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Unsupervised representation learning of
chromatin images identifies changes in cell
state and tissue organization in DCIS

Xinyi Zhang 1,2, Saradha Venkatachalapathy3,4, Daniel Paysan 3,4,
Paulina Schaerer3,4, Claudio Tripodo 5,6, Caroline Uhler 1,2 &
G. V. Shivashankar 3,4

Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to
invasive breast cancer, a leading cause of cancer death. We generate a large-
scale tissue microarray dataset of chromatin images, from 560 samples from
122 female patients in 3 disease stages and 11 phenotypic categories. Using
representation learning on chromatin images alone, without multiplexed
staining or high-throughput sequencing, we identify eight morphological cell
states and tissue features marking DCIS. All cell states are observed in all
disease stageswith different proportions, indicating that cell states enriched in
invasive cancer exist in small fractions in normal breast tissue. Tissue-level
analysis reveals significant changes in the spatial organization of cell states
across disease stages, which is predictive of disease stage and phenotypic
category. Taken together, we show that chromatin imaging represents a
powerful measure of cell state and disease stage of DCIS, providing a simple
and effective tumor biomarker.

Breast cancer is the most commonly diagnosed cancer (11.7%) and is a
leading cause of cancer death (6.9%)1. Ductal carcinoma in situ (DCIS)
accounts for about 25% of breast cancer diagnosis2–4. Currently, breast-
conserving treatment and mastectomy are recommended depending
on the extent of DCIS, but there is high variability and disagreement
regarding the choice of treatment4,5. In addition, surgery may not
always be necessary for DCIS patients: a recent study found no dif-
ference in survival rates between patients with low-grade DCIS who
received or did not receive surgery4,6. But in the absence of locor-
egional therapies after the diagnosis of DCIS, the 10-year cumulative
incidence rate of invasive cancer is about 15% and the all-cause mor-
tality rate is about 24%7. Thus, it is important to understand the
mechanism of DCIS in order to recommend the appropriate treatment
without overtreating patients.

DCIS is characterized by the abnormal proliferation of luminal
cells in the breast ducts. When DCIS progresses into Invasive Ductal

Carcinoma (IDC), the cells contained in the ducts infiltrate the ductal
basement membrane and migrate into the surrounding stroma4,8.
The tissue microenvironment surrounding the ducts is known
to influence tumor growth and progression, but if and how
DCIS transitions to IDC is less understood9–12. Clinically, the char-
acterization of nuclear morphology is often used for the diagnosis of
cancer type and stage, including the assessment of nuclear grade
in DCIS13–15. However, DCIS patients often exhibit heterogeneity in
nuclear grades, and a previous study found a lack of significant
association between nuclear grade and DCIS recurrence or the
development of IDC16. For example, with the current diagnosis
guidelines that include nuclear shape and tissuemorphology, it is still
difficult to distinguish borderline atypical hyperplasia and low-grade
DCIS17,18. An attempt to associate the nuclear grade with more
quantitative measurements identified manually selected image fea-
tures of cell nuclei from H&E stains that could predict nuclear grade
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to some extent and were found to be associated with disease
prognosis14. This result highlights the importance of using compu-
tational tools for quantitative and consistent assessment of nuclear
morphology across patients, in addition to pathological annotations.
In addition, there have been significant efforts using sequencing
based approaches to understand DCIS, including both genomic and
transcriptomic profiling in bulk and at single-cell resolution19–24,
although the results from these studies have provided limited
information about the tissue microenvironment. More recently,
spatial transcriptomic studies have emerged, which can profile
thousands of genes in space at different disease stages, but these
studies are still limited due to their high cost and technical
challenges25–28. Highly multiplexed imaging has also been utilized
recently to obtain additional cell type information to investigate the
interaction of single cells with their immediate environment, which
confirmed that the tissue microenvironment is predictive of DCIS
progression into IDC29. Given the complexity of DCIS and the
uncertainty of its outcome, a better understanding and character-
ization of the different stages of DCIS based on simple and cost-
effective biomarkers is essential.

Since chromatin organization is key to gene expression and
genomic stability30–35, we hypothesized that nuclearmorphology and
chromatin organization, obtained using simple and cost-effective
imaging screens, could provide an informative biomarker forDCIS. In
recent work, we showed using handcrafted chromatin features that
chromatin imaging could be used as a readout of the mechanical
state of cells in the tumor microenvironment36,37. In this paper, we
aim to obtain a comprehensive characterization of the cell states
involved in breast tissue, DCIS, and IDC without being limited to
predefined image features. To study which cell states are present and
how they organize in the breast at the different stages, we generated
a large-scale tissue microarray imaging dataset, stained for chroma-
tin using Hoechst, from 560 tissue samples from 122 patients at 3
disease stages and 11 phenotypic categories. The metadata of each
sample and the corresponding patient ID are provided in Supple-
mentary Data 1. Importantly, we demonstrate that meaningful cell
states can be obtained using just chromatin staining combined with
an image autoencoder that learns a representation of each cell in an
unsupervised manner. The single chromatin stain, which is much
cheaper and easier to obtain than sequencing or multiplexed ima-
ging, enabled us to carry out a large-scale study of different disease
stages and phenotypic categories, including normal breast tissue,
hyperplasia, DCIS, and IDC (Fig. 1a). Our autoencoder framework
identified eight different cell states. Interestingly, we observed that
all eight cell states exist in all (pathologist-annotated) disease stages
and phenotypic categories, but with different proportions. The order
of these cell states, as inferred by different pseudotime algorithms,
agrees with the change in the proportions of the cell states in dif-
ferent pathologies as well as the change in cytokeratin expression.
These inferred cell state transitions are also accompanied by inter-
pretable nuclear and chromatin image features. Our analysis also
identifies image features that change orthogonally to the disease
stages, indicating the emergence of cell and tissue-scale hetero-
geneity in tumors. Interestingly, we find that the organization of the
identified eight cell states is significantly altered in the different
disease stages and phenotypic categories, both in terms of their
relative location with respect to the breast ducts and their co-
localization with cells from each cell state. Importantly, we show that
a simple summary statistic based on cell state neighborhoods is
highly predictive of disease stage and phenotypic category. In sum-
mary, our analysis demonstrates that, without the need for multiple
stains or sequencing-based technologies, chromatin imaging pro-
vides sufficient information to study how cell states and tissue
organization change in different disease stages and to accurately
predict disease stage and phenotypic category.

Results
A large-scale high-resolution chromatin imaging dataset of tis-
sue microarrays enables the analysis of disease stages and
phenotypic categories in DCIS
Cellular chromatin organization is highly informative of a cell’s
functional state within the tissue microenvironment, including its
gene expression profile, cell type, and health30. Chromatin staining is
routinely employed in imaging experiments. While pathologists have
used chromatin staining to predict disease stage, it is more com-
monly used as a fiducial marker for nuclear segmentation and the
identification of cell centroid29,38. In this paper, we used chromatin
staining to generate a large-scale dataset to compare different phe-
notypic categories in non-tumor, DCIS, and IDC patients. For this, we
imaged 560 tissue microarray (TMA) samples from 122 patients at 3
disease stages and 11 phenotypic categories (ranging from normal
breast tissue to hyperplasia, DCIS, and IDC) as annotated by pathol-
ogists (Fig. 1a and Supplementary Data 1, “Methods”). In addition to
chromatin staining using Hoechst, the tissue microarrays were co-
stained with one or two protein markers (Fig. 1b, “Methods”). The
protein stains include cytokeratin, α-smooth muscle actin (α-SMA),
type 1 collagen (collagen1), ki67, and ɣh2ax. Furthermore, we
obtained tissuemasks of the breast ducts using manual thresholding
based on the cytokeratin expression levels, and we segmented the
nuclei using StarDist39 (“Methods”, Supplementary Fig. 1). The duct
and nuclear segmentations were examined by a pathologist and
considered accurate, i.e., equivalent to an accurate manual segmen-
tation (Supplementary Figs. 2–9). In the following, we demonstrate
that a machine-learning based framework can infer the cell state
changes in DCIS based on simple chromatin staining without the use
of highly multiplexed-staining or gene expression measurements.
Importantly, the use of chromatin images allows for quantitative
characterization of disease stages in terms of cell states and their
relative spatial organization.

Unsupervised learning on single-cell chromatin images identi-
fies morphologically distinct cell clusters that correlate with
disease stages and phenotypic categories in DCIS
To learn a representation of cell state from chromatin images, we
trained a convolutional variational autoencoder (VAE), a neural net-
work architecture widely used for representation learning (“Methods”,
Supplementary Fig. 10a, b)40. We used a similar setup of the VAE as in a
previous study41, which demonstrated that the resulting VAE latent
features of chromatin images are informative of cell state and can be
used to predict RNA expression. By clustering the VAE’s latent repre-
sentations of the input chromatin images (Fig. 2a), we identified eight
cell states based on their distinct nuclear morphometrics and chro-
matin organization. We further divided these eight major cell states
into subclusters, until further division into more subclusters would
result in identical subclusters, in terms of the distribution of patholo-
gies and protein expression (Supplementary Fig. 11). The clusters
identifiedbyour autoencoder exhibit distinct nuclearmorphology and
chromatin organization features across the different cell states and
substates (Fig. 2b and Supplementary Fig. 11b). Importantly, cells that
are clustered together are similar to each other across the different
disease stages (Fig. 2b and Supplementary Fig. 11b). We observed that
all cell states exist in each of the disease stages and phenotypic cate-
gories, as annotated by pathologists, but with different proportions
(Fig. 2c and Supplementary Fig. 11a). The same trend of cell state dis-
tribution was observed when examining each TMA core individually:
namely, all cell states exist in almost all cores but with different pro-
portions (Fig. 2e). Clusters 0, 1, and 2 are enriched in phenotypic
categories of the non-tumor stage, while clusters 5, 6, and 7 are enri-
ched in DCIS or invasive stages (Fig. 2c, e).

Our finding that clusters 0, 1, and 2 indicate healthier cell
states and clusters 5, 6, and 7 indicate more malignant cell states is
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corroborated by the additional protein stains (Fig. 2d). For example,
the average cytokeratin level is increased in cell states that are more
enriched in the tumor stages and the ɣh2ax expression level is the
lowest in clusters 0 and 1 (clusters enriched in the non-tumor stage),
indicating lessDNAdouble-strandbreaks41. Theprotein stainswerenot
used in training the VAE nor for clustering and thus provide an
orthogonal measurement demonstrating the association between the
inferred cell states. The subclusters identified by our model also
exhibit differences in both the distribution of phenotypic categories
and protein expression levels, indicating that the subclusters also
identify biologically meaningful cell states (Supplementary Fig. 11).
Applying our trained autoencoder and clustering models to the held-
out samples provided additional validation for the identified clusters

and subclusters and their association with DCIS (Supplementary
Fig. 12a). We further validated our cell state assignment by comparing
the cell states inferred by ourmodel with nuclear grades assigned by a
pathologist. While the pathologist was blinded to our cell state
assignment, we observed a positive correlation between the
pathologist-assigned severity in nuclear grade and the malignancy of
the cell states assigned by our model (Supplementary Figs. 13, 14a, c,
d). Furthermore, consistent with the findings of our model, nuclei of
all pathologist-assigned grades exist in each of the disease stages
(Supplementary Figs. 13, 14b, e). These observations demonstrate that
an unsupervised machine learning framework applied to simple and
cost-effective chromatin images is able to identify morphologically
distinct and disease-relevant cell states.

Fig. 1 | A large-scale high-resolution chromatin imaging dataset enables the
analysis of disease stages and phenotypic categories in DCIS. a 11 different
phenotypic categories from 3 disease stages, non-tumor, ductal carcinoma in situ
(DCIS), and invasive ductal carcinoma (IDC), were ordered fromnormal breast tissue
(P0) in the non-tumor stage to the IDC stage (P9 and P10). The number of samples
imaged at each stage is listed. IDC (breast tissue) (P2) refers to samples that consist

of non-tumoral tissue adjacent to IDC sites. Cancer adjacent breast tissue (P1) refers
to non-cancerous tissue next to IDC. IDC andbreast tissue (P9) refers to samples that
mainly contain cancerous tissue but also some normal breast tissue. b Samples were
organized into multiple tissue microarrays (TMAs), each of which was stained for
chromatin and additional proteins. The cytokeratin stain was used to segment the
breast ducts. Imaging was performed at a resolution of 0.18μm/pixel.
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Pseudo-time ordering of the cells in the autoencoder latent
space orders the cell states by their enrichment in different
disease stages
To further examine the validity of analyzing the different disease
stages and phenotypic categories based on cell states, we confirmed
that cells within the same cell state are indistinguishable from each
other, evenwhen the cells are fromTMAcores from a different disease
stage or phenotypic category. Toward this, we trained a neural net-
work classifier that predicts the phenotypic category based on the
latent representation of cells computed by the convolutional

autoencoder (Fig. 3a, “Methods”). The classifier is unable todistinguish
cells from different phenotypic categories within a particular sub-
cluster (Fig. 3a and Supplementary Fig. 15), confirming that cells within
a subcluster are indistinguishable from each other. This lends addi-
tional support to our observation that all cell states exist in all disease
stages and phenotypic categories.

In addition to our clustering-based analysis described in the pre-
vious section, we obtained a pseudo-ordering of the identified cell
states by applying the PAGA42 and the diffusion pseudotime43methods
to the latent representation of cells learned by our autoencoder

Fig. 2 | Extracting and clustering single-cell chromatin image features through
the use of an autoencoder framework results in the identification of mor-
phologically distinct cell states in DCIS. a An example of an input and recon-
structed single-cell chromatin image by our convolutional variational autoencoder
(VAE) framework. The latent representation of the chromatin images was clustered
into eight top-level clusters. The same number of cells were selected from each of
the 11 phenotypic categories for clustering (24,224 cells per stage) so that the
clustering was not dominated by the cells from one particular stage. b Randomly
selected examples of nuclei in each of the eight clusters in four representative
phenotypes. DCIS ductal carcinoma in situ; IDC invasive ductal carcinoma.
c Heatmap showing the fraction of cells in each of the eight top-level clusters in

each phenotypic category organized into the three disease stages, non-tumor,
ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC), calculated
based on the cells used for clustering in (a). Columns were normalized to sum to 1.
Histograms show the total number of cells in each cluster and in each phenotypic
category. All cells were included for computing the histograms except for the cells
in the held-out samples (“Methods”, Supplementary Fig. 12a). d The expression of
each proteinmarker in each of the eight clusters. Columns were normalized to sum
to 1.α-SMA:α-smoothmuscle actin; collagen1: type 1 collagen. e Fractions of cells in
each of the eight top-level clusters within each sample. The color coding of the
clusters is the same as in (a) and (c). DCIS ductal carcinoma in situ; IDC invasive
ductal carcinoma.
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(Fig. 3b, c). The clusters enriched in the non-tumor stage (i.e., clusters
0, 1, and 2) and the clusters enriched in the tumor stages (i.e., clusters
5, 6, and 7) are at the two extreme ends in Uniform Manifold
Approximation and Projection (UMAP) visualization of the VAE latent
space (Fig. 2a), further corroborating the identified clusters and their
association in DCIS. Consistent with this observation, the pseudo-
ordering inferred by PAGA identifies that the cluster enriched in the
non-tumor stage (cluster 0) and the cluster enriched in the DCIS or
invasive stages (cluster 7) are the least similar to each other, with other
clusters ordered in between the two clusters based on the proportions
of healthy and diseased stages (Fig. 3b). This observation was also
confirmed with an additional method, diffusion pseudotime43, for
which we randomly chose a cell in cluster 7 as the root cell. Applied to
the autoencoder latent representations, the diffusion pseudotime
method also orders the clusters from 0 to 7 according to their
enrichment in the non-tumor and tumor stages. While the disease
stage annotations were not used in training the autoencoder, the
learned UMAP representation, latent clustering, PAGA, and diffusion

pseudotime all independently derived the same order of cell states,
which reflects the change in the enrichment of the cell states in the
non-tumor, DCIS, and IDC stages. This result is further corroboratedby
the change in cytokeratin expression along the PAGA graph (Fig. 3d).
Importantly, this demonstrates that the latent representations identi-
fied by our autoencoder have automatically captured meaningful
chromatin features that correspond to disease stages, without using
any knowledge of the disease stage during the autoencoder training.

Unsupervised features learned by the autoencoder from chro-
matin images identify interpretable nuclear and chromatin
morphometric features
We assessed if the difference between the cell states computed by
clustering the autoencoder latent space could be explained by
interpretable morphological features. The values of a set of 201
manually curated features of nuclear morphology and chromatin
organization (NMCO)36 were computed for each cell based on its
chromatin image. The NMCO features include features related to the

Fig. 3 | All cell states arepresent in all disease stages, and the cell state ordering
obtained in the autoencoder latent space is aligned with the enrichment of
each state as a function of disease stage. aA neural network classifierwas trained
to classify the phenotypic category of an input cell based on the variational auto-
encoder (VAE) latent representation of its chromatin image as input. A separate
classifier was trained for each of the subclusters of the eight top-level clusters, with
5% of all cells held out for validation and 10% held out for testing. Confusion
matrices were computed based on the cells in the test set and are shown for
subcluster 0 of cluster 0 (left) and cluster 7 (right). b A network indicating the
similarities between all subclusters based on the VAE latent representation was
computedusing the PAGAmethod43. Eachnode represents a subcluster, and its size

is proportional to the number of cells in the subcluster. Subclusterswithin the same
top-level cluster are shown in the same color. Each node is labeled by top-level
cluster assignment followed by subcluster assignment. For example, 3-0 means
subcluster 0 of top-level cluster 3. c Diffusion pseudotime44 as a measure of cell
state similarities was computed using a randomly selected cell from subcluster 2 of
cluster 7 as the root cell. The visualization was obtained using Uniform Manifold
Approximation and Projection (UMAP) initialized by the subcluster positions in the
PAGA graph shown in (b). d Visualization of the average cytokeratin expression on
the PAGA graph for all cells stained for cytokeratin in each of the subclusters. Each
dot represents a subcluster, and its size is proportional to the number of cells in the
subcluster.
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radius, curvature, and image moments (Fig. 4b). A neural network
classifier was trained to predict the eight top-level clusters and the
subclusters from the NMCO features (Fig. 4a). The confusion matrix
of the classifier’s prediction of cells not used in training into the eight
clusters shows negligible test error (Fig. 4a and Supplementary
Fig. 16). This demonstrates that the disease-relevant morphological
features learned by the autoencoder can be characterized by human-
interpretable features.

We further analyzed the NMCO features that were altered across
the cell states both along and orthogonal to the different disease

stages. A subset of 117 NMCO features with statistically significant
differences in at least one of the eight top-level clusters was identified
(FDR <0.01, fold change with respect to all cells >1.2 or <0.8, z-score
> 0.5). The selected features were divided into 9 groups by merging
features with high correlations; this grouping is robust to the choice of
correlation threshold (correlation >0.8 for features in the same group;
“Methods”; Fig. 4b, c and Supplementary Fig. 17). As expected from the
representative cell images in each of the eight top-level clusters
(Fig. 2b), cell size related terms are in the first group of NMCO features
that increase from the healthy to themalignant cell states (cluster 0 to

Fig. 4 | Cell state differences can be characterized by interpretable morpho-
metric features, indicating morphological changes that are aligned with or
orthogonal to disease progression. a A neural network classifier was trained to
predict the cluster label of each cell based on 201 hand-crafted nuclearmorphology
and chromatin organization (NMCO) features36. The same number of cells were
randomly selected from each phenotypic category (“Methods”), and we used a
training, validation, and testing split of 85%, 5%, and 10%. The resulting confusion
matrix based on the cells in the test set shows that most cells were correctly
classified to their true cluster assignment. b Representative examples of NMCO
features in each group described in (c). The full list of NMCO features is provided in
Supplementary Data 2. c NMCO features that are significantly different in at least
one of the eight top-level clusters grouped by correlation: Each of the 201 NMCO
features was tested forwhether itsmean in any of the eight clusterswas different to
themean in cells outside of that cluster, which resulted in 117 significantly different

NMCO features (“Methods”); highly correlated features were grouped together
resulting in 9 groups; the remaining features not in the 9 groups are labeled as
group 10 (“Methods”). The heatmap shows the mean of the 117 NMCO features
(columns) in each of the eight top-level clusters (rows). d Mean of the NMCO
features in group 1 averaged over all cells in each of the subclusters, visualized on
the PAGA graph shown in Fig. 3b. Each node represents a subcluster, and its size is
proportional to the number of cells in the subcluster. Each node is labeled by top-
level cluster assignment followed by subcluster assignment. For example, 3-0
means subcluster 0 of top-level cluster 3. e Mean of NMCO features in group 2
computed for each cell, visualized on the UMAP plot initialized by the subcluster
positions in the PAGA graph. f Mean of NMCO features in group 3 computed for
each cell, visualized on the UMAP plot initialized by the subcluster positions in the
PAGA graph.
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cluster 7) (Fig. 4b–d and Supplementary Data 2). Interestingly, terms
characterizing curvature of the cell nuclei are also strongly correlated
with the size-related terms (Fig. 4b andSupplementaryData 2Group 1).
Other NMCO groups that change along the disease stages include
terms related to average curvature, homogeneity, and central image
moments (Fig. 4b and Supplementary Data 2 Group 4–6 and 9).

Changes in NMCO features that are orthogonal to the disease
stages from cluster 0 to 7 include changes in the nuclear aspect ratio,
homogeneity, and smoothness of the nuclear periphery. For example,
Group 2 NMCO features contain two aspect ratio terms that show a
change from more elongated nuclei to more circular nuclei that are
orthogonal to the disease stages (Fig. 4b, c, e). Also, Group 3 NMCO
features change orthogonal to the disease stages and contain features
that collectively describe the smoothness of the nuclear periphery,
homogeneity of the nuclei, and circularity (Figs. 4b, 3c, f and Supple-
mentary Data 2 Group 3). These features indicate that nuclei that are
more circular tend to be less homogenous, which suggests that more
circular nuclei have more heterochromatin content, leading to a
decrease in homogeneity. It is also interesting to note that the most
malignant cell state, cluster 7, seems to contain cells with circular
nuclei and non-smooth nuclear periphery. This is evident from the low
value of inverse circularity (shape factor) and high standard deviation
of nuclear radius. In addition, weobserved thatmany top-level clusters
build subclusters along the orthogonal direction of the disease stages
(Fig. 3b), which suggests that changes in these orthogonal NMCO
features are associated with subcluster-level differences. These ana-
lyses demonstrate that combining an autoencoder framework with
known manually curated features can provide morphological inter-
pretation into how cell states change along and orthogonal to the
disease stages from non-tumor to DCIS and invasive stages.

The position of cells relative to breast ducts is dependent on
both cell state and disease stage
The DCIS to IDC transition is characterized by the pathological pro-
liferation of luminal cells inside the breast duct and the penetration of
tumor cells through the ductalmembrane to the surrounding stroma4.
We hypothesized that such reorganization could be identified using
the chromatin features and location of the cell states identified by the
autoencoder framework relative to the breast ducts. We first com-
pared cells of the same cell state that were inside versus outside of the
ducts to examine if there were differences in the chromatin organi-
zation of the cells that were not captured by the clusters identified
based on the latent representations. Toward this, we trained a neural
network classifier todistinguish between cells inside andoutsideof the
breast ducts. The classifier was unable to distinguish cells from the
same subcluster that were inside versus outside the duct, using either
the autoencoder latent representations or the NMCO features as input
(Fig. 5a and Supplementary Fig. 18a–c). This confirmed again that cells
within a subcluster are indistinguishable and it is thus meaningful to
performa spatial analysis of cells with respect to thebreast ducts at the
level of cell states identified by our autoencoder framework.

Our analysis revealed that none of the cell states were exclusively
inside breast ducts and almost all cell states had cells both inside and
outside of ducts, regardless of disease stage or phenotypic category
(Supplementary Fig. 18d).We further incorporateddistances of cells to
the nearest breast duct into the analysis, assigning a distance of zero to
cells inside the ducts (Fig. 5b). In all disease stages and phenotypic
categories, the cell states enriched in the non-tumor stage were found
tobe further away frombreast ducts than the cell states enriched in the
tumor stages (Fig. 5c). In addition to this difference in top-level clus-
ters, subclusters also show difference in their distances to ducts, e.g.
subcluster 1 of cluster 3 tends to be closer to ducts than the other
subclusters of cluster 3 (Fig. 5c). Comparing samples annotated as
healthy breast tissue to DCIS phenotypic categories, the healthy cell
states were found to be relatively closer to the breast ducts in healthy

breast tissue than in DCIS samples, while in the DCIS samples, e.g. in
DCIS with early infiltration, the malignant cell states were relatively
closer to breast ducts in comparison to the healthy cell states. Per-
forming the same analysis within each individual TMA core revealed
consistent findings, with some variation in the DCIS samples (Supple-
mentary Fig. 19), which showed a range of cell state distributions
including some that were similar to breast tissue samples with all cell
states close to breast ducts, as well as samples that were more similar
to later stages with increasingly more malignant states far from ducts.

Cell state co-localization pattern is predictive of disease stage
and phenotypic category
In addition to the different proportions of cell states in different dis-
ease stages, our analysis in the previous section suggests that the
spatial organization of the different cell states in the breast tissue
might also be informative of tumor stage and phenotypic category.
This is consistent with a previous study using highly multiplexed
imaging to show that proximity between cell types accounts for 18% of
features that are different between normal, DCIS, and invasive
samples29. Such studies require a large amount of manual labeling or
highly multiplexed imaging to obtain sufficient samples with accurate
cell type annotation. In the following,wedemonstrate that a predictive
model of disease stage and phenotypic category can be obtained by
using only the spatial neighborhood of the cell states learned from
standard chromatin staining.

We first compared the proportions of cell states in the neigh-
borhood of a target cell for each of the eight-cell states to a random
distribution of cell states in space (Fig. 6a, b and Supplementary
Fig. 20a). We used a neighborhood diameter of ~ 52 µm, which can
result in visually distinct clusters of image patches that also corre-
spond to the image patch sizes used to train the convolutional VAE
(Supplementary Fig. 20a). The resulting cell state distributionwas then
averaged over cells in the same state for a given phenotypic category,
and this was then compared to a random assignment of cell states in
the same samples (“Methods”). We observed that cells tend to cluster
by cell states, regardless of the disease stage of the sample; this can be
seen by the positive diagonal values in the neighborhood co-
localization plots (Fig. 6b). In addition, cell states enriched in the
non-tumor stage (i.e., clusters 0, 1, and 2) aremore likely to co-localize,
especially in DCIS or the invasive stage (Fig. 6b). Similarly, cell states
enriched in DCIS or the invasive stage (i.e., clusters 4, 5, 6, and 7) also
tend to co-localize, and this can be observed in all tumor stages as well
as in normal breast TMAs (Fig. 6b). On the other hand, the co-
localization of healthy and malignant cell states occurs less than
expected by chance.

Next, we analyzedwhether the co-localizationmatrix of cell states
could be used as a predictor of the tumor stage and phenotypic
category of a given sample. Toward this, we trained a 3-layer neural
network classifier that used only the 8-by-8 co-localization matrix
computed from a single sample and the cell density of the sample as
the input to predict the phenotypic category of the sample (Fig. 6c,
“Methods”). The confusion matrix resulting from leave-one-patient-
out cross-validation shows that the phenotypic category of an unseen
patient can be predicted with high accuracy (Fig. 6c). In particular, if
we group the phenotypic categories into the three disease stages, non-
tumor (breast tissue, cancer adjacent breast tissue, hyperplasia), DCIS,
and invasive, then the classification error is below 17%with less than 5%
misclassification rate of the invasive stage (Fig. 6f). We also tested
other neighborhood sizes: in addition to a size of 52 µmused above, we
found the co-localization pattern to be robustly predictive for neigh-
borhood sizes of 26 µm to 120 µm (Supplementary Fig. 20b). This
shows that the predictiveness of the disease stage or phenotypic
category is not sensitive to the exact choice of the neighborhood size.
Importantly, our analysis of cell state co-localization takes into account
all cells in the TMA cores, including both stromal and epithelial cells.
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Fig. 5 | The position of a cell relative to the breast ducts is dependent on both
cell state and disease stage. a A neural network classifier was trained to predict
whether a cell is inside or outside of breast ducts, given the duct segmentation
masks derived from cytokeratin expression (“Methods”). A separate classifier was
trained for each of the subclusters of the eight top-level clusters, with 5% of all cells
held out for validation and 10% held out for testing. Confusion matrices were
computed based on the cells in the test set and are shown for all subclusters of
cluster 0. b Distance of each cell to the closest breast duct. Cells inside ducts were

assigned a distance of 0. For all other cells, the distance was measured from the
centroid of a cell to the nearest cell inside any duct,measured in a number of pixels
(#pixels), and log-transformed. A value of 1 corresponds to around 0.49 µm and 5
corresponds to around 26.71 µm. c The average distance of cells to the closest
breast duct was computed for each subcluster and visualized on the PAGA graph.
Each node represents a subcluster, and its size is proportional to the number of
cells in the subcluster.
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Fig. 6 | Cell states co-localization pattern is predictive of disease stage and
phenotypic category, and the predictiveness is dependent on the co-
localization of all cell states collectively rather than a single cell state. aWithin
a 25.9 µm radius around each cell, we compute a vector representing the propor-
tions of cells in the neighborhood in each of the top-level clusters. The neighbor-
hood size corresponds to the image patch size used to train the convolutional VAE
(Supplementary Fig. 20a) that results in visually distinct clusters of image patches.
b Cell state co-localization compared to a random distribution of cell states is
plotted for representative phenotypic categories. The neighborhood proportion
vectors of all cells within each of the eight clusters were averaged, respectively,
giving rise to an 8 × 8 co-localization matrix representing for each cluster the
proportion of neighboring cells within each cluster. For comparison, we randomly
shuffled the cluster assignment of all cells within each sample 40,000 times and
computed the resulting co-localization matrices (“Methods”). The fold-change of
each entry in the observed co-localizationmatrix was computedwith respect to the
averaged random co-localization matrix. c The per-sample co-localization matrix

was computed. A neural network classifier was trained to predict the phenotypic
category of a sample from its co-localizationmatrix and the total number of cells in
the sample (“Methods”). The confusion matrix shows the result of leave-one-
patient-out cross-validation. d An ablation study was performed by removing cells
from one of the eight clusters in the calculation of the co-localization matrix. e A
neural network classifier was trained to predict the phenotypic category of a
sample from the 7 × 7 co-localizationmatrix (where one of the clusters was ablated)
and the total number of cells in the sample. f Classification error of the ablation
study is plotted using leave-one-patient-out cross-validation. None means that all
clusters were used as in (c) and each number indicates the ablated cluster. The
classification errors are divided into 6 types and labeled as the true phenotypic
category of the sample -> predictedphenotypic categoryof the sample. Non-tumor
consists of “P0. Breast tissue”, “P1. Cancer adjacent breast tissue”, and “P3.
Hyperplasia”. DCIS consists of “P5 + P6. DCIS and breast tissue” and “P7 + P8. DCIS
with early infiltration”. Invasive consists of “P9. IDC and breast tissue” and
“P10. IDC”.
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Compared to a classifier trainedusing the co-localizationof only ductal
cells (Supplementary Fig. 25), our classifier that also incorporates
stromal cells has higher classification accuracy, indicating that the
microenvironment change in the different disease stages is not limited
to the ductal regions.

Finally, we analyzed whether the neighborhood of certain cell
states contributes more to the prediction of the tumor stage. Toward
this, we retrained our classifier model after removing cells from a
particular cell state and re-calculating the resulting 7-by-7 cell state co-
localization matrix (Fig. 6d, e). While removing cells in cluster 7, the
cell state most enriched in the tumor stages, results in the worst
classification performance, the classification errors of the cross-
validation after removing each of the cell states are comparable to
using all cell states for the classification (Fig. 6f). This indicates that the
different disease stages and phenotypic categories show a systemic
reorganization of all eight cell states and are not limited to a particular
cell state alone.

Cell state co-localization pattern is more informative than cell
state abundance for accurately classifying hyperplasia, DCIS,
and IDC
Next, we trained a classifier with the same architecture as in the pre-
vious analysis but also incorporated the proportion of cell states in a
given sample as the input. Interestingly, we found that the addition of
the cell state proportion in a sample did not significantly improve the
prediction of the disease stage or phenotypic category, suggesting
that the spatial co-localization of cell states is generally more impor-
tant than the presence and abundance of a particular cell state (Sup-
plementary Fig. 21).

To investigate for each disease stage and phenotypic category the
most important classification features, we performed a careful analysis
of the mis-classified samples. Consistent with the identified enrich-
ment of clusters 5, 6, and 7 in IDC compared to normal samples
(Fig. 2c), the non-tumor samples (“Breast tissue” and “Cancer adjacent
breast tissue”) misclassified as DCIS or invasive stage have a higher
proportion of cells in these three clusters than the correctly classified
normal samples (Fig. 7a and Supplementary Fig. 22). Similarly, the IDC
samples misclassified as normal samples (“Breast tissue” and “Cancer
adjacent breast tissue”) have a lower proportion of cells in clusters 5, 6,
and 7 and a higher proportion of cells in clusters 0, 1, and 2 than the
correctly classified IDC samples (Fig. 7a and Supplementary Fig. 22).
This suggests that cell state abundance is important for distinguishing
between highly invasive and normal samples.

On the other hand, we found the classification of DCIS (“DCIS and
breast tissue” and “DCIS with early infiltration”) and hyperplasia to be
highly dependent on the cell state co-localization pattern. Using cell
state co-localization alone to predict phenotypic labels resulted in
better performance in the classification of DCIS, hyperplasia, IDC and
breast tissue, and IDC samples, as compared to classifiers that used cell
state proportion alone (Supplementary Fig. 21). Analyzing the mis-
classified samples in these phenotypic categories further strengthened
this observation (Fig. 7a and Supplementary Fig. 22). For example,
cluster 7 in DCIS with early infiltration misclassified as IDC had higher
abundance in the neighborhood of cluster 0, despite the overall
decrease in cluster 7 abundance. Similarly, in IDC samplesmisclassified
as DCIS with early infiltration compared to the correctly classified
samples, there were more cluster 3 cells in the neighborhood of clus-
ters 0 and 3, although the overall proportion of cluster 3 cells
decreased. IDC and DCIS samples misclassified as hyperplasia also
indicated the importance of the cell state co-localization pattern in the
classification of the pathologies (Fig. 7a). Samples misclassified as
hyperplasia generally showed a depletion of cluster 7 especially
in the neighborhood of the more malignant cell states (Fig. 7a and
Supplementary Fig. 22). This depletion was observed even when the
overall proportion of cluster 7 cells was high (Fig. 7a “IDC and breast

tissue -> Hyperplasia” and “DCIS and breast tissue ->Hyperplasia”).
Consistent with this finding, normal breast tissue misclassified as
hyperplasia showed an increase of cluster 7 cells (Supplementary
Fig. 22). Our observations suggest that the cell state co-localization
pattern is an important indicator of disease stage and phenotypic
category and is especially important for accurate classification of
hyperplasia, DCIS, and IDC.

Atypical hyperplasia and low-gradeDCIS are known to lack clinical
consensus17,18. In fact, overlap in terms of both morphological features
and genetic alterations has been reported between atypical hyper-
plasia and DCIS44. Given the accurate predictions of disease stages and
phenotypic categories enabled by our use of cell state co-localization
patterns described above, we examined the cell state composition and
co-localization patterns associatedwith the samples labeled as DCIS or
hyperplasia in more detail to test if they could be used as features to
distinguish these phenotypic categories at a more fine-grained level.
Toward this, we re-trained our neural network classifier to distinguish
samples labeled as hyperplasia, atypical hyperplasia, DCIS and breast
tissue, and DCIS with early infiltration (Fig. 7b). Our model predictions
using cell state co-localization are highly consistentwith the pathology
annotations of the samples. Analyzing in detail the misclassified
examples to understand the features used by our classifier, we found
that hyperplasia samples misclassified as atypical hyperplasia have
more cells in clusters 5, 6, and 7 and less cells in clusters 0, 1, and 2
(Fig. 7c), which suggests the importance of cell state proportions for
distinguishing hyperplasia from atypical hyperplasia (Fig. 2c). On the
other hand, the classification of atypical hyperplasia andDCISdepends
more on the cell state co-localization pattern (Fig. 7c and Supple-
mentary Fig. 23). Although the current clinical diagnosis of atypical
hyperplasia does not explicitly use the spatial organization of cell
states defined by their chromatin organization and nuclear morphol-
ogy, our results suggest that cell state abundance and their co-location
patterns are highly predictive of these phenotypic categories.
While further research with more patients is needed to confirm the
robustness of our model and its clinical utility in a larger patient
cohort, the use of cell states defined by chromatin staining and their
co-localization pattern could potentially help distinguish hyperplasia
and low-grade DCIS.

Discussion
We presented a large chromatin imaging dataset of 560 samples from
122 patients at 3 disease stages and 11 phenotypic categories ranging
from normal breast tissue to DCIS and IDC. We introduced a frame-
work for analyzing disease stages and phenotypic categories in terms
of nuclear morphology and chromatin organization without the need
of highly multiplexed staining or sequencing. Using a convolutional
autoencoder framework, we identified eight disease-relevant cell
states with distinct nuclear morphology and chromatin organization
features from single-cell chromatin images. Interestingly, we found
that all eight cell states exist in all disease stages and phenotypic
categories, but with different abundances. Some cell states dominate
in the non-tumor disease stage (i.e., clusters 0, 1, and 2), while some
states dominate in the invasive stage (i.e., clusters 5, 6, and 7). Using
multiple methods, including UMAP visualization, latent clustering,
PAGA, and diffusion pseudotime, we independently derived a pseudo-
ordering of the cell states based on their similarity. Interestingly, while
the disease stage and phenotypic category annotations were not used
in the autoencoder training, the resulting pseudo-orderings across all
methods aligned with disease stages and were ordered from the state
most enriched in the non-tumor stage to the statemost enriched in the
invasive stage. This cell state ordering is also correlated, as
expected29,45, with an increase in cytokeratin expression in DCIS and
IDC compared to the non-tumor stage.

To interpret the cell states identified by the autoencoder frame-
work morphologically, we associated the autoencoder features with
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manually constructednuclear and chromatin features. For thisweused
a list of ~ 200 features from our previous study36; notably, these fea-
tures could accurately characterize the cell state boundaries identified
by the autoencoder, both for the eight top-level clusters and for their
subclusters. Nuclear size and nuclear curvature changes were identi-
fied as the major differences along the transition from cell states
enriched in the non-tumor stage to cell states enriched in the invasive
stage. This is consistent with the clinical association of larger nuclear
size with higher tumor grade and other pathological parameters13,46.
Furthermore, our pseudo-ordering analysis also identified an increase
in the heterogeneity within and between cell states during the inter-
mediate steps of the pseudotime trajectory. Investigating this het-
erogeneity using the interpretable manually constructed features, we
found that the range of cell states orthogonal to the different disease
stages was also associated with biologically meaningful changes,
including changes in circularity/elongation and heterogeneity of

chromatin condensation. This is consistent with earlier reports show-
ing that nuclear elongation changes with the activation of fibroblasts
and T-cells36,47,48. In addition, with respect to the heterogeneity of
chromatin condensation, we found in an earlier study that the
heterochromatin-to-euchromatin ratio was positively associated with
disease progression49. In summary, our analysis shows that a mean-
ingful cell state characterization can be obtained from single-cell
chromatin images alone and the cell state differences can be analyzed
with respect to disease stages using interpretable nuclear and chro-
matin features.

In addition to our analysis at the single-cell level, we also investi-
gated the spatial organization of the cell states within a TMA to gain
insights into the reorganization of cell states in DCIS. We found that
the position of a cell relative to a breast duct is dependent on both cell
state and disease stage, with cell states enriched in more diseased
pathologies tending to be closer to ducts. Importantly, we found the

Fig. 7 | Analysisofphenotypic classificationperformanceprovides insights into
cell state abundance and co-localization differences in the phenotypic cate-
gories of DCIS. a The co-localization patterns of the misclassified samples are
compared to the correctly classified samples and the log2 fold changes are plotted.
The classification was performed using leave-one-patient-out cross-validation.
Classification errors were categorized as the true phenotypic category of the
sample -> predicted phenotypic category of the sample, e.g. Breast tissue -> IDC
records the breast tissue samples that weremisclassified as IDC. The proportion of
cells in each of the eight clusters in the misclassified samples compared to the

correctly classified samples was also plotted in terms of their log2 fold change
(denoted by %cluster). b Classifiers were trained on hyperplasia and DCIS samples
to predict their phenotypic category from the co-localization matrix and the total
number of cells in a sample. The confusion matrix shows the result of leave-one-
patient-out cross-validation. c Co-localization matrix and proportions of cells in
each of the eight clusters (denoted by %cluster) of the misclassified samples
compared to the correctly classified samples are plotted in terms of their log2 fold
change. The classifiers were trained on hyperplasia and DCIS samples as in (b).
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co-localization of different cell states within a TMA to be a strong
indicator of disease stage and phenotypic category. Representing the
relative proportion of each cell state found in the neighborhood of
each of the eight-cell states using an 8-by-8 cell state co-localization
matrix, we were able to accurately predict the disease stage and phe-
notypic category of each sample. Interestingly, we found that such cell
state co-localization pattern was more informative than cell state
abundance for accurately classifying hyperplasia, DCIS, and IDC. The
use of cell state co-localization patterns is particularly important since
our analysis showed that all cell states, including the ones enriched in
the invasive stage, already exist in samples annotated as healthy breast
tissue, and thus the existence of a particular cell state alone is not
sufficient to accurately predict disease stage and phenotypic category.

Collectively, our analysis demonstrates the importance of
understanding the tissue microenvironment in the study of tumors
and the use of chromatin features as an informative indicator of cell
functional state. A previous study of DCIS has also shown that the
tissue microenvironment is predictive of DCIS progression into IDC
using highly multiplexed imaging29. Our study provides an alternative
approach to explore different cell states and characterize the tissue
microenvironment by the use of a single (chromatin) stain, which is a
standard protocol routinely used in high-throughput imaging experi-
ments to locate cell nuclei. Using only simple imaging-based nuclear
and chromatin features, we were able to highlight distinct cell states,
their relative abundances, and their spatial neighborhoods that are
highly informative of the various disease stages and phenotypic cate-
gories. In the context of recent studies that identify the tumor
mechanical microenvironment as an important regulator of disease,
our work positions the microenvironmental links to single-cell chro-
matin organization as a robust readout of cell state. While obtaining
single-cell expression and proteomics within tissue microenviron-
ments using multiplexed imaging and sequencing methods is
resource-intensive and technically challenging, our simple and cost-
effective chromatin imaging approachof tissue sections is surprisingly
informative for disease staging. Although the tumor microenviron-
ment is composed of many different cell types, including immune
cells, fibroblasts, and epithelial cells, our chromatin imaging-based
analysiswas able topickupeight distinct cell states thatwere adequate
to predict disease stage and phenotypic category without the need for
labeling the different cell types and their biological interactions.
Importantly, while distinguishing intermediate phenotypic categories
and their clinical outcomes is still challenging, our cell state co-
localization matrix based on chromatin imaging features could pro-
vide an informative prognostic biomarker. This will require follow-up
clinical trials with longitudinal tracking of DCIS patients. While our
work provides one of the largest datasets among recent studies of
DCIS that have single-cell resolution, our dataset does not have long-
itudinal tracking of patients, and it would be interesting in future work
to apply our framework to longitudinal data.

Methods
Ethical statement
All experiments were performed in accordance with relevant guide-
lines and regulations at PSI/ETH. Unstained tissue microarray (TMA)
slides (BR301, BR1003a, and BR8018a) were procured fromUS Biomax
(USBiomax, Inc., Derwood, USA), who obtained consent fromboth the
hospitals and the individuals.

Imaging experiment
The unstained TMA slides contain breast biopsy samples from healthy
as well as cancer patients of varying stages. The slides were stained
with Hoechst and various antibodies (see below) and imaged in-house
in wide-field mode using a Nikon A1 with a 40x air objective at a
resolution of 0.18 µm. Further information about the TMAs can be
found at https://www.biomax.us/.

The TMAs were baked for one hour at 65 °C. Removal of the
paraffin was performed by immersion in Xylene, twice for 5min. The
slides were rehydrated in decreasing concentrations of EtOH (100%,
90%, 80%, 70%, 50%) for 3min each. Antigen retrieval was performed
according to the manufacturer’s instructions (ThermoFisher, eBios-
cience™IHC Antigen Retrieval, 00-4956-58). Following this, the tissue
slides were incubated in a blocking solution (10% goat serum in 1xPBS)
for 20min in a dark humidified chamber. Primary antibodies, namely
collagen-1 (Abcam, ab6308, 1:200), cytokeratin (Leica Biosystems,
PA0094, 1:100), α-SMA (Abcam, ab5694, 1:200), ɣH2AX (CST, 2577 S,
1:50) and Ki67 (Millipore, AB9260,1:50) were diluted in 1xPBS con-
taining 1% BSA and 0.3 % TritonX and applied to the tissue O/N at 4 °C.
For cytokeratin staining, we used AE1/AE3, a cocktail of broad-
spectrum cytokeratin (CK) markers for multiple cytokeratins, includ-
ing luminal and basal (it covers CK1 − 8, 10, 14 − 16, and 19). The TMAs
were washed three times with 1xPBS for a total of 15min followed by
incubation with secondary antibodies, Alexa Fluor 647 (ThermoFisher,
A32728 and A32733, 1:1000) and Alexa Fluor 555 (ThermoFisher,
A32773 and A32794, 1:1000), diluted in the same solution as for the
primary antibodies. Three washing steps with 1xPBS were performed
prior to a 30-minute incubation of Hoechst (Invitrogen, C103338,
1:2000 in 1xPBS) followed by twomore 1xPBS washes. The tissue slices
were embedded in ProLong™Gold antifade mountant (ThermoFisher,
P10144) and sealed with a coverslip.

557 samples out of the total 560 samples were used in our analysis.
Since there was only one core labeled as “hyperplasia with saccular
dilatation”, this core was removed from further analysis, which explains
the removal of 3 samples. An overview of all samples is provided in
Supplementary Data 1. The samples stem from a total of 122 female
patients, each with a unique “patient id”. Multiple cores at different
locationswere obtained from somepatients, and these can be identified
since they have the same “patient id” in Supplementary Data 1. Multiple
experiments within a core were performed on different TMAs, which
were taken from the same x-y position but at different z planes. The
dataset consists of a total of 171 cores, andTMAs from the same core can
be identified using the core_id in Supplementary Data 1. The patient
samples are separated into 11phenotypic classeswithin the threedisease
stages, non-tumor, DCIS, and IDC, as listed in Supplementary Data 1.

Image preprocessing and segmentation
Nuclear segmentation. We obtained 447 chromatin staining images,
containing on average 44.34 ( +/− 45.30) nuclei of varying resolutions,
from https://github.com/stardist/stardist/releases/download/0.1.0/
dsb2018.zip. This is a subset of the publicly available Data Science
Bowl (DSB) 2018 data set50 used in training the StarDist model51, a
popular cell segmentationmethod. In addition, we selected 10 regions,
each from a different TMA of our generated data set, containing, on
average 169.5 ( + /− 66.03) nuclei per image representing the hetero-
geneous nuclear shapes observed in the data set. We manually gen-
erated the nuclear segmentation masks for the selected regions
(Supplementary Fig. 1a). The combination of all images and their cor-
responding nuclear masks was used to train a StarDist model51 to
automatically segment individual nuclei (Supplementary Fig. 1b). The
StarDist model is a convolutional neural network that predicts a
nuclearmask using a star-convex polygon. Thismodel has been shown
to be particularly well-suited for segmenting nuclei from crowded
tissues. To train the model, individual images, I, was range-normalized
using the lower 1 (P1) and upper 99.8 (P99.8) percentile, i.e. the nor-
malized image intensity I(x, y) of the pixel at the location x,y was
computed as

Iðx, yÞ= ðIðx, yÞ � P1ðIÞÞ = ðP99:8ðIÞ � P1ðIÞÞ ð1Þ

We removed small holes in the nuclear segmentation masks and
then split the data randomly into 85% training and 15% validation data.
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The StarDist model was then trained using the default setup in the
stardist package (https://github.com/stardist/stardist). During train-
ing, the input images were augmented to increase the robustness of
the segmentation as detailed in the StarDist model51. In particular,
images were randomly flipped horizontally and vertically with a
probability of 0.5. In addition, the data was augmented to make the
model insensitive to small variations in the overall image intensity, and
the intensity of an augmented image was obtained as

I’ x, yð Þ= I x, yð Þ *a+b, wherea ! Unif 0:6, 2ð Þ andb ! Unifð�0:2, 0:2Þ
ð2Þ

Finally, images were augmented by adding random noise to fur-
ther increase the robustness of the model. In particular, a noisy input
image was obtained as

In x, yð Þ= I x, yð Þ+0:02 * c *σ, where c ! Unif 0,1ð Þ and σ ! Normalð0, 1Þ
ð3Þ

The model was trained for 400 epochs to minimize the custom
loss function as described previously39,51 (Supplementary Fig. 1b). The
model achieving the lowest validation loss was selected. As proposed
in the original publication, we performed a greedy search and identi-
fied 0.3 as the optimal threshold for non-maximum suppression. To
testmodel performance, we evaluated 50 test images contained in the
DSB 2018 data set and8 additional images of selected regions fromour
generated TMA images. The trained model achieved an average
F1 score of 0.8329. We also visually validated that the trained model
accurately identified and segmented nuclei in our TMA images (Sup-
plementary Fig. 1c). The nuclear segmentations were examined by a
pathologist and considered accurate, i.e., equivalent to an accurate
manual segmentation (Supplementary Figs. 2–6).

Duct segmentation. Segmentation masks for the ducts were gener-
ated using the cytokeratin stained samples. To identify the masks, we
first used a Gaussian filter with a standard deviation of 1 to denoise the
images. We used the Otsu method52 to identify the regions that were
positively stained for cytokeratin. These were used as a proxy for the
ductal regions. Finally, we identified the connected components to
obtain approximate ductal masks (Supplementary Fig. 1d). All analyses
were performed using the scikit-image v.0.18.1 package.

In addition to automatically detecting duct masks through
thresholding, we confirmed the results by manually segmenting
18 samples (Supplementary Fig. 1d). Segmentation was performed
using custom scripts publicly available at https://github.com/GVS-Lab/
annotate_images. A pathologist examined the duct segmentations and
considered them accurate (Supplementary Figs. 7–9).

Convolutional autoencoder training and latent space clustering
We trained a convolutional variational autoencoder (VAE)40 with 5
convolutional layers in the encoder and two fully connected layers that
separately compute themean and dispersion. The latent features were
sampled from the mean and dispersion during training. We used a
hidden dimension of 6000 and the decoder was the inverse of the
encoder. All hidden layers used Leaky ReLU activation53. The inputs to
the VAE are single-nucleus images that are cropped to 96 pixels x 96
pixels centered at the centroid of each nucleus. The nuclear segmen-
tation masks were applied to the input images. As training loss of the
autoencoder we used the l2 loss between the input and the recon-
struction, as well as the KL divergence between the latent distribution
and a Gaussian prior as in standard VAE models. 5% of cells were used
for validation, and 10% of cells were used for testing. In addition,
training was performed only on a subset of the samples, with other
samples held out for testing (Supplementary Fig. 12a). The model was
trained for 310 epochs with a batch size of 8000 on one 24 GB GPU

(Supplementary Fig. 10a, b). Batch size can be adjusted depending on
the available GPUs.

Both the top-level clustering and subclustering were performed on
a subset of cells such that the same number of cells from each of the 11
phenotypic categories were used to define the clusters. Such random
downsampling resulted in 24,224 cells per phenotypic category.
K-means clustering was performed on the top 50 principal components
of the latent features using the MiniBatchKMeansmethod in the sklearn
package54. Visualization of the clustering result was performed on the
same subset of cells using UMAP55 with a neighborhood size, n_neigh-
bors, of 10 and min_dist of 0.25 (Fig. 2a and Supplementary Fig. 16). We
tested different numbers of clusters and subclusters to determine the
optimal level of clustering by checking the corresponding inertia, pro-
portion of the phenotypic categories, and the average protein expres-
sion in the clusters (Fig. 2 and Supplementary Fig. 11a). We plotted the
curve of inertia as a function of the number of subclusters; inertia is
defined as the sum of the squared distances of the cells in a particular
cluster to the center of that cluster (Supplementary Fig. 11a). The
number of subclusters for each top-level cluster was chosen to be
around the number where this inertia curve shows a sharp decrease. We
further examined thedifferent numbers of subclusters around this initial
choice given by the inertia curve to determine the final number of
subclusters, such that further division into more subclusters would not
result in a significant change in the proportion of the phenotypic cate-
gories or the average protein expression in the clusters.

Disease stage classifier given the VAE latent embedding
Neural network classifiers were trained to predict, from the latent
representation of a cell, which of the 11 phenotypic categories the cell
belongs to. Additional classifiers were trained separately for each of
the subclusters. Each classifier has three hidden layers of size 1024 and
an output layer of size 11. Each hidden layer is followed by a leaky ReLU
activation53 and a dropout rate of 0.5. The last layer output is com-
pared against the true label using the CrossEntropyLoss defined in the
pytorch package56. The loss is weighted proportionally to the inverse
of the number of cells in the particular phenotypic category in the
subcluster. 5% of cells were used for validation, and 10% of cells were
used for testing.

NMCO feature extraction
To characterize the nuclear morphology and chromatin organization
(NMCO) of a cell, images were range-normalized, and 201 NMCO fea-
tures were extracted using the chrometrics package (https://github.
com/GVS-Lab/chrometrics)36.

Cell state classification using the NMCO features
Neural network classifiers were trained to predict, from the 201 NMCO
features of a cell, which top-level cluster or subcluster the cell belongs
to. A classifierwas trained to classify cells into oneof the eight top-level
clusters. In addition, a classifierwas trained for each top-level cluster to
classify cells into subclusters. Each classifier has three hidden layers
of size 128 and an output layer with a size equal to the number of
top-level clusters or subclusters. The cross-entropy loss is weighted
proportionally to the inverse of the number of cells in the particular
cluster or subcluster to maintain classification performance in the
case of class imbalance57. Otherwise, the classifiers have the
same architecture as the disease stage classifier described above
(“Methods”, section 4).

NMCO statistical test and groups of highly correlated features
Each of the 201 NMCO features were tested for whether the mean in
any of the eight clusters was different compared to the mean in cells
outside of that cluster. All NMCO features were z-score normalized
using the scipy.stats.zscoremethod58. A T-test was performed for each
feature not assuming equal variance. Multiple hypothesis correction
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was performed using the Benjamini-Hochberg procedure59. 117 fea-
tures were identified based on a threshold of corrected p-value <0.01,
fold-change of at least 20% in either direction andmean across all cells
>0.5. The thresholds of fold-change and mean values were chosen to
ensure that we only consider NMCO features that show significantly
large morphological changes and are consistent across a relatively
large group of cells.

The 117 features identified to be significantly different in at least
one of the eight clusters were grouped into 9 groups based on their
correlation structure. More precisely, pairwise Pearson correlation
betweenall 117 featureswere calculatedusingpandas.DataFrame.corr60.
A feature was included in a group if its correlation with at least one
feature in that group was larger than 0.8. Different choices of the cor-
relation threshold for grouping features have also been tested, and the
grouping of features is robust to the choice of the correlation threshold
(Supplementary Fig. 17).

Pseudotime
The latent representations calculated by the convolutional VAE were
used as input to the PAGA method42 implemented in a scanpy
package61. Before runningPAGA, a neighborhoodgraphwas computed
with “n_neighbors” equal to 4 and 20 principal components. In the
PAGA graphs, each node represents a subcluster, and its size is pro-
portional to the number of cells in the subcluster. The position of each
node (subcluster) was computed using 24,224 cells per phenotypic
category as describedpreviously in section3. The edges in thenetwork
were computedusing all cells in the training samples,where the cluster
assignments for cells that were not used in clustering were computed
using the trained k-means model. All subsequent visualizations of
PAGA graphs involve all cells in the training samples.

Diffusion pseudotime was computed using the scanpy
implementation43,61 with default parameters. A cell in cluster 7 subcluster
2 at one end of the PAGAplotwas randomly selected as the root, and the
result was visualized using UMAP initialized with the subcluster posi-
tions in the PAGA plot. 24,224 cells per phenotypic category, as
described previously in section 3, were used to generate the plot.

Cell state co-localization matrix
For each sample, we computed an 8 by 8 matrix to represent the
average proportion of cells in each of the eight top-level clusters in the
neighborhood of each cluster. The neighborhood of a cell was defined
using a circle centered at the cell with a diameter of 51.8 µm. We ran-
domly shuffled the cluster assignment of all cells within a sample
40,000 times and compared the observed co-localization matrix to
the average co-localization of these random assignments (Fig. 6b).

Disease stage classifier given the cell state co-localizationmatrix
We trained a neural network classifier to predict the phenotypic
category of a sample given its observed co-localization pattern, as
described in section 9. We also tested alternative approaches that use
the proportion of cells in each top-level cluster and each subcluster as
the input or use both measures as the input. For all three approaches,
the number of cells in an input sample normalized by the area of the
sample was also used as input. All cells in all 560 samples, including
those in the held-out samples, were used either in training or testing
the neural network classifier. The classifier has three hidden layers of
size 64 and an output layer size matching the total number of phe-
notypic categories. Each hidden layer is followed by a leaky ReLU
activation53 and a dropout rate of 0.5. The last layer output is com-
pared against the true labels using theCrossEntropyLossdefined in the
pytorch package56. The loss is weighted proportionally to the inverse
of the number of cells in the particular phenotypic category in the
subcluster. Leave-one-out cross-validation is performed such that
either all data from one patient is held out (leave-one-patient-out) or
one sample is held out for testing at a time while the other samples are

used for training the classifier. Examples of training losses for the
leave-one-out cross-validation task are shown for the classifier using
co-localization as input (Supplementary Fig. 24a). The performance of
the classifier is evaluated by the test performance of each sample. For
this particular classification task, due to the limited sample size at
some phenotypic categories, we grouped similar phenotypic cate-
gories together into a total of 7 categories: “DCIS” (P5) and “DCIS and
breast tissue” (P6) were grouped together and labeled as “DCIS and
breast tissue”; “DCIS with early infiltration” (P7) and “Micropapillary
DCISwith early infiltration” (P8) were grouped together and labeled as
“DCIS with early infiltration”. In addition, we tested a logistic regres-
sionmodel for the same task of predicting the phenotypic category of
a samplegiven its co-localization pattern, whichperformedworse than
the neural network model (Supplementary Fig. 24b, c).

Validation ofmodel-assigned cell states by pathologist-assigned
nuclear grades
We randomly selected 256nuclei proportionally fromeachof the 8 cell
states and 11 phenotypic categories (Supplementary Fig. 13). The sur-
rounding tissue patch together with the queried nucleus were pre-
sented to apathologist, whoassigned a gradeof 1, 2, or 3 to thequeried
nucleus (Supplementary Fig. 14c).While the pathologistwasblinded to
the cell state assigned by our model as well as to disease stage and
phenotypic category assigned by Biomax, we observed a positive
correlation between pathologist-assigned nuclear grades and model-
assigned cell states (Supplementary Fig. 14).

Statistics & reproducibility
In order to obtain a sufficient number of samples to compare different
phenotypic categories in non-tumor, DCIS, and IDC patients, we gen-
erated a dataset with a large sample size of 560 tissue microarray
(TMA) samples from 122 patients (Supplementary Data 1). As stated
above, 557 samples out of the total 560 samples were used in our
analysis. Since there was only one core labeled as “hyperplasia with
saccular dilatation”, this core was removed from further analysis,
which explains the removal of 3 samples. The experiments were not
randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The chromatin imaging data generated in this study have been
deposited in the PSI Public Data Repository under accession code
https://doi.org/10.16907/f2030c03-231e-4cb9-9b69-446714b51d26.

Code availability
The code is available in the Github repository: https://github.com/
uhlerlab/DCISprogression and on Zenodo: https://doi.org/10.5281/
zenodo.1124753862.
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