circuit hypoc-
onnectivity, had relatively less severe tension (ES = −0.196, P = 0.049, 
CI = (11.5, 15)), but was also differentiated by relatively lower cognitive 
dyscontrol (ES = −0.305, P = 0.006, CI = (15.5; 17.5)). In computerized 
tests, AC− was distinguished by faster responses to target Go stimuli 
on the Go–NoGo task, (ES = −0.383, P = 6.20 × 10−6, CI = (0.180, 0.510), 
replicated in split-half), more commission and omission errors on the 
sustained attention task (ES = 0.300, P = 0.0004, CI = (−0.302, −0.019); 
ES = 0.198, P = 0.020, CI = (−0.308, −0.010)) and faster responses to 
priming by implicit threat stimuli (ES = −0.256, P = 0.002, CI = (−0.111, 
0.112)) (see Fig. 4b and Supplementary Figs. 10–12 for detailed visualiza-
tion and Supplementary Tables 3–7 for comparisons). The AC− biotype 
had comparatively worse response to I-CARE (ES = 0.593, P = 0.002, 
CI = (0.219; 0.350), responders = 26%, remitters = 22%) (Fig. 4a, Sup-
plementary Fig. 13 and Supplementary Tables 8–10).

Biotype NSA+PA+, distinguished by circuit hyperactivation during con-
scious emotion processing, was distinguished by more severe anhedonia 

(ES = 0.343, P = 0.014, CI = (2, 4.5)) and ruminative brooding (ES = 0.294, 
P = 0.036, CI = (55.5, 63)) (Fig. 4c; see Supplementary Figs. 10–12 for 
detailed visualization and Supplementary Tables 3–7 for comparisons).
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Fig. 3 | Clustering of regional brain circuit scores identifies six biotypes of 
depression and anxiety. a–f, Schematic circuit images illustrating the profile 
of circuit dysfunction defining each biotype (biotypes are labeled a–f). Circuits 
are distinguished by colors that correspond to the circuit measure inputs 
(Fig. 1c). Spheres represent the regions within each biotype-defining circuit 
and the size of the spheres represents the magnitude of activation deviation 
from the healthy reference (small spheres, activation ≤0.5 s.d. below the healthy 
reference; large spheres, activation ≥0.5 s.d. above the healthy reference). The 
thickness of lines between the spheres denotes a connectivity deviation (dashed 
lines, decreased connectivity ≤0.5 s.d. below the healthy reference; thick lines, 
increased connectivity ≥0.5 s.d. above the healthy reference). Column plots 
display the average activity across regions that define each circuit or the average 
connectivity between regions that define each circuit. A visualization of each 
regional circuit score by biotype is in Supplementary Fig. 5. In bar plots, we 
highlight circuits that showed a mean difference of at least 0.50 s.d. below or above 
the healthy reference. We named each biotype according to the features that 
differentiated it from the healthy reference. Each circuit is indicated with a letter, 
the distinguishing circuit feature is indicated as a subscript and the direction of 
dysfunction is indicated by + or −. The subscript x indicates that the sixth biotype is 
not differentiated by a prominent circuit dysfunction. Besides this nomenclature, 
we suggest a short description for each biotype, which connects them with our 
theoretically synthesized biotypes: DC+SC+AC+, default with salience and attention 
hyperconnectivity (n = 169 participants); AC−, attention hypoconnectivity 
(n = 161 participants); NSA+PA+, sad-elicited negative affect with positive affect 
hyperactivation (n = 154 participants); CA+, cognitive control hyperactivation 
(n = 258 participants); NTCC−CA−, cognitive control hypoactivation with conscious 
threat-elicited negative affect hypoconnectivity (n = 15 participants); and 
DXSXAXNXPXCX, intact activation and connectivity (n = 44 participants).
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Biotype CA+, distinguished by heightened activity within the cog-
nitive control circuit, had more severe anhedonia than other biotypes 
(ES = 0.295, P = 0.015, CI = (2, 3.5)), more anxious arousal (ES = 0.218, 
P = 0.003, CI = (15.5, 17.5)), more negative bias (ES = 0.188, P = 0.003, 
CI = (15, 18.5), replicated in split-half) and more threat dysregula-
tion (ES = 0.317, P = 5.07 × 10−7, CI = [7.5, 9], replicated in split-half and 
leave-study-out). Behaviorally, CA+ had more errors and completion 
time in the executive function task (ES = 0.164, P = 0.017, CI = (−0.268, 
−0.027) and ES = 0.152, P = 0.027, CI = (−0.164, 0.090)), more commis-
sion errors in the Go–NoGo task (ES = 0.158, P = 0.022, CI = (−0.201, 
0.035), replicated in split-half) and more omission errors to target 
stimuli on the sustained attention task (ES = 0.275, P = 6.46 × 10−5, 
CI = (−0.045, 0.170), replicated in split-half and leave-study-out) 
(Fig. 4c; see Supplementary Figs. 10–12 for detailed visualization and 
Supplementary Tables 3–7 for comparisons). This biotype showed a 
better response to venlafaxine compared with the others (ES = −0.426, 
P = 0.034, CI = (0.132, 0.226), responders = 64%, remitters = 40%) 
(Fig. 4c, Supplementary Fig. 13 and Supplementary Tables 8–10).

Biotype NTCC-CA-, differentiated by loss of functional connectivity 
within the negative affect circuit during the conscious processing of 
threat faces, as well as reduced activity within the cognitive control 
circuit, had less ruminative brooding compared with the other biotypes 
(ES = −0.902, P = 0.036, CI = (46, 5)), as well as faster reaction times to 
implicit sad faces (ES = −0.669, P = 0.024, CI = (−1.316, −0.315)) (Fig. 4d; 
see Supplementary Figs. 10–12 for detailed visualization and Supple-
mentary Tables 3–7 for comparisons).

Biotype DXSXAXNXPXCX was not differentiated by a prominent cir-
cuit dysfunction relative to other biotypes or the healthy norm; how-
ever, it was distinguished by slower reaction times to implicit threat 
priming (ES = 0.516, P = 0.001, CI = (0.254, 0.611)) (Fig. 4e; see Sup-
plementary Figs. 10–12 for detailed visualization and Supplementary 
Tables 3–7 for comparisons).

Finally, we also considered the demographic factors of age and bio-
logical sex. The biotypes did not differ in sex distribution (χ2 = 12.643, 
P = 0.244) and only the AC− biotype was, on average, slightly older 
than the other biotypes; importantly, however, participants in this 
biotype were still within the young to mid-adult age range (mean age: 
39.69 years, s.d. = 15.739, F = 8.761, P = 4.21 × 10−8). Biotypes were also 
represented differently between datasets, which we expected given the 
clinical differences between the participants enrolled into each study 
(χ2 = 161.37, P = 2.2 × 10−16) (Supplementary Table 11).

As a context for the above evaluation of how biotypes were dis-
tinguished by symptoms, performance and treatment response, we 
evaluated the correlations between circuit scores and these external 
measures in the full sample across clusters combined (Supplementary 
Figs. 7–9). When thresholded with the false discovery rate correction 
for all pairwise correlations, we observed significant associations 
between circuit scores and 21% of the symptom measures, 10% of the 
performance measures and 31% of the treatment response measures.

Biotypes are transdiagnostic
The distinct clinical and treatment profiles that distinguish the six 
biotypes indicate that these circuit-derived biotypes dissect the 

heterogeneity of the traditional diagnostic classification of depression. 
We next asked whether biotypes transcend diagnostic classifications 
across the diagnoses that are related to and comorbid with depression. 
Our sample was composed of participants who met traditional diag-
nostic criteria for major depressive disorder (n = 375), generalized anxi-
ety disorder (n = 192), panic disorder (n = 75), social anxiety disorder 
(n = 179), obsessive–compulsive disorder (n = 47) and post-traumatic 
stress disorder (n = 37). Several participants also met criteria for more 
than one diagnosis (n = 221) (Table 1).

The only diagnosis with a different frequency across biotypes was 
current major depressive disorder (χ2 = 24.235, two-sided P = 0.0002). 
In particular, the AC− biotype had the highest proportion of participants 
with current major depressive disorder and the DXSXAXNXPXCX cluster 
had the lowest proportion (Fig. 5 and Supplementary Table 12).

Brain circuit scores outperform other features for biotyping
To compare prior approaches for biotyping with ours, we repeated our 
analysis using three competing alternative feature sets, each used in 
a recent paper reporting the identification of biotypes of depression 
using resting state fMRI. We then evaluated the results with the same 
criteria that we used for our own features (Fig. 2). Our findings show 
that our feature set is the only one that outperforms the null hypothesis 
of no clusters based on simulating data from a multinormal distribu-
tion with the same covariance as the original data (P = 0.016). In direct 
statistical comparisons of clustering performance between feature 
sets used as inputs, our combination of task and task-free regional 
circuit scores outperformed whole-brain connectomes (silhouette 
difference = −0.026, Presample = 0.049, Ppermute < 0.0001) and default mode 
network resting state connectivity (silhouette difference = −0.012, 
Presample = 0.256, Ppermute < 0.0001), but not connectivity of a network 
centered on the angular gyrus (silhouette difference = 0.155, Presample = 1, 
Ppermute = 1). The other feature sets also yielded associations among 
various metrics of biotypes, symptoms, behavioral performance and 
treatment response (Supplementary Tables 13 and 14).

To assess the impact of including task fMRI measures in addition 
to task-free brain circuit scores only, we also evaluated, in the same 
way, the results obtained using only our task-free brain circuit scores 
as input. To do so we showed that limiting the analysis to task-free 
brain circuit scores generated results that did not outperform the null 
hypothesis of no clusters based on simulating data from a multinormal 
distribution with the same covariance as the original data. Task-based 
brain circuit scores were also necessary to obtain symptom differences 
that generalize across random split-halves and behavior differences 
that generalize across the leave-study-out splits, depending on the 
number of clusters chosen (Supplementary Table 15).

Discussion
To enable more precise diagnosis and selection of the best treatment 
for each individual, we need to dissect the heterogeneity of depression 
and anxiety. The dominant ‘one-size-fits-all’ diagnostic approach in 
psychiatry leads to cycling through treatment options by trial and error, 
which is lengthy, expensive and frustrating, with 30–40% of patients 
not achieving remission after trying one treatment21.

Fig. 4 | Summary results of clinical features distinguishing each biotype  
from the other biotypes. a–f, Circuit biotypes are visualized using circuit 
schematics on the left (biotypes are labeled a–f). We first compared these circuit 
biotypes on symptoms of depression and related anxiety (column ‘Symptom 
severity’). Next, we compared biotypes on behavioral performance on general 
and emotional cognitive tests relevant to social and occupational function 
(column ‘Behavioral dysfunction’). We compared biotypes on severity after 
treatment with one of three antidepressant pharmacotherapies (escitalopram, 
sertraline or venlafaxine XR), a behavioral problem-solving therapy (I-CARE)  
or usual care (U-CARE) (column ‘Severity after treatment’). To facilitate 
comparison across units of analysis, all measures were scaled between 0 and 1  

so that 0 would represent minimum severity/dysfunction and 1 maximum 
severity/dysfunction. The column ‘Severity after treatment’ shows differences 
in symptom severity posttreatment (that is, lower values correspond to better 
treatment response). Comparisons on severity after treatment were conducted 
only for biotype/treatment combinations having n ≥ 5, so only those are shown. 
We used the biotype nomenclature used previously. The subscript x indicates 
that the sixth biotype is not differentiated by a prominent circuit dysfunction 
relative to other biotypes. Besides this nomenclature, we suggest a short plain-
English description for each biotype (in quotes), which connects them with our 
theoretically synthesized biotypes (as shown in Fig. 3).
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In the present study, we focus on the conceptualization of depres-
sion and anxiety as disorders of brain circuit function22. Using cluster-
ing and a new imaging system for the standardized quantification of 

circuit dysfunction at the level of the individual, we characterized 
six biotypes of depression and anxiety defined by specific profiles 
of dysfunction within both task-free and task-evoked brain circuits.  
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These biotypes were validated using several procedures including 
simulations, crossvalidation and replication in held-out data. We found 
that the biotypes were distinguished by symptoms and behavioral 
performance on general and emotional cognitive tests that were not 
used as inputs in the clustering procedure. Importantly, some of these 
associations were replicated in split-half and leave-study-out proce-
dures. We also showed that the six biotypes cut across the diagnostic 

boundaries of depression, anxiety and related comorbid disorders. 
Importantly for clinical translation, these biotypes predict response 
to different pharmacological and behavioral interventions.

We believe that this is the first identification of brain-derived 
biotypes that uses standardized personalized quantification of both 
task-free and task-evoked brain circuit dysfunctions and assesses 
response of the biotypes across different types of treatment. Rather 
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Fig. 5 | Frequency of diagnoses across biotypes. We show the proportion of 
participants in each biotype who meet diagnostic criteria for major depressive 
disorder, generalized anxiety disorder, panic disorder, social anxiety disorder, 
obsessive–compulsive disorder and post-traumatic stress disorder (biotypes are 
labeled a–f). χ2 tests revealed that the frequency of major depressive disorder 
was significantly different across biotypes (two-sided χ2 = 24.235, P = 0.0002). 

We used the same biotype nomenclature as previously. The subscript x indicates 
that the sixth biotype is not differentiated by a prominent circuit dysfunction 
relative to other biotypes. Besides this nomenclature, we suggest a short plain-
English description for each biotype (in quotes), which connects them with our 
theoretically synthesized biotypes, again as expressed in the legend to Fig. 3.
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than pursuing a fully data-driven approach, we integrated an unsu-
pervised clustering analysis with a theoretical framework suitable for 
interpretability (Supplementary Table 16). We did this to minimize 
the possibility of overfitting and to generate solutions suited to the 
prospective selection of patients by biotype for future precision psy-
chiatry trials. In this hybrid approach, each biotype was typified by a 
specific circuit dysfunction relative to a healthy norm, which mapped 
on to a unique transdiagnostic clinical phenotype.

Although our identification of six biotypes is one of many possi-
ble solutions to disentangling heterogeneity, these biotypes indicate 
that there may be multiple neural pathways that result in the clinical 
manifestation of depression and anxiety. By combining imaging data 
with clinical symptoms and behavior, we delineated clinical patterns 
that are consistent with the putative function of the circuits underlying 
each biotype. Importantly, although some biotypes were characterized 
exclusively by alterations in task-free intrinsic connectivity, others 
were characterized by alterations in task-evoked changes in activity 
and connectivity.

In the task-free state, DC+SC+AC+ was distinguished by hyperconnec-
tivity of the default mode circuit, coupled with hyperconnectivity of 
both salience and attention circuits, correlating clinically with slowed 
emotional and attentional responses, replicated in split-half analyses. 
Although previous studies have reported circuit alterations in each of 
these circuits in depression and anxiety, our findings indicate that the 
DC+SC+AC+ biotype exhibits a combination of these alterations. In line 
with our theoretical taxonomy, the AC+ biotype demonstrated hypocon-
nectivity rather than hyperconnectivity within the frontoparietal atten-
tion circuit. This pattern corresponded to a clinical profile of lapses in 
concentration and impulsivity, replicated in split-half analyses.

Under task conditions, the NSA+PA+ biotype displayed heightened 
activation within subcortical and cortical brain regions associated with 
processing both sad and positive emotions. Clinically, this biotype 
also exhibited prominent anhedonia. This profile corresponds with 
previous findings of heightened activity in the medial prefrontal cortex 
in response to happy faces, which has been linked to levels of anhe-
donia23,24 and is consistent with our theoretical taxonomy. Increased 
activation of the amygdala is a common observation in depression in 
response to negative emotion25,26. Notably, biotype NSA+PA+ exhibits 
concurrent hyperactivation of the ventral striatum, which may indicate 
a negative bias alongside anhedonia17.

Two additional biotypes displayed contrasting dysfunctions within 
the cognitive control circuit. Biotype NTCC−CA− exhibited reduced acti-
vation during a cognitive control task and decreased connectivity in 
processing threat consciously. These characteristics suggest impaired 
cognitive control which is also crucial for regulating emotions. In con-
trast, CA+ showed increased activation of the cognitive control circuit. 
This was associated with threat-related symptoms, negative bias and 
poorer cognitive control, as well as working memory performance, 
confirmed by both split-half and leave-study-out analyses. The replica-
tion of biotype CA+ reinforces its inclusion as an exploratory biotype 
in our theoretical taxonomy. Although early evidence suggested that 
heightened cognitive control activity might be compensatory and not 
necessarily linked to behavioral deficits27, our findings indicate that it 
is associated with specific cognitive–behavioral impairments. These 
findings highlight the importance of including task fMRI measures in 
future precision psychiatry studies and the value of using multimodal 
approaches to achieve more precise diagnoses in depression28.

Our approach enabled us to compare the efficacy of different treat-
ments for each biotype to advance neurobiologically informed preci-
sion psychiatry. Collecting identical imaging and clinical measures 
across patients and treatments enabled us to compare the response of 
each biotype for three antidepressants, a behavioral intervention and 
treatment as usual. By doing so, we found that the DC+SC+AC+ biotype, 
characterized by hyperconnectivity of the default mode and other 
task-free circuits, was associated with a better response to behavioral 

treatment compared with the other biotypes. On the other hand, the 
biotype characterized by reduced attention circuit connectivity (AC−), 
had a worse response to behavioral treatment. Finally, biotype CA+, 
characterized by hyperactivation of the cognitive control circuit, had 
a better response to venlafaxine.

We delineated and validated biotypes using a small number of the-
oretically motivated features. By integrating theoretically grounded, 
task-evoked and task-free measures, our analysis provides unique 
insights that are complementary to those of foundational large stud-
ies that have analyzed task-free data using whole-brain techniques4,15. 
Nevertheless, as this is the first demonstration, to our knowledge, of a 
participant-level approach to cluster-derived biotyping using a small 
number of task-evoked and task-free features, our results should be 
interpreted with caution. Future studies are needed to investigate these 
biotypes in new datasets and to prospectively assign participants to 
treatment based on their biotypes. Also, we acknowledge that obtaining 
task fMRI measures can be more burdensome than collecting task-free 
measures only. We compared our results with results obtained using 
task-free data only and found that including both task and task-free data 
provided the best validation results, especially in beyond-chance clus-
tering of subjects in feature space. In direct statistical comparisons of 
clustering performance, our combination of task and task-free regional 
circuit scores outperformed whole-brain connectomes, default mode 
network task-free connectivity and task-free regional circuit scores 
alone, but not connectivity of a network centered on the angular gyrus; 
however, the last approach did not provide generalizable symptom 
differences between clusters. Alternative feature sets also yielded 
several reproducible associations among clusters, symptoms and 
behavioral performance, consistent with the previous literature. This 
demonstrates that our approach, although potentially advantageous, 
does not negate the potential of other feature selection processes for 
depression biotyping. Future biotyping studies with both task-based 
and task-free data should consider comparing the performance of each.

Some strengths of our sample are that it represents the entire 
spectrum of depression and anxiety severity, is almost completely 
unmedicated (95%) and is recruited from a variety of settings. The sam-
ple also features common comorbidities that are often exclusion cri-
teria. However, by including such a diverse population, we potentially 
reduce our ability to detect additional biotypes that might be more 
specific to certain clinical settings. It is also possible that some biotypes 
reflect contributions from comorbidities, which warrants replication 
in larger transdiagnostic samples. Another possibility is that biotypes 
are at least partially driven by differences in demographics between 
datasets. It would not be surprising, for example, if certain age groups 
belonged more to biotypes characterized by specific brain and clinical 
dysfunctions, because psychiatric symptoms, treatment response 
and brain biology all vary with age. We used identical imaging meas-
ures to evaluate biotypes across multiple treatments. However, some 
treatment groups within a biotype were small and could be unduly 
influenced by comorbidities or treatment design factors; therefore, 
it is important that the generalizability of our findings be tested by 
future large treatment studies. We also acknowledge that our imaging 
measures use a specific set of fMRI tasks that are not widely available. 
Future replications of our approach will be facilitated by the fact that 
our tasks are relatively short and easy to implement, as demonstrated 
by their adoption for large clinical trials such as iSPOT-D, ENGAGE and 
a recent trial using TMS in treatment-resistant depression29. Future 
studies could also evaluate whether similar clusters can be derived from 
different tasks that tap into similar domains and compare the results 
with ours. Our large sample allowed us to evaluate the generalizability 
of symptom and behavioral differences in split-half and leave-study-out 
validations. However, the number of participants of clinical trials was 
too small to perform such analyses for treatment response (n < 10 for 
90% of comparisons; Supplementary Table 8). Future studies should 
apply our approach to clinical trial data to verify these findings, which 
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should be interpreted prudently until they can be validated in new 
samples. Finally, the symptom differences between biotypes that we 
detected were mostly small, with effect sizes ranging from 0.08 to 0.90. 
The small size of these differences might be a reason why most compari-
sons did not reach statistical significance when splitting the dataset in 
two random halves or by study and analyzing each split independently. 
Small effect sizes in the association between imaging and symptom 
variables are common30, highlighting the need for consistent measures 
across studies and for finer-grained clinical measures. In the present 
study, we show the utility of combining four studies using standardized 
measures. We recommend interpreting the clinical results that did not 
survive our validation analyses with caution, but the present study is 
nevertheless a foundation to further test these results.

In conclusion, we leveraged personalized regional dysfunction 
scores grounded in a theoretical taxonomy of brain dysfunction in 
mood and anxiety disorders to identify six biotypes in a large trans-
diagnostic sample of unmedicated individuals with depression and 
anxiety. These biotypes differed significantly in symptom profiles, 
performance on behavioral testing and responses to multiple treat-
ments. Our results validate a new theory-driven method for depres-
sion biotyping as well as a promising approach to advancing precision 
clinical care in psychiatry.
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Methods
Samples
Data were obtained from four studies: International Study to Predict 
Optimized Treatment in Depression (iSPOT-D18, https://clinicaltrials.
gov/ct2/show/NCT00693849), Research on Anxiety and Depression 
study (RAD38), Human Connectome Project for Disordered Emotional 
States (HCP-DES39) and Engaging self-regulation targets to under-
stand the mechanisms of behavior change and improve mood and 
weight outcome (ENGAGE40, https://clinicaltrials.gov/ct2/show/
NCT02246413). Clinical participants from these studies (n = 801) 
represented the full spectrum of severity of depression and anxiety 
disorders (see Table 1 and Supplementary Table 1 for details). Healthy 
controls (iSPOT-D, n = 67; HCP-DES, n = 70) were used as a reference 
group for building regional circuit scores from the imaging data (see 
below). Of the 801 clinical participants, 250 completed randomized 
controlled trials of either antidepressant pharmacotherapy for major 
depressive disorder (n = 164)18 or behavioral intervention for clinically 
substantial depressive symptoms and obesity (n = 86)40 (see Supple-
mentary Table 2 for more details).

All participants provided written informed consent. Procedures 
were approved by the Stanford University Institutional Review Board 
(IRB, protocol nos. 27937 and 41837) or the Western Sydney Area Health 
Service Human Research Ethics Committee.

MRI acquisition and preprocessing
Details of MRI sequences, fMRI tasks, MRI data quantification and 
quality control are given in Supplementary Methods.

Acquisition. Participants underwent the Stanford Et Cere Image Pro-
cessing System protocol, which probes six brain circuits: default mode 
circuit, salience circuit, attention circuit, negative affect circuit, posi-
tive affect circuit and cognitive control circuit17,20. The Facial Expres-
sions of Emotion Tasks probed the positive and negative affect circuits 
and a Go–NoGo task probed the cognitive control circuit. We derived 
measures of task-free function of the default mode, attention and sali-
ence circuits from the task data41,42. Task-free measures were independ-
ent of those obtained from the task conditions (Supplementary Fig. 14).

Preprocessing. The MRI data were preprocessed using fMRIprep43. 
We discarded scans if they contained incidental findings, major arti-
facts or signal dropouts or had >25% of volumes containing significant 
frame-wise displacement. An experienced rater (L.T.) also visually 
checked each scan, leading to the exclusion of 32 participants. Scans 
removed owing to excessive motion were: Go–NoGo task = 38, Con-
scious Facial Expressions of Emotion Task = 92, Non-conscious Facial 
Expressions of Emotion Task = 76 and task free = 51 (see Supplementary 
Table 17 for the number of scans passing criteria).

Derivation of regional circuit scores
A summary of how regional circuit scores were obtained is given in the 
following sections (Fig. 1; see Supplementary Methods for details). We 
previously demonstrated that this system produces valid and clinically 
useful individual circuit clinical scores20.

Extraction of imaging features of interest. The regions of interest 
within six circuits of interest were defined from the meta-analytic 
platform Neurosynth44 (see Supplementary Table 18 for search terms 
and coordinates) and refined by removing regions that did not pass 
quality control or psychometric criteria. Of the remaining regions, we 
only retained 29 regions implicated in our theoretical synthesis of dys-
functions in depression and anxiety20,38. From these regions, we derived 
41 features of activation, task-based and task-free connectivity for sub-
sequent analyses20 (see Supplementary Table 18 and Supplementary 
Tables S5A and S5B in ref. 20 for details on the regions of interest and 
features). Our focus on regions defined from theory, meta-analyses and 

anatomy can lead to reliable and reproducible imaging measures. For 
example, activations within anatomically defined regions of interest 
have acceptable-to-high within-participant reliability45, as does con-
nectivity within established brain networks46.

All following analyses used RStudio 2022.07.2, R v.4.1.3. Code for 
these analyses and the regions of interest to derive our imaging features 
are at https://github.com/leotozzi88/cluster_study_2023.

Imputation of missing values. As a result of missing scans and qual-
ity control, some regional circuit scores could not be computed 
for some participants: 7.57% for the default, salience and attention 
scores, 9.38% for the negative affect sad scores, 9.38% for the negative 
affect threat conscious scores, 6.72% for the negative affect threat 
nonconscious scores, 4.05% for the cognitive control scores and 
9.38% for the positive affect scores. We imputed these values sep-
arately for each scanner by using multiple imputation by chained 
equations with random forests (R package miceRanger), using one iter-
ation of a predictive mean matching model with the imaging features as  
the input.

Correction for scanner effects. We removed the potential confound-
ing effect of between-scanner variability using ComBat47–49, an estab-
lished method that uses an empirical Bayesian framework to remove 
batch effects.

Referencing to a healthy norm. All imaging features of the clinical 
participants were expressed in s.d. units relative to the mean and s.d. 
of healthy controls. These values are henceforth referred to as ‘regional 
circuit scores’ and represent the amount of dysfunction of each com-
ponent of each circuit. Subsequent analyses were conducted on the 
regional circuit scores of the clinical participants only.

Symptom measures
We used self-reported questionnaires to operationalize: rumina-
tive worry (Penn State Worry Questionnaire—Abbreviated total50); 
ruminative brooding (Ruminative Response Scale total51); anxious 
arousal (Mood and Anxiety Questionnaire general distress subscale52); 
negative bias (Depression Anxiety and Stress Scale (DASS) depression 
subscale); threat dysregulation (DASS anxiety subscale); anhedonia 
(Snaith–Hamilton Pleasure Scale total53); cognitive dyscontrol (Bar-
ratt Impulsiveness Scale attentional impulsiveness subscale54); ten-
sion (DASS stress subscale); insomnia (Quick Inventory of Depressive 
Symptomatology—Self-Report Revised (QIDS-SR) sum of items 1–3 
(ref. 55)); and suicidality (QIDS-SR item 12). In iSPOT-D, we used the 
Hamilton Depression Rating Scale (HDRS) total score as a measure of 
depression severity56 and, in ENGAGE, we used the Symptom Checklist 
20 Depression Scale (SCL-20)57. See Supplementary Table 19 for the 
participants in each sample available for each measure.

Clinical diagnoses
DSM-IV-TR (RAD), DSM-5 (HCP-DES) or DSM-IV (iSPOT-D) criteria for 
major depressive disorder, anxiety disorder, post-traumatic stress 
disorder or obsessive–compulsive disorder were ascertained by a 
psychiatrist, general practitioner or researcher using the structured 
MINI34. In ENGAGE, patients were considered eligible if they scored ≥10 
on the PHQ-9, a threshold with 88% specificity for major depressive 
disorder35, and had a qualifying body mass index (BMI). Comorbidities 
were ascertained from electronic health records.

Behavioral performance measures
Cognitive performance was assessed using WebNeuro37,58,59. We focused 
on the tests for which our regional circuit scores have been shown 
to predict performance20: sustained attention (omission errors, 
commission errors and reaction times in a continuous performance 
test); executive function (errors and completion time of a maze test); 

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/show/NCT00693849
https://clinicaltrials.gov/ct2/show/NCT00693849
https://clinicaltrials.gov/ct2/show/NCT02246413
https://clinicaltrials.gov/ct2/show/NCT02246413
https://github.com/leotozzi88/cluster_study_2023


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03057-9

cognitive control (commission errors and reaction times in a Go–NoGo 
test); explicit emotion identification (reaction time to identify happy, 
sad, fearful and angry faces); and implicit priming bias by emotion 
(difference in reaction time in a face identification task when primed 
implicitly by happy, sad, fearful and angry faces compared with neu-
tral faces). For analyses, we used the test performance referenced to 
an age-matched norm generated by WebNeuro (z-scores). See Sup-
plementary Table 19 for the number of participants in each sample 
available for each measure.

Treatment
In iSPOT-D, participants were randomized to one of three treatments: 
escitalopram (selective serotonin reuptake inhibitor (SSRI)), sertraline 
(SSRI) or venlafaxine XR (selective serotonin–norepinephrine reuptake 
inhibitor (SNRI))18. In ENGAGE, participants were randomized to either 
a behavioral intervention combining problem-solving, behavioral 
activation and weight loss (Integrated Coaching for Better Mood and 
Weight, I-CARE) or usual care (U-CARE)19,40. No treatment was admin-
istered in HCP-DES and RAD, so these studies were not considered in 
the treatment analyses.

Identification of depression biotypes
To identify biotypes within our clinical participants, we used hierarchi-
cal clustering of their 41 regional circuit scores. We selected the optimal 
number of clusters using six convergent sources of evidence: the elbow 
method; two procedures proposed by Dinga et al.14 to evaluate biotypes of 
depression (simulation-based significance testing of the silhouette index 
and stability using crossvalidation); permutation-based significance test-
ing of the silhouette index; split-half reliability of the cluster profiles; and 
the match of the solution to a theoretical framework17 (Fig. 2).

Hierarchical clustering. For each pair of clinical participants, we 
first computed the correlation coefficient of their 41 imaging-derived 
regional circuit scores (Fig. 1). Then, we computed the dissimilarity 
between each pair of clinical participants as 1 − this correlation (see 
ref. 60 for a similar approach). We used the between-individual dis-
similarity matrix as input to hierarchical clustering using the average 
as agglomeration method.

Elbow method. The first source of evidence that we used to choose 
the optimal number of clusters was the elbow method, based on a plot 
showing the within-cluster sum of distances between participants for 
solutions between 2 and 15 clusters (Fig. 2a).

Simulation-based significance testing of silhouette. We tested 
the probability of our observed average silhouette index occurring 
under the null hypothesis of no clusters (that is, of the data coming 
from a multinormal distribution)14. For clusters between 2 and 15, 
we conducted 10,000 simulation runs, in which we drew 801 partici-
pants from a multinormal distribution that had the same mean and 
covariance for each regional circuit score as our data. These simulated 
participants were then used as input in hierarchical clustering, as 
described above, and the average silhouette index across partici-
pants was calculated. Thus, we obtained null distributions for these 
average silhouette indices. Finally, we calculated the proportion of 
average silhouette indices generated under the null that were greater 
than the one we obtained from our data (P value). We considered 
statistically significant solutions with numbers of clusters for which  
P < 0.05 (Fig. 2b).

Permutation-based significance testing of silhouette. For each num-
ber of clusters between 2 and 15, we shuffled each brain circuit score 
across subjects 10,000×, then repeated the hierarchical clustering as 
described above and calculated the average silhouette index. Thus, 
we obtained null distributions for these average silhouette indices.  

Finally, we calculated the proportion of average silhouette indices 
generated under the null that were greater than the one we obtained 
from our data (P value). We considered statistically significant solutions 
with numbers of clusters for which P < 0.05 (Fig. 2c).

Assessment of cluster stability using crossvalidation. To evaluate 
whether the clustering was stable under small perturbations to the 
data14, we repeated the clustering procedure 801×, each time with 
one participant left out. For each run and for each solution between 2 
and 15 clusters, we calculated the similarity of the new cluster assign-
ments to the original ones using the ARI (Fig. 2d). We then repeated 
this procedure while holding out 20% of the sample instead of one 
participant (Fig. 2e).

Matching of clusters to a theoretical framework. We identified the 
primary circuit dysfunction of each cluster by averaging the values 
of regional circuit scores by circuit and modality (task-based activity, 
task-based connectivity, task-free connectivity) and identifying the 
measures that showed a >0.5 s.d. absolute mean difference compared 
with the healthy norm. We then compared the profile of circuit dysfunc-
tion of each cluster with those hypothesized in a theoretical framework 
of circuit dysfunction in depression and anxiety16,17.

Split-half replication of cluster profiles. First, we split our dataset 
into two random samples of equal size. Then, we ran our clustering 
procedure on the first half-split. Then, we assigned each participant 
in the second split to one of the clusters obtained in the first half-split. 
To do so, we computed the mean circuit scores across all participants 
belonging to each cluster in the first half-split. Then, we calculated 
Pearson’s correlation coefficient between each participant’s brain 
circuit scores and these cluster-averaged scores. Each out-of-sample 
participant was assigned to the cluster for which this correlation 
was highest. Finally, we identified the primary circuit dysfunctions 
of each cluster in each split as described above (>0.5 s.d. absolute 
mean difference compared with the healthy reference data) and 
examined whether they replicated the circuit profiles found in the 
whole sample visually and by computing Pearson’s correlation coef-
ficient of the mean profile dysfunction profile of each cluster between  
splits (Fig. 2f).

Clinical characterization of biotypes
We characterized our final clustering solution by using external clinical 
measures independent of cluster inputs: symptoms, clinical diagnoses, 
performance on behavioral tests and treatment response. Importantly, 
we also replicated our findings in split-half and leave-study-out analyses 
(Fig. 2g–l).

Comparison of symptoms between biotypes. For each symptom, 
we compared the median severity of participants in each biotype to 
the median severity of participants who were not in the biotype using 
Wilcoxon’s tests. As insomnia and suicidality were assessed using only 
three and one QIDS-SR items, respectively, we used a χ2 test to compare 
the fraction of participants in the biotype who endorsed any of the 
items (total value >0) compared with participants who were not in the 
biotype. For Wilcoxon’s tests, we calculated the effect size r as the z 
statistic divided by the square root of the sample size and we considered 
significant tests for which P < 0.05 (Fig. 2h,j).

Comparison of behavioral performance between biotypes. For each 
of our behavioral performance measures, we compared the median 
performance of participants in each biotype with the median perfor-
mance of participants who were not in the biotype using Wilcoxon’s 
tests. We calculated the effect size r as the z statistic divided by the 
square root of the sample size and we considered significant tests for 
which P < 0.05 (Fig. 2i,k).
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Comparison of treatment response between biotypes. To obtain 
a comparable measure of symptom severity across our clinical trial 
datasets, we first scaled the measures of total HDRS scores (collected 
in iSPOT-D) and SCL-20 scores (collected in ENGAGE) between 0 and 1 
based on the minimum and maximum values of each scale. We defined 
response as a decrease of at least 50% of symptom severity from base-
line to follow-up and remission as follow-up HDRS ≤ 7 or SCL-20 ≤ 0.5. 
Then, for each treatment modality and each biotype, the severity of 
symptoms after treatment of participants in the biotype was compared 
with the median symptom severity of clinical participants not in the 
biotype using Wilcoxon’s tests. For these tests, we excluded biotypes 
in which only five or fewer participants received a treatment. We calcu-
lated the effect size r as the z statistic divided by the square root of the 
sample size and considered significant tests for which P < 0.05. (Fig. 2l).

Split-half replication of clinical associations. We replicated the 
significant comparisons of behavior and symptoms between biotypes 
found in the complete sample by splitting the sample into two random 
halves, repeating the clustering procedure on the first half and then 
assigning participants in the second half to the clusters obtained 
in the first half, as described above. We then conducted Wilcoxon’s 
tests as described above in each split and considered a result replica-
ble if it was significant both in the original sample and in each of the 
split-half samples (for the second split, we conducted a confirmatory 
one-sided test).

Leave-study-out replication of clinical associations. For each of the 
four studies included in our dataset, we replicated the significant com-
parisons of behavior and symptoms between biotypes by splitting the 
sample into two subsets: one containing the participants who were not 
from that study and one containing participants from that study. Then, 
we repeated the clustering procedure on the first split and assigned par-
ticipants in the second subset to the clusters obtained in the first split, 
as described above. We then conducted Wilcoxon’s tests as described 
above and considered a result replicable if it was significant in each of 
the two splits when holding out at least one study (for the second split, 
we conducted a confirmatory one-sided test).

Comparison of diagnoses between biotypes. To evaluate whether 
the clusters reflected traditional diagnostic categories, we used χ2 tests 
to compare the proportion of clinical participants in each biotype who 
met criteria for major depressive disorder, generalized anxiety disor-
der, obsessive–compulsive disorder, post-traumatic stress disorder, 
panic disorder or social phobia.

Comparison of covariates of no interest between biotypes. To verify 
that biotypes were not driven by scanner effects, we used χ2 tests to 
evaluate whether the proportion of participants in each cluster was dif-
ferent across scanners. Similarly, we used χ2 tests to examine the effects 
of gender and dataset and a one-way analysis of variance (ANOVA) to 
test whether different biotypes had different age distributions.

Comparison of brain circuit scores to other biotyping inputs. We 
selected three alternative feature sets, each used in a recent paper 
identifying biotypes of depression using resting state fMRI (to our 
knowledge, no prior publication has used task fMRI): whole-brain 
functional connectivity from the Power atlas4; functional connec-
tivity in the default mode network5; and a functional connectivity 
of the angular gyrus7. We evaluated these features using the same 
criteria that we used for our own: (1) solution outperforms null hypoth-
esis of no clusters (simulated data); (2) solution outperforms null 
hypothesis of no clusters (permuted data); (3) ARI (leave-one-out 
mean); (4) ARI (leave-20%-out mean); (5) generalizable cluster pro-
files across random split-half; (6) generalizable symptom differences 
across random split-half; (7) generalizable behavior differences 

across random split-half; (8) generalizable symptom differences 
across leave-study-out; (9) generalizable behavior differences across 
leave-study-out; and (10) biotypes differ in treatment response. For 
each of the alternative sets of features, we evaluated the number of 
clusters reported in the original paper and six clusters (the number that 
we chose in our analysis). We also conducted two statistical tests com-
paring clustering performance using our features with other features. 
First, a resampling test: we sampled 80% of participants, used each 
set of features to cluster their data and computed the corresponding 
average silhouette index over 10,000 iterations. For each set of alter-
native features, we considered as Presample the fraction of samplings in 
which the silhouette index was higher than the one obtained with our 
features. Then a permutation test: after clustering each of the imaging 
feature sets, we randomly permuted the cluster assignments 10,000× 
and computed a silhouette score for each. This provided us with null 
distributions of the silhouette index for each feature set. We then cal-
culated the difference between the null distribution of the silhouette 
index obtained using our features and each of the null distributions 
obtained from alternative features. We considered as Ppermute the pro-
portion of permutations in which the difference between the two null 
distributions was greater than that between the silhouette indices 
of the real solutions. We considered our features to provide a better 
clustering when Ppermute < 0.05 and Presample < 0.05.

Finally, we compared our original results to results obtained using 
only our task-free brain circuit scores, choosing as the number of 
clusters six (the number we chose in our analysis using all features) 
and two (the number of clusters with task-free dysfunction identified 
in our analyses).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this analysis were collected as part of the iSPOT-D, 
RAD, HCP-DES and ENGAGE studies. These datasets are available upon 
request from Stanford BrainNet at https://www.stanfordpmhw.com/
datasets. The BRAINnet repository meets the requirements for being 
public but also aligns with the procedures of other official public and 
scientific repositories such as HCP, ABCD and NDA. This choice is in 
line with the FAIRness guidelines and it respects the original funding 
requirements, allowing for appropriate source contributions and cita-
tions. Our approach is specifically designed for scientific use, which 
includes limiting access to for-profit entities to comply with the original 
funding stipulations and participant consent. Therefore, total open 
access is not feasible. Our intention is to provide public access that 
is consistent with the consent agreements and the original funding 
intentions, similar to the data shared through NIH repositories. On 
Stanford BRAINnet, we established a data access request form that 
screens users, similar to other public repositories.

Code availability
Code for the analyses and the regions of interest used to calculate the 
clinical circuit scores is available at https://github.com/leotozzi88/
cluster_study_2023.
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