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Investigation of histopathology slides by pathologists is an indispensable component of the routine
diagnosisof cancer.Artificial intelligence (AI) has thepotential toenhancediagnosticaccuracy, improve
efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation,
staining protocols, and histopathology slide digitization could result in over-fitting of deep learning
modelswhen trainedon thedata fromonlyonecenter, therebyunderscoring thenecessity togeneralize
deep learningnetworks formulti-center use. Several techniques, including theuseof grayscale images,
color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to
generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability.
Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude
spectrum, whereas humans predominantly rely on phase-related components for object recognition.
As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the
advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive
examination of subtype classification tasks in four cancers, incorporating cases frommultiple medical
centers.Specifically, thedatasets includedmulti-center data for 1113ovariancancercases, 247pleural
cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach
significantly improved performance, achieving superior classification results in the target domain,
surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore,
extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies
knownhistotype-specific features. This superior performancehighlightsAIDA’s potential in addressing
generalization challenges in deep learning models for multi-center histopathology datasets.

Visual microscopic study of diseased tissue by pathologists has been the
cornerstone incancerdiagnosis andprognostication formore thanacentury.
Hematoxylin and eosin (H&E)-staining is the most common and standard
method for examining tissues undermicroscope, inwhichHematoxylin dyes
the cell nuclei a dark purple color, and theEosin produces a pink color on the

other structures including the extracellular matrix and cytoplasm1–3. Digital
pathology is gaining prominence with the extensive adoption of specialized
scanning devices, producing Whole Slide Images (WSIs) by digitizing spe-
cimens, thereby making them well-suited to sophisticated deep learning
algorithms, a subset of AI, for automated decision support.

1School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada. 2Department of Electrical and Computer Engineering, University of
British Columbia, Vancouver, BC, Canada. 3Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. 4Van-
couver General Hospital, Vancouver, BC, Canada. 5Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. 6Department of
Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada. 7BC Cancer Research Institute,
Vancouver, BC, Canada. 8These authors contributed equally: Amirali Darbandsari, Allen Zhang.9These authors jointly
supervised this work: Hossein Farahani, Ali Bashashati. e-mail: ali.bashashati@ubc.ca

npj Precision Oncology |           (2024) 8:151 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00652-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00652-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-024-00652-4&domain=pdf
http://orcid.org/0000-0002-0275-512X
http://orcid.org/0000-0002-0275-512X
http://orcid.org/0000-0002-0275-512X
http://orcid.org/0000-0002-0275-512X
http://orcid.org/0000-0002-0275-512X
http://orcid.org/0009-0004-9315-6238
http://orcid.org/0009-0004-9315-6238
http://orcid.org/0009-0004-9315-6238
http://orcid.org/0009-0004-9315-6238
http://orcid.org/0009-0004-9315-6238
http://orcid.org/0000-0002-2919-7068
http://orcid.org/0000-0002-2919-7068
http://orcid.org/0000-0002-2919-7068
http://orcid.org/0000-0002-2919-7068
http://orcid.org/0000-0002-2919-7068
http://orcid.org/0000-0002-0225-4173
http://orcid.org/0000-0002-0225-4173
http://orcid.org/0000-0002-0225-4173
http://orcid.org/0000-0002-0225-4173
http://orcid.org/0000-0002-0225-4173
http://orcid.org/0000-0002-9503-1875
http://orcid.org/0000-0002-9503-1875
http://orcid.org/0000-0002-9503-1875
http://orcid.org/0000-0002-9503-1875
http://orcid.org/0000-0002-9503-1875
http://orcid.org/0000-0002-4212-7224
http://orcid.org/0000-0002-4212-7224
http://orcid.org/0000-0002-4212-7224
http://orcid.org/0000-0002-4212-7224
http://orcid.org/0000-0002-4212-7224
mailto:ali.bashashati@ubc.ca


The use of deep learning algorithmshas shown remarkable potential in
the assessment of digitized histopathology slides for diagnostics and bio-
marker discovery, enabling earlier and more precise diagnoses and treat-
ments. By leveraging deep learning algorithms, researchers have achieved
accurate classification, grading, and outcome prediction of diverse cancer
types, such as prostate4, gastric5, lung6, breast7, endometrial8, bladder9 and
colorectal10 cancers, based on histopathology images. As an example, a deep
learning-based model4,11 has demonstrated the ability to perform Gleason
grading of prostatic adenocarcinomas with high accuracy, comparable to
that of pathologists, thus enabling accurate prognostic stratification of
patients. Nevertheless, despite the achievements of these techniques, there
exist challenges associated with their implementation and deployment in
clinical settings.

Deep learning models tend to be data-intensive and require a sig-
nificant amount of training data. The acquisition of a sufficient quantity of
data from a single source is generally challenging, particularly for data like
histopathology scans, due to various limitations including technical, ethical,
and financial constraints as well as confidentiality concerns. In an ideal
scenario, a network should be trained using data acquired from a single
center, and subsequently applied to multiple centers. However, this can be
challenging in histopathology sections due to inconsistent color appear-
ances, known as domain shift. These inconsistencies arise from variations
between slide scanners and different tissue processing and staining proto-
cols across various pathology labs. While pathologists can adapt to such
inconsistencies, deep learning-based diagnostic models often struggle to
provide satisfactory results as they tend to overfit to a particular data
domain12–16. In the presence of domain shift, domain adaptation is the task
of learning a discriminative predictor by constructing a mapping between
the source and target domains.

One approach to tackle this problem is labeling new images in the
target domain and fine-tuning the trainedmodel on source domain17,18, but
this is time-consuming and costly, especially in biomedical fields where
expert annotation is required. Another possible solution is to convert color
images to grayscale19,20. However, such approaches exclude informative
elements within the color space of images that might contribute to an
accurate diagnosis.

Various techniques aim to mitigate generalization errors in histo-
pathology images bymanipulating color spaces, categorized into stain color
augmentation and normalization. Augmentation simulates diverse stain
variations for stain-invariant models, while normalization aligns training
and test color distributions to reduce stain variation. Within the domain of
color augmentation, methodologies range from basic techniques to
advanced H&E-based approaches21–23. Typically, these methods involve
direct modifications to images within the H&E color space, aiming to
replicate specific variations in H&E staining. The color normalization
techniques12,24,25 have received significant attention within the field of his-
topathology image analysis. The conventional methods within this domain
aim tonormalize the color space by estimating a color deconvolutionmatrix
for identifying underlying stains24,26. Alternative advancements in stain style
transfer encompass techniques like histogrammatching27,28, CycleGAN29–31,
style transfer23, and Network-based22. Notably, Tellez et al.22 introduced an
image-to-image translation network that reconstructs original images from
heavily augmented H&E images, facilitating effective stain color normal-
ization in unseen datasets. In the most recent approaches self-supervised
learning strategies32,33 have been proposed for color normalization.

While color normalization methods have been shown to improve the
performance of target datasets, they suffer from two main drawbacks.
Firstly, most color normalization approaches require the manual selection
of a reference image; and this choice can substantially affect theperformance
of the models12. Secondly, deep learning models have been shown to
recognize the tissue submission site even after deploying color normal-
ization techniques. This was shown in a study byHoward et al.34, where they
analyzed the differences in slide image characteristics from different centers
using classical descriptive statistics. Their study revealed that all these sta-
tistics exhibited variance according to the tissue submitting center while

color normalization methods could improve only some of these statistical
characteristics and had no effect on the remainder. This suggests that these
techniques do not necessarily remove all the site-specific signatures and
therefore, may not lead to more generalizable models.

Adversarial networks15 have become prevalent in addressing the
challenge of domain adaptation. By leveraging adversarial training techni-
ques, domain adaptation models aim to bolster the model’s adaptability to
diverse data distributions encountered during deployment. This is achieved
through the alignment of feature distributions between the source and target
domains. Central to adversarial domain adaptation is the feature extractor
network, which operates with the dual objective of learning representations
that are both discriminative for the primary task and invariant to domain
shifts. Several studies have investigated the effectiveness of adversarial
networks for domainadaptation in the realmof histopathology images13,35,36.
In the works by Lafarge et al.35 and Otalora et al.36, adversarial networks are
employed for domain adaptation tasks concerning mitosis detection in
breast cancer histopathology images and Gleason pattern classification in
prostate cancer. These approaches involve incorporating the adversarial
network with color augmentation and stain normalization. However, it’s
important to note that this integrationmaynot be optimal, as the adversarial
network should ideally demonstrate robust performancewithout relying on
color normalization support. Ren et al.13 employed an adversarial network
for the classification of low andhighGleason grades. A Siamese architecture
was implemented as a regularization technique for the target domain.While
this regularization demonstrated enhanced performance in the target
domain, it necessitated the use of a distinct classifier for the source domain,
rather than utilizing a shared feature representation network. Additionally,
it is noteworthy that the integration of a Siamese architecture contributes to
an increase in the computational time of the network.

Despite their potential, adversarial networks have certain limitations
when applied to real-world applications37–39. First, a concern emerges
regarding thepotential hindranceof featurediscriminabilitywhich results in
lower performancewhen compared to supervisednetworks on target data40.
Furthermore, these networks have not fully exploited transferability and
concentrate only on distribution matching in the feature space by mini-
mizing the statistical distance between domains while ignoring the class
space alignment. As a result, the classifier may misclassify target samples
that are close to the decision boundary or far from their class centers.
Recently, self-supervised auxiliary tasks have been utilized to improve the
performance of these networks in the context of histopathology
images13,32,41,42. Although the self-supervised auxiliary tasks allow for the
acquisition of more specific features pertaining to the color space of target
data samples, these approaches are still grappling with the aforementioned
issues regarding discriminability and transferability.

From a frequency domain perspective, it has been proven that CNNs
benefit from the high-frequency components of the image, rendering them
more sensitive to amplitude spectrum variations while humans, unlike
CNNs, rely more on phase-related components for object recognition43,44.
The color variations of histopathology images (i.e., domain shift) notably
affect the amplitude spectrum of images, while phase-related components
carry more informative content. In light of this, we hypothesize that
incorporating frequency information has the potential to enhance both the
discriminability and knowledge transferability of the domain adversarial
networks. Therefore, we propose the Adversarial fourIer-based Domain
Adaptation (AIDA) framework by integrating amodule, referred to as FFT-
Enhancer, into the feature extractor for patches (i.e., tiny portions of the
whole image) to make the adversarial network less sensitive to changes in
amplitude (i.e., variations in color space) and to increase the attention paid
to phase information (i.e., shape-based features). The FFT-Enhancer
module, with its straightforward calculation and minimal computational
burden, emerges as an ideal candidate for this purpose. Furthermore, we
specifically investigate the application of various convolutional layers for the
purpose of domain adversarial training in histopathology images, revealing
that features extracted from intermediate layers exhibit greater suitability for
effective domain adaptation.
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We conducted a thorough and all-encompassing investigation into
subtype classification of histopathology datasets of ovarian, pleural, bladder,
and breast cancers which encompass 1113, 247, 422, and 482 slides from
various hospitals, respectively. The experimental findings conclusively
demonstrate the superiority of AIDA over the baseline, color augmentation
and normalization techniques, the conventional adversarial domain adap-
tation (ADA) network, and a pre-trained self-supervised model on a mas-
sive dataset. Additionally, our investigation reveals AIDA’s efficacy in
discriminating histotypeswithin the feature space and shows its capacity for
accurately identifying tumor regions and subtype-specific morphometric
characteristics as assessed by expert pathologists. The demonstrated
superiority of AIDA’s performance reaffirms its potential advantages in
addressing challenges related to generalization in deep learning models
when dealing with multi-center histopathology datasets.

Results
Proposed Adversarial fourIer-based Domain Adaptation (AIDA)
framework
The AIDA approach proposed in this study addresses the challenges asso-
ciated with the classification of large WSIs originating from different cen-
ters, which exhibit domain shift, by combining adversarial training and the
FFT-Enhancermodule. As illustrated in Fig. 1, the AIDA approach consists
of four key components. First, the WSIs are partitioned into small patches
(Fig. 1a), which serve as input data for the network. The adversarial training
component (Fig. 1c) comprises a feature extraction module, a label pre-
dictor, andadomain classifier.This component is designed to leverage input
samples from both the source and target domains. Specifically, the label
predictor is trained on source domain samples, while the domain classifier is
trained on both source and target domain samples. To facilitate knowledge
transfer from the target domain to the label predictor, we utilize the FFT-
Enhancer module (Fig. 1b) which leverages the color space of the target
domain.

The patch-level results obtained from the three aforementioned steps
are then aggregated to produce slide-level results. We employ the Vector of
Locally Aggregated Descriptors (VLAD)45 approach to generate slide-level
features from extracted features of the patches within a slide. This method

was selected due to its capability to efficiently aggregate local features into a
condensed representation, thereby decreasing computational complexity
while retaining discriminative information. VLAD encoding has proven
successful in a variety of computer vision tasks, rendering it a fitting choice
for our feature aggregation step. Finally, we apply the Support Vector
Machine (SVM) classifier to classify the slides (Fig. 1d). Further details
regarding the proposed network are provided in the Methods section.

Throughout the remainder of this paper, we compare a total of eight
approaches: (a) baseline model (“Base”) where we employed a standard
CNN, (b) Hematoxylin-Eosin-DAB color augmentation (“HED”)22, (c)
Macenko color normalization (“Macenko”)26, (d) composite color nor-
malization (“CNorm”)12, (e) a foundationmodel (“CTransPath”)46 as a self-
supervised feature extractor, (f) a variant of the baseline approach, enriched
with the FFT-Enhancer module (“Base-FFT”), (g) conventional adversarial
domain adaptation network (“ADA”)15, and (h) our proposed method
(AIDA). To ensure a fair comparison, we maintained identical backbone
architectures (i.e., ResNet18) for all the aforementioned methods.

AIDA’s performance was evaluated across four datasets: ovarian,
pleural, bladder, and breast cancers. The ovarian cancer dataset contains
1053 Whole Slide Images (WSIs) from 523 patients in the source domain
and 60 WSIs from 60 patients in the target domain, encompassing five
primary histotypes. The pleural dataset comprises 194 WSIs from 128
patients in the source domain and 53 WSIs from 53 patients in the target
domain, covering both benign and malignant cases from two centers. For
the bladder dataset, 262 WSIs from 86 patients were used in the source
domain, while 160 WSIs from 72 patients were used in the target domain,
including two distinct histological subtypes. In the breast cancer dataset, the
public ICIAR-2018 dataset47 was utilized for the source domain, containing
400 breast biopsy images from 257 patients. For the target domain, the
public BreaKHis dataset48, consisting of 7909 small biopsy slides of breast
tissue, was employed. The breast dataset was analyzed for two subtypes:
benign and malignant. Notably, the source and target domains for all
datasets originate from distinct hospitals. For further details on these
datasets, refer to the Data section and Table 1.

Across all four datasets, AIDA exhibited superior performance in the
targetdomain, attainingbalancedaccuracy scoresof 75.82%, 82.56%, 77.65%,

Fig. 1 | Overview of the proposedmethod (AIDA). aThe patches are first extracted
from the WSIs in both the source and target domains. b Through FFT-Enhancer,
patch colors from the source domain are adjusted to lookmore like patches from the
target domain. cThe label predictor is trained using features derived from the source

domain, whereas the domain classifier is optimized using features derived from both
the source and target domains. d In order to predict slide-level labels, the extracted
features are fed into the VLAD aggregation method.
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and 74.11% for the ovarian, pleural, bladder, and breast cancer datasets,
respectively. Further experimental details are provided in the subsequent
sections.

Designating the optimal CNN layer for the domain discriminator
in AIDA
It is common practice to extract features from the final convolutional layer,
although using earlier layers as the feature extractor is possible. In con-
volutional networks, the initial layers are responsible for detecting low-level
features. Their small local receptive fields limit the context they can encode,
resulting in the learning of only basic and minor details of images. As a
result, these layers lack sufficient information for the domain discriminator
and cannot capture the high-level semantic information needed to differ-
entiate between domains. By contrast, the last convolutional layer builds up
high-level features on top of low-level ones to detect larger structures in
images. As a result, these features rely heavily on semantic and classification
information from labeled data, i.e., the source domain. Nonetheless, they
may have already learned a biased representation unsuitable for the target
domain, thereby presenting a risk that these layers may not be able to learn
from the target data. Accordingly, depending on the layers and features
used, domain classifiers may encounter difficulties in constructing a feature
space resilient to different domains.

In order to assess the efficacy and utility of different layers as feature
extractors,we constructed adomain classifier exploiting theoutputof theXth

convolutional block. We refer to these classifiers as AIDA-X, where
X∈ [2, . . . , 5]. The experimental results are presented in Fig. 2 for the
Ovarian, Pleural, Bladder, and Breast datasets. In the initial three datasets,
AIDA-4 exhibited superior performance in target-domain classification,
except for the Breast dataset, where AIDA-5 outperformed it. However, the
performance gap for the Breast dataset was minimal, with an estimated
difference of approximately 1%, indicating that both AIDA-4 and AIDA-5
exhibited comparable performance on this dataset. This suggests that the

fourth convolutional block contributes to more generalizable and optimal
features for the domain classifier. To simplify our discussion, wewill use the
shorthand “AIDA” instead of “AIDA-4” throughout the paper, including
when referring to the Breast dataset.

Theutilizationofadversarialneural network,color augmentation,
andcolornormalizationexceeds theperformanceof thebaseline
Various color normalization and augmentation techniques have been
developed to address the challenge of color variation. In a recent study12, the
effectiveness of different color normalization approaches was evaluated in
the context of histopathology image classification. Their research revealed
that employing a combination of color normalization methods with mul-
tiple reference images yielded the most consistent results. Therefore, we
adopted this approach, which involves integrating Reinhard24, Macenko26,
and Vahadane49 methods with several reference images. This combined
approach, referred to as CNorm throughout the paper, was utilized to assess
the performance of AIDA against other color normalization techniques.

In another study Tellez et al.22 compared various color normalization
and augmentation approaches for classifying histopathology images with
color variations. Among these approaches, the HED color augmentation
method was found to outperform other color normalization and augmen-
tation approaches across several datasets. Consequently, we integrated this
method into our comparison framework, referring to it as HED for clarity
and consistency. Additionally, we employed the Macenko method as a
standalone color normalization approach using only one reference image.

In AIDA, we employed adversarial training in conjunction with the
FFT-Enhancermodule. In this section, we present the results obtained from
the adversarial training component, specifically ADA, and compare its
performance with other approaches. This allows us to assess the individual
contributions of adversarial training and the FFT-Enhancer module to the
overall performance of AIDA. The ADAmethod employed in our study is
based on the concept of adversarial domain adaptationneural network15. To

Table 1 | Overview of datasets

Dataset Domain #Slides #Patients Patch size Magnification Classes

Subtype #Patients #Slides

Ovarian Cancer Source 1053 522 512 × 512 20X CCOC 97 173

ENOC 119 257

HGSC 212 446

LGSC 36 76

MUC 59 101

Target 60 60 512 × 512 20X CC 10 10

ENOC 10 10

HGSC 31 31

LGSC 4 4

MUC 5 5

Pleural Cancer Source 194 130 512 × 512 40X Benign 73 111

Malignant 57 83

Target 53 42 512 × 512 40X Benign 17 27

Malignant 25 26

Bladder Cancer Source 262 86 512 × 512 20X UCC 57 134

MPC 29 128

Target 160 72 512 × 512 20X UCC 48 72

MPC 24 88

Breast Cancer Source 400 257 230 × 230 20X Benign 129 200

Malignant 131 200

Target 82 82 230 × 230 20X Benign 24 24

Malignant 58 58
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ensure a fair comparisonwithAIDA, we followed the approach of using the
output of the fourth layer of the feature extractor to train the domain
discriminator within the network.

Given that all datasets are imbalanced with respect to the distribution
of cancer histotypes, we predominantly utilized the slide-level balanced
accuracymetric to compare the performance of various methods in the rest
of this paper. In our study,we appliedHED,Macenko,CNorm, andADA to
all datasets. Our findings (Supplementary Table 1) reveal that in the target
domain of the Ovarian dataset, all HED, Macenko, CNorm, and ADA
outperformed the Base method with a balanced accuracy of
67.07%, 73.49%, 72.14%, and 74.16%, respectively, as compared to Base’s
balanced accuracy of 64.65%. Notably, Macenko, CNorm, and ADA
demonstrated similar performance levels, while HED exhibited a notably
lower accuracy. Conversely, in the source domain of theOvarian dataset, all
methods showed comparable performance. For the target domain of the
Pleural dataset (Supplementary Table 2), Macenko (80.96%), CNorm
(79.55%), and ADA (79.72%) outperformed the Base method (76.70%),
while HED (76.80%) showed similar performance to the Base. In the source
domain of the Pleural dataset, HED, Macenko, and ADA achieved nearly
identical balanced accuracy, all surpassing CNorm’s performance.

In the case of the Bladder dataset (Supplementary Table 3), the HED,
Macenko, CNorm, and ADA approaches exhibited superior performance
compared to the Base approach in the target domain. They achieved
balanced accuracies of 57.66%, 66.42%, 73.73%, and 73.15%, respectively,
while the Base approach obtained a performance of 54.77%. Notably, ADA
and CNorm outperformed Macenko and HED in this dataset, with HED
showing marginal improvement over the Base. In the source dataset, HED,
Macenko, and CNorm yielded similar results, slightly outperforming ADA.

In the Breast dataset (Supplementary Table 4), all methods - HED,
Macenko, CNorm, andADA - surpassed the Base performance of the target
dataset. They achieved balanced accuracies of 57.57%, 58.91%, 65.06%, and
60.49%, respectively, compared to the Base’s performance of 55.15%.
Notably, CNorm stood out as the most effective approach among the four
methods. ADA and Macenko demonstrated similar performance levels,
whileHEDshowedmarginal improvement over theBase, akin to thePleural
dataset. In the source domain, HED, CNorm, and ADA outperformed the
Base performance, whileMacenko closelymatched the Base’s performance.
Additionally, to conduct a statistical comparison of these methods, we
computed the p-values using the Wilcoxon signed-rank method (two-
sided) and visualized them in Supplementary Fig. 1.

Overall, across all datasets, Macenko, CNorm, and ADA consistently
improved the performance of the target datasets to a greater extent than
HED, with a notable margin. Furthermore, all methods demonstrated
minimal impact on the performance of the source domain.

Incorporating the FFT-Enhancer in the networks boosts their
performance
Figure 3a illustrates the distribution of the balanced accuracy for seven
approaches of: Base, HED,Macenko, CNorm, Base-FFT, ADA, and AIDA,
on the source and target domains of theOvarian cancer dataset, respectively.
The utilization of the FFT-Enhancer (Base-FFT) improved the balanced
accuracy of the Base on the target domain of the Ovarian dataset from
64.65% to 70.28% (p-value = 6.71e−3). According to the experimental
results presented in Supplementary Table 1, it can be inferred that AIDA
achieved superior performance across various metrics, such as balanced
accuracy, Cohen’s Kappa, F1-score, and Area Under the ROC Curve

Fig. 2 | AIDA with different discriminator inputs.
Comparison of the balanced accuracy achieved by
using different layers as the input to the dis-
criminator for the target domain of (a) the Ovarian
Dataset, b the Pleural Dataset, c the Bladder Dataset,
and (d) the Breast Dataset. In box plots, the central
line represents themedian, while the bottom and top
edges of the box correspond to the 25th and 75th

percentiles, respectively. (AIDA-X indicates using
the Xth block as the input to the discriminator).
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(AUC), for both the source and target domains. Specifically, AIDA yielded
the highest balanced accuracy (75.82%), surpassing the performance of Base
(p-value = 6.0e−5), HED (p-value = 3.1e−4), Macenko (p-value = 1.51e
−1),CNorm(p-value = 3.53e−2), Base-FFT (p-value = 2.01e−3), andADA
(p-value = 2.80e−2). The results of the study demonstrate that AIDA not
only outperformed the other approaches in the target domain but also in the
source data with a balanced accuracy of 80.68%. This suggests that the
inclusion of the FFT-Enhancer module has enhanced the label predictor’s
ability to adapt to the source domain.

Figure 3b presents a comparison of the balanced accuracy of seven
approaches applied to the Pleural dataset. Consistent with the findings on
the Ovarian dataset, our proposed AIDA approach demonstrated superior
performance in terms of various metrics for both the source and target
domains. Specifically, AIDA demonstrated the best performance among all
methods, achieving a balanced accuracy of 82.56% compared to Base (p-
value = 9.16e−3), CNorm (p-value = 4.79e−2), HED (p-value = 3.36e−3),

Macenko (p-value = 4.54e−1), Base-FFT (p-value = 5.37e−3), andADA(p-
value = 4.13e−2). In addition, the incorporation of the FFT-Enhancer
module resulted in improved performance for the Base method, with Base-
FFT achieving a balanced accuracy of 77.24%. A similar outcome was
achieved in the source domain as well, with 93.28% balanced accuracy
associated with AIDA. It is noteworthy that, among all approaches applied
to the Pleural dataset, AIDA was the only method that outperformed the
Base method.

In Fig. 3c, the distributions of the balanced accuracy for seven different
approaches on the Bladder dataset are presented for the source and target
domains. Similar to the other two datasets, the AIDAmethod exhibited the
most favorable results on the target domain, with a balanced accuracy of
77.65%, outperforming the Base (p-value = 6.0e−5), HED (p-value = 1.2e
−4),Macenko (p-value = 4.27e−3), CNorm (p-value = 8.36e−3), Base-FFT
(p-value = 6.71e−3), and ADA (p-value = 2.15e−2) approaches. Further-
more, incorporating the FFT-Enhancer technique in the Base-FFT

Fig. 3 | Comparative analysis: AIDA versus other
methods. The balanced accuracy comparison of the
proposed AIDA model with the Base, HED,
Macenko, CNorm, Base-FFT, and ADA for the
source (left column) and target (right column)
domains of (a) the Ovarian dataset, b the Pleural
dataset, c the Bladder dataset, and (d) the Breast
dataset. In box plots, the central line represents the
median, while the bottom and top edges of the box
correspond to the 25th and 75th percentiles,
respectively.
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approach led to improved performance, achieving a balanced accuracy of
74.48% compared to the Base’s performance of 54.77%. It is important to
note that while all methods showed improved performance on the target
domain, theywere unable to reach the same level of performance as the Base
on the source domain, with the exception of Macenko. This can be attrib-
uted to theBasenetwork’s excessive overfitting on the sourcedomain,which
consequently led it to function as a random classifier on the target domain.
However, it’s worth mentioning that there exists a slight disparity between
the performance of the Base model on the source domain and that of the
other methods.

Figure 3d illustrates a comparative analysis of the balanced accuracy of
seven approaches applied to the Breast dataset. Mirroring the observations
on other datasets, our proposed AIDA approach exhibited superior per-
formance across various metrics in the target domain. Specifically, AIDA
outperformed all other methods, achieving a balanced accuracy of 74.11%
compared to Base (p-value = 6.0e−5), HED (p-value = 1.2e−4), Macenko
(p-value = 6.0e−5), CNorm (p-value = 8.5e−4), Base-FFT (p-value = 1.16e
−3), andADA(p-value = 1.8e−4). Furthermore, the integrationof theFFT-
Enhancer module led to improved performance for the Base method, with
Base-FFT achieving a balanced accuracy of 60.75%. Notably, AIDA also
excelled in the source domain, achieving the second-highest performance
after CNorm (88.98%) with a balanced accuracy of 86.21%.

AIDA outperforms ADA across different backbone architectures
In addition to employing ResNet18 as the backbone architecture in our
previous experiments, we sought to further assess the efficacy of AIDA by
training it with two alternative backbone architectures: MobileNetV350 and
Vision Transformer (ViT)51. Supplementary Table 5 presents a comparison
of the results obtained by AIDA and ADA across these different backbone
architectures. Remarkably, irrespective of the backbone utilized, AIDA
consistently surpassedADA in terms of balanced accuracy within the target
domain. In the source domain of the Ovarian, Pleural, and Breast datasets,
AIDA surpassed ADA, whereas, for the Bladder dataset, their performance
was nearly identical. This comprehensive experiment reaffirms the con-
sistent and superior performance of AIDA over ADA across various
backbone architectures.

Exploring the role of foundation models in AIDA
In recent studies, researchers have introduced several foundational models
designed as feature extraction modules for histopathology images46,52–54.
Typically, these models undergo training on extensive datasets containing
diverse histopathology images. To enhance the extraction of
histopathology-oriented features and investigate the role of foundational
models, we chose to integrateCTransPath46, a self-supervised learning (SSL)
foundational model that has demonstrated notable efficacy across several
cancer types, into our methodology.

CTransPath employs a semantically relevant contrastive learning
(SRCL) framework and a hybrid CNN-Transformer backbone to address
the limitations of traditional SSL approaches. The SRCL framework selects
semantically matched positives in the latent space, providing more visual
diversity and informative semantic representations than conventional data
augmentation methods. The hybrid backbone combines CNNs to extract
local features and Transformers to capture global dependencies, ensuring
stability and improved performance in histopathological image analysis.
This architecture leverages a vast dataset, including around 15 million
cancer genome atlas (TCGA) patches and pathology AI platform (PAIP)
datasets, making it a robust and universal feature extractor for our adver-
sarial domain adaptation model.

Our experimental setup involved several approaches utilizing CTran-
sPath. 1) Initially, we employed CTransPath to extract features from image
patches, which were then aggregated using a VLAD encoder to produce
slide-level results. 2) We integrated CTransPath as the backbone feature
extractor in both ADA and AIDA frameworks. Using pre-trained weights
fromCTransPath, we trained the entire networks with the inclusion of data
augmentation techniques during training. 3) Similarly to the second

approach, we utilized CTransPath as the feature extraction backbone in
ADA and AIDA, but without applying any data augmentation techniques.
The first experiment aimed to evaluate the performance of a foundation
model, trained in a self-supervised manner on a large set of histopathology
samples, when applied to our dataset. The second and third experiments
were designed to investigate two specific aspects: first, the impact of using
domain-specific pre-trained weights, obtained from large histopathology
datasets, as opposed to conventional ImageNet weights; and second, the
effect of general augmentationmethods, such as rotation,flipping, and color
jittering, on the performance of the network.

Theresults of theseexperimentsarepresented inSupplementaryTable6.
Despite its promising architecture, our evaluation of CTransPath’s impact on
model performance yieldedmixed outcomes. CTransPath achieved balanced
accuracy scores of 49.41%, 69.13%, and 64.60% on the target domains of the
Ovarian, Pleural, and Breast datasets, respectively, which were lower than the
performance of AIDA on these datasets. These results underscore the
importance of domain adaptation in addition to efforts through building
domain agnostic representation models (e.g., foundational models).

However, for the Bladder dataset, CTransPath achieved a balanced
accuracy of 79.87%, surpassing the performance of AIDA (63.42%). Using
CTransPath as a feature extractor yields superior performance to AIDA,
evenwhen employing domain-specific pre-trainedweights as the backbone.
However, upon closer examination of the results, we observed that the
performance of CTransPath for the micropapillary carcinoma (MPC)
subtype is 87.42%, whereas this value rises to 95.09% for AIDA (using
CTransPath as the backbone). In bladder cancer, patients with MPC sub-
types are very rare (2.2%)55, despite this subtype being a highly aggressive
form of urothelial carcinoma with poorer outcomes compared to the uro-
thelial carcinoma (UCC) subtype. Thus, our primary concern is accurately
identifying MPC cases, prioritizing a higher positive prediction rate. In this
context, the positive predictive value of AIDA (95.09%) surpasses that of
CTransPath (87.42%), aligning with our objective of achieving higher
sensitivity in identifying MPC cases.

Moreover, it is important to note that MPC slides typically exhibit a
UCC backgroundwith usually small regions ofmicropapillary tumor areas.
In this study, we used these slides as training data without any pathologists’
annotations, leading to the extraction of bothUCC andMPCpatches under
the MPC label. Consequently, when fine-tuning the model with our source
data, the network incorrectly interprets UCC patches as belonging to the
MPC class, resulting in a tendency to misclassify UCC samples as MPC.
While theprimaryobjectiveof this studywasdomainadaptation rather than
enhancing performance on the bladder dataset, futureworkwill address this
challenge by incorporating tumor annotations from expert pathologists to
improve the model’s accuracy in classifying UCC samples.

In the second and third experiments, we demonstrated that AIDA
consistently outperformed ADA, even when utilizing CTransPath with
domain-specific pre-trained weights as the feature extractor. Specifically,
AIDA achieved balanced accuracy scores of 80.93%, 72.95%, 63.42%, and
75.23% for the Ovarian, Pleural, Bladder, and Breast datasets, respectively.
This demonstrates AIDA’s superior robustness and effectiveness compared
to ADA in enhancing feature extraction capabilities, irrespective of the
network’s initial weights.

Using CTransPath instead of ResNet18 backbone boosts the perfor-
manceofAIDAon the target domainsof twodatasetsofOvarian andBreast.
Specifically, on the Ovarian dataset, AIDA with CTransPath achieved
80.93% which is 5% better than AIDA with ResNet backbone (75.82%).
While for the Pleural and Bladder datasets, the ResNet18 backbone was
more successful. Similar to AIDA, CTransPath helped ADA to work better
for the Ovarian and Breast datasets while ADA with ResNet18 backbone
resulted in better performance for the Pleural and Bladder datasets.
CTransPath’s hybrid architecture, which combines local fine structure
extraction with global contextual understanding, appears to be particularly
well-suited for the Ovarian and Breast datasets. These datasets likely benefit
from the domain-specif pre-trained weights and the model’s ability to
capture nuanced morphological details and broader contextual
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information.On the other hand, the Pleural datasetmight have features that
are more effectively captured by ResNet18’s traditional convolutional
approach.

In the third experiment involving CTransPath, we conducted training
without employing regular augmentations. Across the Ovarian, Pleural,
Bladder, and Breast datasets, AIDA without augmentation functions yielded
classification accuracies of 82.67%, 73.77%, 64.56%, and 77.45% respectively,
surpassing its augmented counterpart. Conversely, ADA with the CTran-
sPath backbone exhibited superior performance when trained with aug-
mentation. The distinguishing factor between AIDA and ADA lies in the
inclusion of the FFT-Enhancer module. Our findings indicate that when
utilizing a backbone with domain-specific pre-trained weights, the FFT-
Enhancer can enhance model performance without augmentation,

surpassing its augmented counterpart. This outcome may be attributed to
CTransPath’s extensive training on a diverse array of histopathology images,
enabling adaptation to various general variations, including those related to
color. Consequently, the pre-trained weights enable the model to accom-
modate samples with distinct color spaces, with the FFT-Enhancer aiding in
sharpening the focus on tumor morphology and shape during training.

Cancer histotypes can be readily discerned within the feature
space of AIDA
The t-Distributed Stochastic Neighbor Embedding (t-SNE) approach was
employed to visually represent the joint feature space of the source and
target domains learned through the use of Base, CNorm, and AIDA.
Figure 4 shows the t-SNE results, with the first, second, and third rows

Fig. 4 | Comparing feature space representations using tSNE.Visualizing the feature spaces of Base, CNorm, andAIDA for datasets related to (a)OvarianCancer, bPleural
Cancer, and (c) Bladder Cancer.
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representing the Ovarian, Pleural, and Bladder datasets, respectively.
According to the findings, CNorm outperformed Base, while AIDA is the
most effective method in separating the five histotypes of ovarian cancer.
Similarly, the representation of the feature space of the Pleural and Bladder
datasets showed that AIDA outperformed the other approaches in gen-
erating more discriminative features for subtype classification.

Effectiveness of AIDA through the visualization of the spatial
distribution of tumor regions
Heatmaps were generated for eachWSI to visualize the spatial distribution
of tumors. This was accomplished by converting the prediction probability
results of each patch into colors on WSI heatmaps. A higher classification
score in tumor prediction is represented by a closer color to red in the
heatmap image, indicating a higher likelihood of a tumor diagnosis.

In Fig. 5, we compare the heatmaps generated by the proposed AIDA
with those generated by theBase andCNorm for selected samples fromboth

source (a and b) and target (c and d) domains of the Ovarian dataset. The
results show that AIDA outperforms the other methods. For instance,
Fig. 5a shows a sample that has been diagnosed as “MUC”. However, the
Base and CNorm classifiedmost of the patches as other subtypes, detecting
only a few patches with “MUC”, leading to a misclassification of the entire
slide as “ENOC”. In contrast, AIDA could accurately classify themajority of
the patches as “MUC” with high probabilities, as evidenced by the high red
intensities on the heatmap.Moreover, upon careful examination of Fig. 5, it
becomes evident that the produced heatmaps by AIDA align precisely with
the tumor annotations provided by the pathologist. This close correspon-
dence serves as compelling evidence of AIDA’s proficiency in accurately
visualizing the tumor area which underscores the capacity of AIDA to
effectively capture and represent the tumor regions.

Figure 6 compares the heatmaps generated by the proposed AIDA,
with those produced by the Base andCNorm for the source (a) and target (b
and c) domains of the Pleural dataset. While all samples were diagnosed as

Base CNorm AIDA
a

b

c

d

Tumor Annotation

GT Label: LGSC

GT Label: MUC

GT Label: ENOC

GT Label: HGSC

Fig. 5 | Comparative heatmap visualization of Ovarian dataset.Heatmap analysis
of samples (a, b) from the source domain and (c, d) from the target domain of the
Ovarian cancer dataset. The first column is the input slide incorporating the tumor
annotation provided by the pathologist, and the second to fourth columns are the

outputs of Base, CNorm, andAIDAmethods. The closer it is to red, themore likely it
is to be classified as a ground truth label, while the closer it is to blue, the less likely
it is.
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“Malignant”, both the Base and CNorm approaches incorrectly classified
the slides as “Benign”. However, by applying AIDA, themajority of patches
were accurately classified as “Malignant”, ultimately leading to the correct
classification of the entire slide as “Malignant”. Similar to the observations
made in the context of ovarian cancer, a notable alignment is observed
between the tumor annotations provided by the pathologist and the heat-
map generated by the AIDA method for pleural cancer. This alignment
demonstrates that our networkpossesses the capability to accurately localize
tumor regions on the slide for pleural cancer.

Figure 7 illustrates a comparison between the prediction heatmaps
associated with the AIDA, Base, and CNorm methods for three samples
(a–c) from the target domain. The results indicate that a significant
number of patches within these slides were inaccurately identified as
“MPC" by the Base and CNorm approaches, leading to the mis-
classification of these samples, which were in fact diagnosed as “UCC".
Conversely, AIDA successfully classified the majority of patches in these
slides as “UCC", which in turn enabled the model to correctly classify the
entire slides. A thorough comparison between the annotations provided
by the pathologist and the heatmaps generated by the proposed AIDA
method indicated that AIDA demonstrates a commendable ability to
proficiently localize tumor regions for bladder cancer, akin to its perfor-
mance in ovarian and pleural cancers. This finding underscores the
robustness and generalizability of AIDA in accurately identifying and
delineating tumor areas It is noteworthy to highlight that in our analysis
we specifically visualized the model output for the UCC subtypes. This
deliberate focus stems from the observation that the other approaches
employed in the study exhibited overfitting tendencies on the MPC
subtypes, resulting in an accurate classification of all MPC slides. By
emphasizing the visualization of the UCC subtypes, we aimed to explore
the performance and generalizability of the models.

To gain deeper insights into the enhancement brought about by
FFT-Enhancer on model performance, we examine the heatmaps gen-
erated by both ADA and AIDA for three samples that were accurately
classified by bothmethods, as depicted in Fig. 8. While both approaches
achieved the correct classification for these samples, a noticeable dis-
tinction arises in the heatmap output. Notably, the heatmap produced
by AIDA demonstrates a closer resemblance to the annotated areas.
This suggests that AIDA exhibits a higher proficiency in accurately
classifying amajority of patches within the annotated regions compared
to ADA.

Identifying the most influential parts of an image captured by
AIDA can lead to pinpointing subtype-specific morphometric
features
Figure 9 identifies relevant histological features for ovarian epithelial
tumor histotype classification. The figure shows representative sam-
ples for each ovarian cancer histotype, displaying (1) the top five
patches for subtype classification (first row for each sample), (2)
corresponding importance heatmaps from the top five patches (sec-
ond row for each sample), and (3) the bottom five patches (third row
for each sample). To visualize the key regions of the image associated
with the relevant diagnosis, we used the class-discriminative locali-
zation method proposed in ref. 56. To assign importance values to
each neuron in the target category (i.e., the ground truth label), this
method utilizes gradient information flowing into the last convolu-
tional layer of the network. As a result, this method uses fine-grained
details in an image to localize the target category. We applied this
method to the top five patches. This enabled us to visualize the areas of
the input image that strongly influence the output of the classifica-
tion model.

Original Slide Base CNorm AIDA

GT Label: Malignant

GT Label: Malignant

GT Label: Malignant

a

b

c

Fig. 6 | Comparative heatmap visualization of Pleural dataset. Heatmap analysis
of samples (a) from the source domain and (b, c) from the target domain of the
Pleural cancer dataset. The first column is the input slide incorporating the tumor
annotation provided by the pathologist, and the second to fourth columns are the

outputs of Base, CNorm, andAIDAmethods. The closer it is to red, themore likely it
is to be classified as a ground truth label, while the closer it is to blue, the less likely
it is.
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The topfive patches selected by themethod contained subtype-specific
histologic features including tumor epithelium, while the bottom five pat-
ches primarily encompassed nonspecific stromal or necrotic areas (Fig. 9).
For example, the most discriminative areas within the top five patches for
clear cell carcinomas contained eosinophilic hyaline globules, a typical

feature of the clear cell histotype57. This finding highlights that the dis-
criminatory power of the method is not limited to just the cytoarchitectural
features of tumor cells, but also those of characteristic stromal elements.

This visualization is also available for representative malignant cases
within the Pleural and Bladder cancer datasets (Figs. 10 and 11). In the

Original Slide Base CNorm AIDAa

b

c

GT Label: UCC

GT Label: UCC

GT Label: UCC

Fig. 7 | Comparative heatmap visualization of Bladder dataset.Heatmap analysis
of three samples (a–c) from the target domain of the Bladder cancer dataset. The first
column is the input slide incorporating the tumor annotation provided by the

pathologist, and the second to fourth columns are the outputs of Base, CNorm, and
AIDAmethods. The closer it is to red, the more likely it is to be classified as a ground
truth label, while the closer it is to blue, the less likely it is.

Fig. 8 | Comparative heatmap visualization of
ADA and AIDA. Heatmap analysis (a–c) of three
samples from theOvarian dataset correctly classified
by both ADA and AIDA methods. The first column
is the input slide incorporating the tumor annota-
tion provided by the pathologist, and the second and
third columns are the outputs of ADA and AIDA
methods. The closer it is to red, themore likely it is to
be classified as a ground truth label, while the closer
it is to blue, the less likely it is.
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pleural cancer cases, the top three patches showed high cellularity with
densely packed spindle cells, while the low-rankedpatchesweremuchmore
paucicellular and featured areas of collagen. In bladder cancer, the top three
patches selected by the method contained subtype-specific histologic fea-
tures including tumor epithelium, while the bottom three patches primarily
encompassed nonspecific stromal or necrotic areas. For example, the most
discriminative areas within the top three patches demonstrate the presence
of multiple tumor cell clusters within the same lacuna with peripherally
oriented nuclei, a typical feature of micropapillary urothelial carcinoma58.

Discussion
Domain shift in histopathology data canpose significant difficulties for deep
learning-based classifiers, as models trained on data from a single center
may overfit to that data and fail to generalize well to external datasets. To
overcome this challenge, adversarial domain adaptationnetworkshavebeen
employed, however, these networks tend to decrease the discriminability of
the learned features and do not fully utilize the knowledge transferability of
the target domain. To address these shortcomings, we proposed an
approach referred to as AIDA, which enhances the adversarial domain

Fig. 9 | Examples of ovarian cancer subtype clas-
sification for five major histotypes (i.e., HGSC,
ENOC, CCOC, LGSC, and MUC). One sample
from each histotype is shown. The left column shows
the whole-slide image and the right column shows
(top) the top five patches; (middle) the corre-
sponding attention/importance heatmap high-
lighting the most significant regions in the image for
predicting histotype; and (bottom) the bottom five
patches.
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Fig. 10 | Examples of pleural malignant classifi-
cation. The left column shows two selected whole-
slide images and the right column shows (top) the
top three patches; (middle) the corresponding
attention/importance heatmap highlighting the
most significant regions in the image for predicting
histotype; and (bottom) the bottom three patches.
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Fig. 11 | Examples of micro-papillary classifica-
tion. The left column shows two selected whole-
slide images and the right column shows (top) the
top three patches; (middle) the corresponding
attention/importance heatmap highlighting the
most significant regions in the image for predicting
histotype; and (bottom) the bottom three patches.
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adaptation network using the frequency domain information through an
FFT-Enhancer module. By integrating the color space of target domain
samples into the label prediction loss, our approacheffectively addressed the
challenge of overfitting the network to the source domain. This integration
yielded significant benefits, as the network demonstrated enhanced gen-
eralization capabilities, enabling it to more accurately classify the target
domain. Consequently, our approach surpassed the limitations of previous
methods by improving the network’s discriminability for both the source
and target domains.

The proposed AIDA framework was implemented on four datasets
related to ovarian, pleural, bladder, and breast cancers. In all datasets, AIDA
demonstrated superior performance in target domains based on different
metrics including balanced accuracy, Cohen’s Kappa, F1-score, and AUC,
compared to the Base, HED, Macenko, CTransPath, CNorm, and ADA.
Furthermore, AIDA exhibited superior performance compared to other
methods in the source domain of Ovarian and Pleural datasets. Addition-
ally, the incorporation of the FFT-Enhancer exhibited a noticeable
improvement in the performance of the Base-FFT model, outperforming
the Base model. These results underscore the importance of integrating the
FFT-Enhancer module in the model architecture to enhance knowledge
transfer between domains, resulting in more robust and reliable models for
real-world applications.

Broadly speaking, there are two main methods for addressing domain
shift: domain adaptation and domain generalization. Domain adaptation
typically necessitates access to both source and target data during training,
albeit relying solely on labeled data from the source domain. Conversely,
domain generalization offers the advantage of not requiring target data for
training. However, it is essential to acknowledge that domain generalization
methods are not infallible and may encounter challenges in certain sce-
narios. Techniques like HED, Macenko, CTransPath, and CNorm are
categorized as domain generalization approaches, yet AIDA outperformed
each of them, showcasing its superior capability in addressing domain shift
when compared to conventional domain generalization methods. This
reinforces the significance of our proposed framework in enhancing
knowledge transfer between domains and producing more robust and
reliable models for real-world applications.

Furthermore, we evaluated the utility and value of different convolu-
tional layers as feature extractors in AIDA and showed that utilizing the
fourth convolutional block as input features for the domain discriminator
resulted in the most generalized performance. As opposed to the fourth
convolutional block, the second and third blocks generate lower-level fea-
tures with smaller local receptive fields which caused inferior performance
when used for the domain classifier. We hypothesize that, when using
labeled data of the source domain formodel training, thefifth convolutional
block learns semantic information and derives features that are highly
specific to the source domain classification, and therefore, such a strategy
did not yield superior performance compared to the fourth layer.

Our experiments demonstrated that AIDA consistently outperformed
ADA across various backbone architectures. Furthermore, when utilizing
foundation models as the backbone with domain-specific pre-trained
weights instead of ImageNet weights, AIDA still exhibited superior per-
formance compared to ADA. We compared the performance of a foun-
dationmodel trained on a substantial number of histopathology slides with
AIDA fine-tuned using this foundation model as the backbone. The results
indicated that for three out of four datasets, fine-tuning AIDA with the
foundation model and domain-specific pre-trained weights yielded better
performance than using the foundation model alone. This suggests that
while foundation models provide strong performance, AIDA can further
enhance their effectiveness. Additionally, AIDAemploying a backbonewith
domain-specific pre-trained weights achieved superior performance com-
pared to AIDAusing a backbone with ImageNet pre-trained weights in two
datasets. This demonstrates that AIDA can also benefit from domain-
specific pre-trained weights. For all four datasets, training AIDA with the
foundation model as the backbone yielded better results without using any
augmentationmethods, a scenario inwhichADAdidnot performwell. This

suggests that domain-specific pre-trained weights facilitate adaptation to
various augmentations. Consequently, without augmentations, FFT-
Enhancer is likely to encourage the feature extraction process to focus
more on tumor morphology and shape.

The t-SNE-based visualizations demonstrated that the AIDA model
improved the discriminability of different subtypes in the feature repre-
sentation space compared to the Base and CNorm models. The learned
features by AIDA exhibited less overlap and consequently, more dis-
crimination between the subtypes. Furthermore, our investigation reveals a
prominent concurrence between the tumor annotations provided by the
pathologist and the corresponding heatmaps generated by AIDA method.
This compelling alignment serves as conclusive evidence, substantiating the
efficacy of our proposed approach in accurately localizing the tumor areas.

Moreover, our study revealed that the top patches of slides exhibited
subtype-specific histologic features, such as tumor epithelium, while the
bottom five patches predominantly contained nonspecific stromal or
necrotic areas. We employed a class-discriminative localization method to
identify and highlight the relevant histological features on these patches.
Subsequent reviews by pathologists confirmed that the highlighted areas
contained subtype-specific tumor information, providing evidence for the
usefulness and reliability of our proposed method in identifying and loca-
lizing relevant histological features.

It is important to highlight that, compared to the Pleural, Bladder, and
Breast datasets, the proposed AIDA led to greater performance improve-
ments when applied to the Ovarian dataset. This could be attributed to
several factors. Firstly, the Ovarian dataset contains a significantly larger
number of slides (>1000) than the other datasets, potentially resulting in
more color variations. Additionally, it should be noted that the classification
task for the Pleural, Bladder, and Breast dataset involves the discrimination
between samples from two subtypes, while the Ovarian cancer dataset
requires the classification of five distinct subtypes, making it a more
challenging task.

Our experimental results demonstrated the effectiveness of AIDA in
achieving promising performance across four large datasets encompassing
diverse cancer types. However, there are several avenues for future research
that can contribute to the advancement of this work. Firstly, it is important
to validate the generalizability ofAIDAby conducting experiments onother
large datasets.Moreover, the applicability of AIDA can be extended beyond
cancer subtype classification to other histopathology tasks. Tasks such as
tumor segmentation, mitotic figure detection, or cancer grading can benefit
from the proposed method. In the future, exploring alternative backbone
architectures can be an intriguing direction for future investigation.

Methods
Ethics statement
The Declaration of Helsinki and the International Ethical Guidelines for
Biomedical Research Involving Human Subjects were strictly adhered
throughout the course of this study. All protocols for this study, including
the waiver of consent, have been approved by the University of British
Columbia/BC Cancer Research Ethics Board. Participants did not receive
compensation.

Data
In our experiments, we used datasets related to four different cancers:
ovarian, pleural, bladder, and breast (Table 1). TheOvarian dataset contains
WSIs of the five major histological subtypes of epithelial ovarian carcino-
mas, namely clear cell ovarian carcinoma (CCOC), endometrioid carci-
noma (ENOC), high-grade serous carcinoma (HGSC), low-grade serous
carcinoma (LGSC), and mucinous carcinoma (MUC). The source and
target ovarian cancer datasets are processed and digitized in two different
centers and include 1053 and 60 WSIs from 523 and 60 patients,
respectively.

The Pleural dataset consists of benign pleural tissue and malignant
mesothelioma slides from two centers. The source dataset includes 194
WSIs (128 patients) and the target dataset contains 53 WSIs (53 patients).
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The Bladder dataset is comprised of micropapillary carcinoma (MPC) and
conventional urothelial carcinoma (UCC) slides from multiple hospitals
across BritishColumbia. The source dataset encompasses 262WSIs from86
patients belonging to the source domain. On the other hand, the target
domain includes 160 slides from 72 patients.

For the Breast dataset, we employed the publicly available ICIAR-2018
dataset as the sourcedomain and theBreaKHis dataset as the target domain.
The source domain consists of 400 breast biopsy images obtained from 257
patients, representing four subtypes: normal, benign, in situ carcinoma, and
invasive carcinoma. In contrast, the target domain comprises 7909 small
biopsy images from 82 patients, categorized into benign and malignant
breast tissue. To facilitate classification,we consolidated the four subtypes in
the source domain into two overarching categories: benign and malignant.
Notably, both datasets are provided in patch format rather than whole slide
images.

Supplementary Fig. 2 shows representative patches from the source
and target domains associated with Ovarian (first row), Pleural (second
row) datasets, and Bladder (third row) datasets; highlighting the variability
in color profiles.

Problem definitions
We denoteDS as the set of patches of the source domain which contains
fðxsi ; ysÞ ji 2 f1; . . . ;Nsg; s 2 f1; 2; . . . ; Sgg, where Ns is the number of
patches of the sth slide, S is the number of slides in source domain, xsi is the
ith patch of the sth slide, and ys is the patch label which corresponds to the
slide label. The patches extracted from the target domain,DT , consists of
fxti ji 2 f1; . . . ;Ntg; t 2 f1; . . . ;Tgg, whereNt is the number of patches of
the tth slide, T is the number of slides in target domain, and xti is the i

th

patch of the tth slide of the target domain. Our goal is to learn a feature
representation in a shared space that is discriminative for label predic-
tion while being insensitive to the domain. To do that, we propose AIDA
(Fig. 1) by integrating the FFT-Enhancermodule in an adversarial neural
network.

Fourier-based enhancer (FFT-enhancer) module
In the frequency domain, the predominant effect of domain shift is
amplitude changes, while the phase information is nearly identical (Sup-
plementary Fig. 3). In this paper, we propose integrating the adversarial
network with the FFT-Enhancer.

Consider ðxsi ; ysi Þ 2 DS and xtj 2 DT as a sample from the source and
target data, respectively. The Fourier transformation of these samples are

Xs
i ¼ As

i � ej:P
s
i ;

Xt
j ¼ At

j � ej:P
t
j ;

ð1Þ

where Xs
i is the Fourier domain of the ith patch of the sth slide of the source

domain, and Xt
j is the Fourier domain of the jth patch of the tth slide of the

target domain. Additionally, ðAs
i ;Ps

iÞ and ðAt
j ;Pt

j Þ show the amplitude and
phase spectrum of xsi and xtj , respectively, and⊗ represents the element-
wise multiplication. Through the FFT-Enhancer, we produce a new sample
of

Zðxis; xjtÞ ¼ iDFT At
j � ej:P

s
i

� �
; ð2Þ

by substituting the amplitude of the source patch with that of the target
patch. iDFT is the inverse ofDiscrete FourierTransform (DFT). To enable
the network to pay more attention to the phase information and be
insensitive to amplitude (i.e., color variations), the new image is produced
by the recombination of amplitude information from the target sample
and the phase from the source sample. The resulting image serves as a
representative image from the source dataset during the training phase.
Supplementary Fig. 3 showcases multiple illustrative examples of this
process.

Adversarial network
There are three components in the adversarial network: a feature
extractor, a label predictor, and a domain classifier (Fig. 1). The first
component derives feature embeddings from the extracted patches, which
are subsequently passed to the label predictor and domain classifier as the
input data. The feature extraction step is shared among the target and
source datasets. We train the label predictor on the source data, while the
domain classifier uses both the source and target features. Different
backbones including convolutional and fully connected layers can be used
as the feature extractor. The feature extractor learns the function
Gf ðx; θf Þ : x 2 fDS ∪DTg ! Rm, where x can be a patch from both
source (DS) and target (DT ) data,R

m is the learnedmdimensional feature
representation, and θf is the set of parameters learned through the feature
extractor. This functionmaps the input image fromboth source and target
to an m dimensional feature vector. The extracted features of the source
data are then passed to the label predictor. The label predictor is a function
GyððGf ðxsi ; θf Þ; ysÞ; θyÞ : Rm ! f1; 2; :::;Yg, where Rm is the extracted
features, ys is the patch label (i.e., the label of the sth slide), θy is the
parameters of label predictor, and {1, 2, . . . , Y} is the set of labels we have
for the source domain. This function predicts a label for the features
extracted from an input sample of the source domain. In a supervised
manner, we adopt the cross-entropy loss to optimize the performance of
the label predictor as

Lp ¼ � 1

ΣS
s¼1Ns

ΣS
s¼1Σ

Ns
i¼1 y

s log Gy Gf ðxsi ; θf Þ; ys
� �

; θy

� �h i
; ð3Þ

where Lp is the label predictor loss computed for the source patches. Fol-
lowing the idea of generative adversarial network (GAN) loss59, adversarial
training is employed for the domain classification. We pass the learned
feature representation of both source and target data to a discriminator as a
domain regularizer. The domain discriminator GdððGf ðxi; θf Þ; diÞ; θdÞ :
Rm ! f0; 1g maps the extracted features of fxi 2 DS ∪DTg into a binary
domain label of {0, 1} by learning θd as the set of parameters of the dis-
criminator. The domain label for the patches xi is represented by di∈ {0, 1}
in which di = 1 and 0 are the labels for the source and target domains,
respectively. The whole network is learned in an adversarial manner to
purposely misdirect the domain discriminator so that the domain dis-
criminator cannot distinguish between the two feature spaces. The adver-
sarial loss of the discriminator is computed as

Ladv ¼ � 1
ΣS
s¼1Ns

ΣS
s¼1Σ

Ns
i¼1 log Gd Gf ðxsi ; θf Þ; di ¼ 1

� �h i

� 1
ΣT
t¼1Nt

ΣT
t¼1Σ

Nt
i¼1 log 1� Gd Gf ðxti ; θf Þ; di ¼ 0

� �h i
;

ð4Þ

where Ladv is the adversarial loss for domain classification. A gradient
reversal layer connects the discriminator and the feature extractor and
multiplies the gradient by a negative constant during backpropagation. We
define L ¼ Lp þ Ladv as the training loss.

Slide classification
The proposed pipeline is applied to patches extracted from a given slide. To
achieve slide-level classification, We employ VLAD encoding45, a Multiple
InstanceLearning (MIL)-based aggregation function that is used toproduce
slide-level representation by using features of the patches within the slide.
Details of VLADencoding can be found in ref. 45. After practicing this step,
a SupportVectorMachine (SVM) classifier is trained to assign the label for a
given slide.

Experimental design
WSIs are large gigapixel images with resolutions typically exceeding
100,000 × 100,000 pixels and present a high degree of morphological var-
iance, as well as containing a variety of artifacts. These conditions make it
impossible to directly apply conventional deep networks. For the Ovarian,
Pleural, and Bladder datasets, whole slide images (WSIs) serve as the input
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data. For computational tractability, we selected smaller regions from aWSI
(referred to as patches) to train and build our model. More specifically, we
extracted 150 patches per slide, with 1024 × 1024 pixels resolution. For the
source domain of the Ovarian and Pleural datasets, the patches were
extracted from the pathologist-annotated areas (containing tumor tissue)
while we randomly extracted patches for the target domain. This random
extraction approach was adopted for the target domain due to the con-
sideration of target data as unsupervised, with the assumption that no prior
information is available for this dataset. For the Bladder dataset, patches
were extracted randomly from both the source and target datasets because
pathologists’ annotationswere not accessible. The patcheswere then resized
to 512 × 512 pixels, ensuring a standardized magnification of 20X. We
employed a three-fold cross-validation strategy to evaluate the performance
of the model on the source domain. The resulting three cross-validation
models were evaluated on the target domain. Both domains of the breast
dataset consistedofpatches rather thanWSIsof the tissue. Inorder to ensure
compatibility between domains within this dataset, we extracted patches
with a resolution of 230 × 230 pixels at 20X magnification.

For each experimental iteration, the complete pipeline underwent
training with five distinct random seeds, and the average performance
across three cross-validation runs was reported for both the source and
target domains. The networks were trained with a learning rate of 1e−4,
utilizing a batch size of 256patches and a predefinedmaximumnumber of
epochs set to 20. Unless otherwise specified, all experiments employed
standard augmentation techniques such as random rotation, flipping, and
color jittering. The Adam optimizer60 was employed during the network
optimization process. To mitigate overfitting, the training procedure was
halted if no improvement in network loss was observed over ten con-
secutive epochs. Furthermore, VLAD encoding required the development
of a codebook,with a predetermined size of k = 4 for twodatasets:Ovarian
and Pleural. However, for the Breast and Bladder dataset, a smaller size of
k = 1 was found to be optimal based on our experimental findings. The
selection of the codebook size was guided by the model’s performance on
the validation setwithin the source domain. Supplementary Fig. 4 presents
the balanced accuracy of the model across various k values. Various
performance metrics were employed for comprehensive comparative
analysis, including balanced accuracy, Cohen’s Kappa, F1 Score,
and AUC.

Underlying network architectures
The baseline architecture employed in our studywasResNet1861. To test the
impact of solely FFT-Enhancer on the output, we trained both the baseline
and adversarial networks with and without this module. It’s important to
note that while the FFT-Enhancer can enhance images, it’s not always
perfect, and theremay be instances of noise artifacts in the output image. To
assess its impact on themodel, we experimented with different probabilities
of applying the FFT-Enhancer during training for both AIDA and Base-
FFT. Optimal results were achieved with probabilities ranging from 40% to
60% across all datasets. Decreasing the probability below 40% led to a drop
in the models’ balanced accuracy, as insufficient staining information from
the target domain was utilized during training. Conversely, applying the
FFT-Enhancer more than 60% resulted in noise artifacts that hindered the
network’s performance.

To ensure a fair and equitable comparison, unless stated otherwise, we
used ResNet18 as the backbone architecture for feature extraction in all
experiments. The domain classifier itself consisted of three fully connected
layers with dimensions ofRm × 32× 32, 256, and 100 neurons, respectively.
Furthermore, it is pertinent to highlight that the pre-trained weights of
ImageNet were consistently employed for the backbone models in all
conducted experiments.

Comparative analysis of training times and computational
resources: base vs. AIDA
In our experiments, all methods were executed on an NVIDIA GeForce
RTX 3090 GPU, with 24 GB of GDDR6X memory. Given that the Base,

Base-FFT, Macenko, HED, and CNorm methods all shared identical
architectures, and ADA and AIDA exhibited similar structures, we will
focus solely on comparing the time analysis between the Base and AIDA.
This comparison will provide insights into their respective training times
and utilization of computational resources, as outlined in Supplementary
Table 7.

The Base and AIDA differ in terms of model complexity, with AIDA
being slightly more intricate than Base. This difference in complexity con-
tributes to variations in their training times. However, during inference,
where both networks leverage the same backbone, feature extraction, and
multiple instance learning processes require a comparable amount of time
for both models. Consequently, the longer training duration of AIDA does
not directly correlate with extended inference time or computational
overhead during testing. AIDA’s superior performance in cancer subtype
classification justifies its lengthier training period. The heightened model
complexity empowers AIDA to capture intricate patterns and relationships
within the data, thereby enhancing classification accuracy. Consequently,
despiteAIDA’s largerparameter count and slightly prolonged training time,
it is crucial to underscore the primary objective of achieving accurate cancer
subtype classification.

Statistical assessment
The non-parametric version of the paired T-test, namely the Wilcoxon
signed-rank test (two-sided), was employed to assess the statistical sig-
nificance of the difference between the balanced accuracy achieved by dif-
ferent methods. Throughout all experiments, p < 0.05 was regarded as the
significance level.

Data availability
The ICIAR-2018 whole slide images and their respective labels can be
accessed from the BACH grand challenge page at (https://iciar2018-
challenge.grand-challenge.org/Dataset/). Additionally, the BreaKHis pat-
ches are publicly accessible via the Kaggle challenge page at (https://www.
kaggle.com/datasets/ambarish/breakhis). For queries concerning the aca-
demic utilization of our confidential data, kindly direct your communica-
tion to the corresponding author. We will carefully evaluate any pertinent
intellectual property rights or obligations regarding patient confidentiality,
adhering to the protocols established by our institution and department.
Please be advised that processing such requests may necessitate the execu-
tion of a material transfer agreement.

Code availability
The code used in this manuscript will be publicly available at https://github.
com/AIMLab-UBC/AIDA.git.
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