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Abstract

Retinal images play a pivotal contribution to the diagnosis of various ocular conditions by

ophthalmologists. Extensive research was conducted to enable early detection and timely

treatment using deep learning algorithms for retinal fundus images. Quick diagnosis and

treatment planning can be facilitated by deep learning models’ ability to process images rap-

idly and deliver outcomes instantly. Our research aims to provide a non-invasive method for

early detection and timely eye disease treatment using a Convolutional Neural Network

(CNN). We used a dataset Retinal Fundus Multi-disease Image Dataset (RFMiD), which

contains various categories of fundus images representing different eye diseases, including

Media Haze (MH), Optic Disc Cupping (ODC), Diabetic Retinopathy (DR), and healthy

images (WNL). Several pre-processing techniques were applied to improve the model’s per-

formance, such as data augmentation, cropping, resizing, dataset splitting, converting

images to arrays, and one-hot encoding. CNNs have extracted extract pertinent features

from the input color fundus images. These extracted features are employed to make predic-

tive diagnostic decisions. In this article three CNN models were used to perform experi-

ments. The model’s performance is assessed utilizing statistical metrics such as accuracy,

F1 score, recall, and precision. Based on the results, the developed framework demon-

strates promising performance with accuracy rates of up to 89.81% for validation and

88.72% for testing using 12-layer CNN after Data Augmentation. The accuracy rate

obtained from 20-layer CNN is 90.34% for validation and 89.59% for testing with Augmented

data. The accuracy obtained from 20-layer CNN is greater but this model shows overfitting.

These accuracy rates suggested that the deep learning model has learned to distinguish

between different eye disease categories and healthy images effectively. This study’s contri-

bution lies in providing a reliable and efficient diagnostic system for the simultaneous detec-

tion of multiple eye diseases through the analysis of color fundus images.
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1 Introduction

The retina is a delicate layer located on the internal aspect of the human ocular organ. The

major cause that people lose their eyesight or blurriness is due to age and some retinal diseases.

Early detection of these diseases and proper diagnosis may prevent permanent vision loss.

With appropriate treatment and consistent monitoring, it is feasible to decelerate or hinder

additional deterioration of vision, particularly when the condition is identified during its initial

phases [1]. Some causes of the damage in the retina are old age trauma and light damage.

Some other diseases like diabetes, hypertension, and cholesterol may also affect the retina. Dia-

betic Retinopathy (DR), Macular Degeneration, Retinal Vein Occlusion (RVO), and Hyper-

tensive Retinopathy cause damage to retinal vessels. Glaucoma is present when the optic nerve

is damaged. When we get older macular holes happen. The effect of the macula hole is a

blurred and not clear image.

Retinal diseases, such as DR, Age-Related Molecular Degeneration (ARMD), and glaucoma,

are major contributors to blindness on a global scale. Timely identification and precise recov-

ery from these conditions are essential for prompt treatment and the prevention of vision loss.

However, identifying and classifying retinal diseases accurately and efficiently can be challeng-

ing for human specialists due to the complexity and variety of retinal images. Therefore, the

development of an automated retinal disease classification system using deep learning or neu-

ral network models can significantly enhance the precision and speed the detection and treat-

ment. Glaucoma is a group of ocular conditions leading to harm to the optic nerve.

Internationally, the primary factors contributing to vision impairment include [2]:

• ARMD

• Cataract

• DR

• Glaucoma

• Uncorrected refractive errors

To detect retina disease, various medical tests like Fundus photography, Optical Coherence

Tomography (OCT), and Fluorescein angiography are performed. A retinal camera, also

referred to as a fundus camera, is a specialized instrument that integrates a microscope with

low power and a built-in camera. Its purpose is to capture detailed photographs of the eye’s

internal structures, such as the retinal layers, vascular network, optic nerve head, macular

region, and posterior segment. By utilizing this technology, healthcare professionals can obtain

high-resolution images that aid in the recovery and ongoing monitoring of different ocular

disorders [3]. OCT does not provide direct visualization of blood in the retina [4], so it may

not be the optimal imaging modality for documenting or measuring diseases involving bleed-

ing in the retina. As OCT primarily relies on measuring reflected light to create detailed cross-

sectional images of the retina, it may not accurately capture the presence or extent of blood. In

cases where bleeding or hemorrhage is suspected, fundus photography can be more effective

in documenting the condition. Fundus photography captures a high-resolution image of the

posterior eye, capturing the retina and vascular network. Non-invasive methods for early

detection and cure of retinal diseases are essential to intercept or control vision loss. Fundus

images, captured using monocular cameras, provide a non-invasive and cost-effective tech-

nique for large-scale screening of fundus diseases. Fundus image-based eye diagnosis relies on

various biomarkers, including optic cup, optic disc, blood vessels, fovea, macula, and specific

lesions like hard exudates, hemorrhages, and microaneurysms used in DR diagnosis.
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Diabetes patients constitute a significant portion of the population with eye-related issues.

DR, the most common diabetic eye condition, often lacks early symptoms but poses a signifi-

cant risk of blindness and is among the top four causes of blindness. Early detection of DR is

crucial for successful treatment and to avoid poor visual outcomes. Media Haze (MH) is a key

indicator of cataracts, a widespread eye disease. Detecting MH in its early stages is essential for

early healthcare to reduce the risk of sight deprivation associated with cataracts. ARMD, linked

to aging, affects central vision, leading to visual impairment. Optic Disc Cupping (ODC) is fre-

quently associated with glaucoma and other eye conditions, resulting from reduced Ocular

nerve blood circulation or increased pressure in the fundus. Timely treatment is often lacking,

causing rapid vision decline and severe impairment. Fig 1 illustrates the structure of the

human eye.

1.1 Research objective

The following are the research objectives of the suggested approach:

• Create a Deep Learning (DL) model designed for the multi-class classification of retinal

images.

• Achieve high accuracy in the automated detection of common eye disorders, involving DR,

MH, and ODC.

• Assess the model’s performance on massive and wide-ranging datasets to ensure generaliz-

ability and reliability.

• Investigate the potential integration of the developed model into existing healthcare systems

for seamless adoption by eye care professionals.

• Explore the model’s contribution to early disease detection, with a focus on improving

patient outcomes and minimizing vision loss.

• Evaluate the scalability and efficiency of the proposed solution for widespread use, particu-

larly in regions with limited access to healthcare resources.

• Examine the interpretability of the deep learning model to enhance trust and understanding

among healthcare practitioners.

Fig 1. Human eye.

https://doi.org/10.1371/journal.pone.0307317.g001
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1.2 Research contribution

Here are Key contributions of the suggested methodology:

1. The retina diseases like DR, MH, and ODC are identified at an initial phase is crucial to

avert irreversible vision impairment.

2. In the field of biomedical research, extensive evidence supports the superiority of deep con-

volutional networks that have undergone pre-training on massive datasets, compared to

deep models trained from scratch.

3. The experiments utilize the publicly accessible RFMiD and RFMiD 2.0 datasets. To mitigate

the consequences of limited datasets data augmentation techniques are applied. Distinct

researches are conducted using both augmented and initial datasets to compare

performance.

The rest of the paper is organized as follows. Section 2 presents an overview of existing liter-

ature. In Section 3, we present materials and methodology. Section 4 presents results. Section 5

demonstrates comparisons between the results. Finally, Section 6 concludes the paper.

2 Overview of existing literature

In the medical field computer-assisted diagnosis is used for the diagnosis of diseases at their

initial stages and to avoid permanent loss. Disease classifications are used to classify diseases in

many medical fields.

The issue that is faced by ophthalmologists for computer-aided diagnosis is the limited

number of datasets. In 2021 after seeing the vision loss rate which reaches 2.2 million [5].

Researchers have discovered that over 7 million individuals worldwide are currently

experiencing irreversible vision impairment, with more than 1 million of them being Ameri-

cans affected by total blindness [6]. Pachade, S published a dataset RFMiD with 3200 fundus

images that contain 45 conditions of retinal disease [7]. RFMiD is the only dataset that

includes a large number of diseases that appear in a clinical setting.

Almustafa et al. use the STARE [8] dataset to classify 14 ophthalmological defects using

algorithms ResNet-50, EfficientNet, InceptionV2, 3-Layers CNN, and Visual Geometry Group

(VGG). They concluded that EfficientNet gives the best accuracy at 98.43% [9].

Choudhary et al. use the dataset [10] to classify three retinal diseases and normal images of

the retina. The model comprises 19 layers of CNN and obtained an accuracy of 99.17% with

0.99 sensitivity and 0.995 specificities [11].

Sengar et al. extract multi-class images from multi-label datasets RFMiD [7]. They classify

the disease DR, MH, ODC, and normal images. To increase the extent of the dataset they

formed a data transformation technique and compared the results of the proposed EyeDeep-

Net algorithm with other algorithms VGG-16, VGG-19, AlexNet, Inception-v4, ResNet-50,

and Vision Transformer. The obtained accuracy for validation is 82.13% and for testing

76.04% [12].

Pan et al. proposed a model in which they classify macular degeneration, tessellated, and

normal retina. Their aim is to early recognition and treatment for retinal diseases. They used

fundus images collected from China‘s hospital and applied deep learning models Inception V3

and ResNet-50. After adjusting hyperparameters and fine-tuning them according to their clas-

sifier they attained an accuracy rate of 93.81% from ResNet-50 91.76% when utilizing Incep-

tion V3 [13].

Kumar & Singh collects data from different datasets that are Messidor-2 [14], EyePACS

[15], ARIA, and STARE [8] and classifies into 10 groups. They classify different stages of
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diabetic retinopathy and Normal Fundus images. The proposed methodology consists of pre-

processing, and a match filter approach, and for segmentation and classification post-process-

ing steps are included. The model generates results based on accuracy, precision, recall, and

F1-score measure that’s 99.71%,98.63% 98.25% and 99.22% respectively [16].

[17] used a DL approach to capture the features and Machine Learning (ML) algorithms to

classify glaucoma. The experiments are performed for the DRISTHI-GS [18] and ORIGA [19]

dataset using 101 images and obtain a maximum training accuracy of 1.000.

Pandey et al. aimed to classify multiple retinal diseases. They classify glaucoma, AMD, DR,

and healthy retinal images. They used DiaretDB [20], Drishti-GS [18], DRIVE [21], HRF [22],

IDRiD, Kaggle-39 [23], Kaggle-DR, ODIR [24], MESSDIDOR [25], ORIGA-light [19], REF-

UGE [26], and STARE [8] datasets. InceptionV3 model of CNN is used, and the ImageNet

dataset is used for initial weights pertaining. They classify three diseases DR, Glaucoma, AMD,

and one class for healthy images [27].

The author [28] suggests a framework that is used for multi-disease comprises a combina-

tion of neural architectures in an ensemble configuration. First, they perform preprocessing

steps by normalizing, image enhancement, and resizing. Then he detects the presence of dis-

eases in the fundus image and performs multi-class classification. For disease risk detection

convolutional neural networks that is Densenet201 and EfficientNetB4 were used. For disease

classification, ResNet105 is added. RFMiD [7] is utilized for training. and validation. ODIR

[19] dataset is applied in the testing phase. They classify 27 diseases.

Ho et al. use RFMiD [7] Data that contain fundus images. They selected five CNN architec-

tures that trained to anticipate the existence of disease and classify the 28 abnormalities [29].

Abbas et al. also perform multi-class classification. He conducted tests on the 27 primary

classes within the RFMiD dataset. He scored an area under curve (AUC) of 0.973. Their model

selection is lighter. They use EfficientNetB4 and EfficientNetV2S for classification [30].

[31] performed augmentation techniques because their dataset contains only 69 images

depicting vascular diseases, along with 55 healthy images. They use 10 epochs to train the mul-

tilayer deep CNN. With 10 epochs accuracy is 88.4%.

[32] introduces a compact convolutional neural network for automatic DR detection using

four retinal image datasets. Utilizing 12-fold cross-validation, our model achieved high accu-

racy: 79.96% on the Diabetic Retinopathy Detection dataset, 94.75% on Messidor-2, 96.74% on

IDRiD, and 89.10% on RFMiD, demonstrating its effectiveness across various datasets and

enhancing ophthalmic diagnostics.

The author [33] proposed different models to classify vein occlusion disease and healthy

class. For healthy images, the specificity is 100% and sensitivity, F1 score, and an accuracy

95%, 97%, and 97% respectively. They also compare specificity sensitivity F1 score and accu-

racy on ResNet18, ResNet18+SE, ResNet18+CBAM, and ResNet18+CA algorithms. [34] also

used pre-trained models for retinal disease classification.

3 Materials and methods

In this article, we proposed a DL Technique for identifying retinal disorders through fundus

images. Data was gathered from two datasets RFMiD [7] and RFMiD 2.0 [35]. The images in

these datasets were single as well as multi-labeled. We separated single-label diseases and

selected the diseases with more images in the dataset. We selected four classes. After acquiring

the dataset we performed pre-processing steps which are shown in Fig 2. In preprocessing, we

employed data augmentation to expand and balance the dataset, crop the unwanted area then

resize the images to the same size because the images in the dataset were in different sizes. We

partitioned the dataset into training and testing subsets. We converted Images in an array to
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reduce the computing time and perform one hot encoder. Further, we implemented three

CNN models to classify three retinal diseases and one healthy class. Firstly, the model was

trained with the original dataset. To increase model performance and reduce overfitting,

experiments were performed again to measure the results after data augmentation. The statisti-

cal results for augmented data were mentioned in the context of accuracy, specificity, sensitiv-

ity, precision, recall, F1 Score, and support. Graphically results are shown in terms of accuracy,

loss, and confusion matrix.

3.1 Data gathering

This article’s data was collected from public repositories, RFMiD [7] and RFMiD 2.0 [35]. The

problem of detecting multiple eye diseases simultaneously was simplified by transforming it

into a multi-class classification problem. Each image was assigned to a single disease class

rather than having multiple labels. Unique images that exclusively belong to a single disease

class were considered to ensure effective training of the neural networks. While recognizing

that a retinal image could potentially exhibit multiple diseases, the decision to adopt a multi-

class classification approach was driven by the need for simplicity, model training efficiency,

dataset balance, label quality, and specific diagnostic goals. This approach ensures that the neu-

ral networks are effectively trained and evaluated, providing reliable and interpretable results

Fig 2. Pre-processing.

https://doi.org/10.1371/journal.pone.0307317.g002
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that are immediately applicable in clinical settings. By focusing on unique images in each class,

the dataset was appropriately balanced, allowing for accurate training and evaluation of the

neural networks. For the final dataset preparation, we have chosen a total of four classes.

Among these classes, one represented the normal (WNL) category, while the remaining three

classes were related to different diseases. These diseases include DR, MH, and ODC as shown

in Fig 3. By including these specific classes in the dataset, we aimed to capture a range of condi-

tions related to eye health and provide a comprehensive representation of both healthy and

diseased states. Table 1 shows the overall quantity of images which is single-labeled in both

datasets.

3.2 Pre-processing

Pre-processing is the process of improving and enhancing image quality visualization. This

was likely one of the pivotal factors influencing the success and accuracy of the subsequent

stage in the proposed method. Medical images might contain additional content a problem

that could cause poor image visualization. Poor-quality images can lead to unsatisfactory

results. In the pre-processing stage, we performed data augmentation, cropping, resizing, data-

set splitting, images in arrays, and a one-hot encoder to improve model efficiency.

3.2.1 Data augmentation. To improve the dataset and enhance the model’s capacity for

image handling from different perspectives, image augmentation techniques were employed as

authors [12, 36, 37] used. These techniques significantly augmented the dataset size and helped

capture the diverse variations of fundus images encountered in real-world conditions. The

selection of augmentation methods was based on the understanding that fundus images can

exhibit various transformations. The selected extension methods included various geometric

transformations, such as rotations of 15˚, 30˚, and 45˚, and horizontal flips as [12] applied for

fundus images. By applying these augmentation techniques, the dataset was enriched with vari-

ations of the original sample image. This augmentation process expands the dataset’s diversity

Fig 3. (a) Diabetic Retinopathy (b) Media Haze (c) Optic disc cupping (d) Normal.

https://doi.org/10.1371/journal.pone.0307317.g003

Table 1. Data distribution.

Classes RFMiD RFMiD 2.0 Total

DR 401 70 471

MH 315 19 334

ODC 155 17 172

WNL 669 262 931

https://doi.org/10.1371/journal.pone.0307317.t001
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and enables the model to learn from a broader range of image variations, leading to improved

performance and robustness. Fig 4 offers a visual depiction of the various image variations of

DR i.e. Horitenzatal flip, rotation 15˚, 30˚, and 45˚ respectively, obtained after applying the

augmentation techniques to the original sample image. Table 2 represents data for all classes

before and after augmentation.

3.2.2 Crop. Cropping for feature extraction is a common technique used in image pro-

cessing and computer vision tasks. By cropping, we reduce the amount of data that needs to be

processed. This can significantly speed up the feature extraction process, especially when deal-

ing with large images or datasets.

3.2.3 Resize. Resizing images is an important preprocessing step in computer vision, par-

ticularly in deep learning. One of the reasons for resizing images is to accelerate the training

Fig 4. (a) Original (b) Flipped (c) 15˚ Rotation (d) 30˚ Rotation (e) 45˚ Rotation.

https://doi.org/10.1371/journal.pone.0307317.g004

Table 2. Data distribution.

Diseases Name Before Augmentation After Augmentation

DR 471 2361

MH 334 2367

ODC 172 2354

WNL 931 2360

https://doi.org/10.1371/journal.pone.0307317.t002
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process. When working with larger input images, DL models need to process a larger number

of pixels, which significantly increases the complexity of computation and training duration.

By decreasing the size of images, the number of pixels that the model needs to learn from is

reduced. This reduction in input size leads to a decrease in computational requirements,

resulting in faster training. Training on smaller images allowed for quicker iterations and

experimentation, making the development process more efficient [38]. Images in datasets are

in different dimensions such as 2144 x 1424 x 3, 4288 x 2848 x3, and 512 x 512 x 3. We resized

the image to 224 x 224 x 3 to reduce computational requirements and allow for quicker itera-

tions and experimentation, making the development process more efficient.

3.2.4 Split dataset. In ML and data analysis, distributing the data into training and testing

categories is a common practice. The main reason for this is to analyze performance metrics

and model the generalization capability of an ML model. By splitting the dataset into training

and test samples, we can ensure that the model undergoes training and evaluation in a robust

and unbiased manner, enabling us to make informed decisions about its performance and gen-

eralization capabilities. In this experiment, 70% of the dataset was partitioned for training,

20% for testing, and 10% for validation.

3.2.5 Image in array. Converting an image into an array is a common practice in image

processing and computer vision tasks. This conversion allows images to be manipulated, ana-

lyzed, and processed using mathematical and algorithmic techniques. Many computer vision

algorithms involve extracting features such as edges, corners, or textures from images. This

process is more straightforward when the image is represented as an array.

3.2.6 One-hot encoder. One-hot encoding is a widely practiced approach in DL to repre-

sent categorical variables as binary vectors. This method transforms categorical data into a

numerical format, facilitating its processing by machine learning algorithms, including deep

learning models.

3.3 Proposed deep learning architecture

Three deep learning architectures were proposed in this article and the results were examined

with the original dataset as well as with the augmented dataset. The selection of CNN architec-

tures with 12, 14, and 20 layers was a strategic decision to explore the trade-offs between

model complexity, feature extraction capabilities, and computational efficiency. The 12-layer

CNN was highlighted as the proposed methodology due to its high accuracy, balanced training

time, and reduced risk of overfitting. The 14-layer CNN, while offering deeper feature extrac-

tion, did not outperform the 12-layer model. The 20-layer CNN, despite achieving high accu-

racy, showed signs of overfitting, indicating that a more complex model is not necessarily

better for this specific task.

3.3.1 Deep CNN-1 architecture. Classification is a critical step in distinguishing between

diseased and healthy retinal images. For image classification, we use different CNN layers. The

sequence of the layers is given in Table 3. Convolutional layers are fundamental components

of CNNs because they are designed to exploit the spatial structure of data, capture local pat-

terns, share parameters to reduce redundancy and learn hierarchical representations. These

properties make CNNs highly effective for tasks involving visual data, such as image

classification.

3.3.2 Feature extraction. Feature extraction stands as a pivotal element within the model.

A dedicated CNN model was trained for this purpose. The employed CNN model is con-

structed with a series of convolutional layers, including 2D convolutional layers, batch normal-

ization layers, and 2D max pooling, along with dropout and dense layers. The introduction of

filters facilitates the transfer of the dataset through each convolutional layer. Each
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convolutional layer extracts relevant information before the final max pooling. Finally, feature

extraction is done through fully connected layers. The convolutional operation, denoted as (*),
is a mathematical process that takes two functions (f, g) as inputs and yields a third function

denoted as (f*g). In the context of image processing, convolution is carried out using a kernel,

which is a small matrix typically of size k x k. The kernel should be odd since an odd number

ensures better symmetry around the center and minimizes the possibility of aliasing.

The kernel is applied by sliding it over an image’s pixels, generating feature maps. In a

CNN, multiple filters are utilized in every convolutional layer to extract high-level features. If

the input dimensions of a fundus image are (p x q), and n kernels with a window size of k x k

are employed, the resulting image dimensions will be n x ((p − k + 1) x (q − k + 1)). The net-

work creates meaningful feature representations from the data by capturing various aspects of

the input image.

The given model architecture consists of several layers, including Convolutional, Max-

Pooling2D, and Dense layers as shown in Fig 5. The output shape of each layer indicates the

dimensions of the feature maps generated at each layer. The input shape of the images is

specified and the images are expected to have three color channels (RGB). In the Convolu-

tional Layers, the initial convolutional incorporates 32 filters sized 3x3 and employs the

ReLU activation function. It takes the input image and applies 32 different filters to extract

various features from the image. The second convolutional layer (Layer-2) is equipped with

64 filters sized 3x3 and employs the ReLU activation function, extracting more complex fea-

tures from the input. Subsequently, the third convolutional layer (Layer-3) integrates 128 fil-

ters of size 3x3, utilizing the ReLU activation function to acquire even more abstract features

from the preceding layers. The fourth convolutional layer (Layer-4) incorporates 256 filters

of size 3x3 and applies the ReLU activation function, further enhancing the feature extraction

process. Following each convolutional layer, a max pooling layer is added, featuring a 2x2

Table 3. Model summary for CNNs.

CNN-1 CNN-2 CNN-3

Convolutional Layer -1 Convolutional Layer-1 Convolutional Layer-1

Max Pooling-1 Max Pooling-1 Batch Normalization-1

Convolutional Layer-2 Convolutional Layer-2 Max Pooling-1

Max Pooling-2 Max Pooling-2 Convolutional Layer-2

Convolutional Layer-3 Convolutional Layer-3 Max Pooling-2

Max Pooling-3 Max Pooling-3 Convolutional Layer-3

Convolutional Layer-4 Convolutional Layer-4 Max Pooling-3

Max Pooling-4 Max Pooling-4 Convolutional Layer-4

Flatten-1 Convolutional Layer-5 Batch Normalization-2

Dense-1 Max Pooling-5 Max Pooling-4

Dropout-1 Flatten Convolutional Layer-5

Dense-2 Dense-1 Max Pooling-5

Dense-2 Convolutional Layer-6

Dense-3 Batch Normalization-3

Max Pooling-6

Flatten

Dense-1

Batch Normalization-4

Dropout

Dense-3

https://doi.org/10.1371/journal.pone.0307317.t003
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pool size. This layer downsamples the output of the preceding convolutional layer by select-

ing the maximum value within each 2x2 region, aiding in reducing spatial dimensions while

retaining essential features. After the final max pooling layer, a flattening layer is introduced

to convert the 2D output into a 1D vector, Getting data ready for fully connected stages. The

flattened output is then connected to a dense layer (‘Dense‘) with 128 units and the ReLU

function. This layer performs a linear transformation on the input data and introduces non-

linearity. To mitigate overfitting, a dropout layer is added with a dropout rate of 0.5. By

dropping out some input elements, the network will not overdepend on specific features.

Finally, the output layer is composed of the number of classes and uses the softmax activa-

tion. This produces probabilities for each class, determining the likelihood of the input

image belonging to different classes. The model setup of an experiment is given in Table 4.

The dataset contains nonlinearity, so the hidden layers in the CNN use a ReLU function. The

final output layer utilizes the Softmax function. ReLU is a fast and efficient nonlinear activa-

tion function that outperforms alternatives like Sigmoid and Tanh, leading to quicker con-

vergence. ReLU squashes negative activations in the feature map, enhancing accuracy and

reducing training time according to Eq 1

ReLUðxÞ ¼
0; if x < 0;

x; if x � 0:

(

ð1Þ

Table 4. Model setup for all CNNs.

Name Parameter

Input Fundus Images From Both dataset

Image size 224 x 224 x 3

Batch Size 32

Activation Function Relu, Softmax

No of epochs 20

Dropout 50%

Optimization Function Adam Optimizer

Loss Function Categorical Cross-entropy

L2 Regularization 0.01

https://doi.org/10.1371/journal.pone.0307317.t004

Fig 5. CNN-1 architecture.

https://doi.org/10.1371/journal.pone.0307317.g005
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Softmax normalizes the network’s output into probability scores. This enables the predic-

tion of fundus image outcomes across four distinct classes: DR, MH, ODC, and WNL. Cate-

gorical Cross-Entropy (CCE) stands as one of the most prevalent loss functions employed in

multi-class classification. It’s used when the classes are mutually exclusive, meaning each input

can belong to only one class. The predicted class probabilities are passed through a softmax

activation, and the cross-entropy between the predicted probabilities and the ground truth

labels is computed. The CCE loss is calculated as the negative log-likelihood of the true class

probabilities given the predicted probabilities as given in Eq 2:

CCE Loss ¼ �
X

i

ti � logðyiÞ ð2Þ

Where:

• yi represents the predicted probability for class i (output of the softmax activation function)

from the model.

• ti represents the one-hot encoded target label for class i. It’s 1 if the true class is i and 0

otherwise.

4 Results

We have conducted experiments to evaluate the proposed CNN model classification method-

ology, considering both qualitative and quantitative aspects. Our evaluation involved testing

the proposed method using the data we collected.

4.1 Dataset

We have conducted experiments to evaluate the proposed CNN model classification method-

ology, considering both qualitative and quantitative aspects. Our evaluation involved testing

the proposed method using the data we collected. We compiled a dataset comprising approxi-

mately 1908 images. We organized our dataset into four distinct classes, namely DR, MH,

ODC, and Norma (WNL). At the outset, the dataset includes 334 images depicting MH, 471

images depicting DR, 172 images depicting ODC, and 931 images of WNL as shown in

Table 1. After implementing data augmentation on the dataset to address the problem of data

overfitting. Moreover, we encountered a significant class imbalance issue where the WNL class

had a substantially higher number of images compared to the other classes. This created a chal-

lenge as it could potentially introduce biases in the results. To tackle this problem, we imple-

mented data augmentation techniques to balance the classes. We got 2367 images of MH, 2261

images of DR, 2354 images of ODC, and 2360 images of WNL as shown in Table 2. Fig 6a is

showing data distribution before Augmentation and Fig 6b for after augmentation.

For classification, we split the datasets into 70:20:10 for training, testing sets, and validation.

This implies that 70% of randomly selected images were employed during the training phase,

while 20% were set aside for testing and 10% was used for validation.

4.2 Experimental framework

In this study, trials were carried out on a 64-bit iteration of the Windows 10 operating system

using Python. The system employed an Intel Core i5 7th Generation CPU, possessed 8 GB of

RAM, and featured a storage capacity of 237 GB.
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4.3 Findings for feature extraction utilizing CNNs

In this section, feature extraction results are given in both statistical as well as graphical form.

In statistical form, accuracy, specificity, sensitivity, precision, recall, F1 score, and support are

given using the formula given in Eqs 3–8

Sensitivity ¼
TP

TP þ FN
ð3Þ

Specificity ¼
TN

TN þ FP
ð4Þ

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð5Þ

Precision ¼
TP

TP þ FP
ð6Þ

Recall ¼
TP

TP þ FN
ð7Þ

F1-Score ¼ 2 �
Precision � Recall
Precisionþ Recall

� �

ð8Þ

4.3.1 Results of feature extraction using CNN-1. This section will delve into the results

of feature extraction using CNN. The experiments employed the deep CNN base architecture

model with training and testing data. The accuracy and loss charts for the suggested CNN

model without data augmentation are presented in Fig 7a and 7b respectively. It is observable

in the charts that the model initiates with a starting training accuracy of zero then gradually

advancing with increasing epochs. The accuracy graph for CNN-1 without the data augmenta-

tion shows that there is overfitting in the model to reduce this we performed data augmenta-

tion.Table 5 presents the statistical results of Feature Extraction from the CNN-1 model

without employing data augmentation. In the preliminary experiment without data

Fig 6. (a) Dataset Before Augmentation (b) Dataset After Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g006
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augmentation, the proposed model demonstrated accuracies of 83.94%, 90.39%, 90.39%, and

80.07% for DR, MH, ODC, and WNL, respectively.

Fig 8a illustrates the training and validation accuracy and Fig 8b presents loss for the CNN-

1 model when utilizing augmented data. Conversely, in the second trial involving data aug-

mentation, the proposed framework achieved 91.94%, 93.17%, 94.60%, and 92.43% accuracy

rate for DR, MH, ODC, and WNL respectively as shown in Table 6. The experimental results

indicate that the proposed architecture, when coupled with data augmentation, has achieved

the highest accuracy.

The Confusion matrix for the CNN model is illustrated in Fig 9a in the absence of data aug-

mentation, and Fig 9b depicting results for CNN-1 both with the inclusion of data

augmentation.

4.3.2 Results of feature extraction using CNN-2. The section discusses the outcomes of

feature extraction using CNN-2. Fig 10a depicts the training and validation accuracy and Fig

10b presents loss for the CNN-2 model when augmented data is not utilized.

Table 7 provides statistical results for the suggested CNN-2 model without data augmenta-

tion. In the preliminary experiment, the model attained accuracy rates of 82.90%, 87.26%,

90.05%, and 75.57% for DR, MH, ODC, and WNL, respectively.

Subsequently, in the second experiment with data augmentation Fig 11a depicts the train-

ing and validation accuracy and Fig 11b displays loss for the CNN-2 model when augmented

data is utilized.

The model attained accuracy rates of 88.58%, 91.10%, 93.91%, and 90.12% for DR, MH,

ODC, and WNL, respectively as shown in Table 8.

Fig 7. (a) Accuracy of the Model CNN-1 without the use of Data Augmentation (b) Loss of the Model CNN-1 without the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g007

Table 5. Class-specific statistics for the CNN-1 model with original data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 83.95 83.29 86.03 61.58 86.18 71.88 136

MH 90.39 96.17 64.08 78.57 64.08 70.69 103

ODC 90.39 99.42 03.70 40.00 03.70 06.76 54

WNL 80.07 78.16 82.14 78.23 82.14 80.13 280

https://doi.org/10.1371/journal.pone.0307317.t005
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Fig 8. (a) Accuracy of the Model CNN-1 with the use of Data Augmentation (b) Loss of the Model CNN-1 with the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g008

Table 6. Class-specific statistics for the CNN-1 model with augmented data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 91.94 98.20 92.35 77.26 95.96 85.65 470

MH 93.17 89.24 97.93 90.00 82.33 86.00 481

ODC 94.60 86.12 99.47 94.91 82.85 88.47 473

WNL 92.43 85.28 96.51 85.63 83.23 84.41 465

https://doi.org/10.1371/journal.pone.0307317.t006

Fig 9. (a) Confusion Matrix for CNN-1 without the use of Data Augmentation (b) Confusion Matrix for CNN-1 with the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g009
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Fig 10. (a) Accuracy of the Model CNN-2 without the use of Data Augmentation (b) Loss of the Model CCN-2 without the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g010

Table 7. Class-specific statistics for the CNN-2 model with original data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 82.90 86.49 84.78 60.67 79.41 68.83 136

MH 87.26 97.82 53.68 76.79 41.75 54.29 103

ODC 90.05 98.43 22.88 40.00 11.11 17.39 54

WNL 75.57 77.48 87.23 71.60 82.86 76.75 280

https://doi.org/10.1371/journal.pone.0307317.t007

Fig 11. (a) Accuracy of the Model CNN-2 with the use of Data Augmentation (b) Loss of the Model CNN-2 with the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g011
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The Confusion matrix for the CNN-2 model is depicted in Fig 12a without the data Aug-

mentation and Fig 12b shows with the data augmentation.

4.3.3 Results of feature extraction using CNN-3. The experiments employed the deep

CNN base architecture model with both training and testing data. Fig 13a displays the accuracy

and Fig 13b displays loss graph for the proposed CNN-3 model without utilizing data

augmentation.

Table 9 provides the statistical results of the suggested CNN-3 model in the absence of data

augmentation. In the initial trial without data augmentation, the Model CNN-3 achieved accu-

racy rates of 86.39%, 90.24%, 88.37%, and 82.30% for DR, MH, ODC, and WNL, respectively.

Subsequently, Fig 14a portrays the training and validation accuracy, and Fig 14b presents

loss for the CNN-3 model when augmented data is employed.

Similarly, in the second experiment incorporating data augmentation, the proposed archi-

tecture attained accuracy rates of 93.90%, 95.51%, 96.20%, and 94.50% for DR, MH, ODC, and

WNL, respectively, as detailed in Table 10.

The Confusion matrix for the CNN-3 model is presented in Fig 15a without data augmenta-

tion and in Fig 15b with data augmentation.

5 Comparisons

The purpose of this study is to evaluate the effectiveness of our model in detecting retinal dis-

eases using the dataset provided. To assess how well the proposed CNN model distinguishes

Table 8. Class-specific statistics for the CNN-2 model with augmented data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 88.58 97.83 86.89 69.67 95.32 80.42 470

MH 91.10 72.00 99.02 94.84 68.81 79.64 481

ODC 93.91 81.55 99.54 96.37 78.69 86.52 473

WNL 90.12 83.75 92.91 77.21 84.95 80.86 465

https://doi.org/10.1371/journal.pone.0307317.t008

Fig 12. (a) Confusion Matrix for CNN-2 without use of Data Augmentation (b) Confusion Matrix for CNN-2 with use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g012
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Fig 13. (a) Accuracy of the Model CNN-3 without Data Augmentation (b)Loss of the Model CNN-3 without Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g013

Table 9. Class-specific statistics for the CNN-3 model with original data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 86.39 86.95 84.55 66.86 84.56 74.67 136

MH 90.24 97.44 57.28 83.10 57.28 67.86 103

ODC 88.39 91.32 59.25 41.56 59.26 48.78 54

WNL 82.30 87.37 77.14 85.30 77.14 81.04 280

https://doi.org/10.1371/journal.pone.0307317.t009

Fig 14. (a) Accuracy of the Model CNN-3 with Data Augmentation (b)Loss of the Model CNN-3 with Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g014
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retinal diseases from the healthy group, we compare its performance with relevant studies in

the literature. In this portion, we examine the outcomes of our suggested method in compari-

son to previous work. After acquiring the data we carried out preprocessing, which was utiliz-

ing data augmentation to enlarge the image dataset. This helps us to train our model

accurately and reduce the effect of overfitting. The unwanted area is removed through crop-

ping. Cropping helps to focus on the relevant part of the image (ROI) where the features of

interest are located. In our dataset the images are in different sizes like 512 x 512 x 3, 2144 x

1424 x 3, and 4288 x 2848 x3 we resize all images to size 224 x 224 x 3. Next in preprocessing,

we use a one-hot encoder because encoding is used in CNN models for data classification to

transform categorical variables into a numerical format that can be easily processed by the net-

work, preserving the relationships between categories and enabling the model to effectively

learn from categorical data. After preprocessing we use CNN model for feature Extraction.

The detailed information layer used in CNN is given in Table 3. The accuracy observed by

CNN-1 for testing was around 88.72%, which is not particularly bad. The accuracy obtained

from CNN-3 is also good but the model shows overfitting as shown in Fig 14. The comparison

with all models that are implemented in this article with their training time and Testing accu-

racy is given in Table 11.

To classify retinal diseases, [27–29] used Ensemble learning and achieved 79.2% accuracy,

94.32% F1 score, and measured sensitivity ranging from 0.00-1.00 respectively. Authors [31,

32] use Deep learning algorithms to classify retinal diseases. The authors of [31] achieved

Table 10. Class-specific statistics for the CNN-3 model with augmented data.

Classes Accuracy % Sensitivity % Specificity % Precision % Recall % F1 Score % Support

DR 93.90 76.36 98.49 92.96 72.98 81.74 470

MH 95.51 99.26 79.03 59.65 98.13 74.08 481

ODC 96.20 86.12 98.02 93.65 84.16 88.69 473

WNL 94.50 61.96 98.97 95.05 61.94 74.98 465

https://doi.org/10.1371/journal.pone.0307317.t010

Fig 15. (a) Confusion Matrix for CNN-3 without the use of Data Augmentation (b) Confusion Matrix for CNN-3 with the use of Data Augmentation.

https://doi.org/10.1371/journal.pone.0307317.g015
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88.4% for RVO, 85.2%, 93.8% for CSR, and 86.2% for Healthy. The authors of [32] achieved

89.10% for the RFMiD Dataset. [34] used different models for classification highest accuracy

reached is 89.17 using ResNet152. [12] introduced a method EyeDeep-Net method consisting

of CNN and achieved accuracy 76.04% testing accuracy for disease DR, MH, ODC, and

Healthy class. In conclusion, we elaborate on the statistics of our proposed methodology. Our

approach has notably enhanced the results. Author [12] used the Eye-DeepNet model to clas-

sify DR, MH, ODC, and WNL. Their accuracy was 82% for validation and 76.04% for testing.

The result is provided in the Table 12.

This article provides the following information:

• Three architectures based on deep learning: We introduce and assess three distinct DL

architectures tailored for the early identification of multiple retinal diseases, to enable timely

intervention to prevent vision loss [39].

Table 11. Overall performance metrics for CNN model across all classes.

Model Training Time Accuracy (%)

CNN-1 without the use of data augmentation 1h 3min 44s 73.12

CNN-1 with the use of data augmentation 2h 5min 51s 88.72

CNN-2 without the use of data augmentation 3h 53min 54s 69.81

CNN-2 with the use of data augmentation 10h 26min 18s 84.86

CNN-3 without the use of data augmentation 27 min 11s 72.95

CNN-3 with the use of data augmentation 1h 40min 16s 90.47

https://doi.org/10.1371/journal.pone.0307317.t011

Table 12. Comparative study of the proposed approach with previous work.

Reference Year No. of Classes Model Results

[28] 2021 29 Ensemble CNN F1 Score 94.32%

[29] 2022 29 Ensemble Learning Sensitivity for all

29 Classes Ranging

from 0.00-1.00

[31] 2022 4 Deep Learning RVO 88.4%

DR 85.2%

CSR 93.8%

Healthy 86.2%

[12] 2023 4 EyeDeep-Net Accuracy:

Validation 82.13%

Testing 76.04%

[27] 2023 4 Convolutional Ensemble Accuracy 79.2%

[32] 2024 5 Deep Learning Accuracy 89.10%

[34] 2024 2 ResNet152 ResNet152 89.17%‘

Vision Transformer Transformer 87.26%

InceptionResNetV2 Inc.ResNetV2 88.11%

RegNet RegNet 88.54%

ConVNext ConVNext 89.08%

Proposed 2024 4 CNN MH 93.17%

Overall Acc. 89.81%

DR 91.95%,

ODC 94.60%

WNL 92.43%

https://doi.org/10.1371/journal.pone.0307317.t012
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• Data augmentation: Our research highlights the importance of incorporating data augmen-

tation techniques to boost model performance. For this specific context, leveraging data aug-

mentation is an effective strategy to improve generalizability.

• Comparative Evaluation with Existing Studies: Our study incorporates a comparative

analysis of prior research, with a specific emphasis on the RFMiD dataset. Compared to pre-

vious studies, our research provides a more accurate method of detecting retinal diseases.

By employing data augmentation techniques, we enhance the diversity of the training data.

This not only helps in improving the model’s robustness but also addresses the issue of overfit-

ting, which is critical in medical imaging where obtaining large datasets can be challenging.

Training and comparing multiple CNN models on the same dataset provides insights into

which architecture is most effective for retinal disease classification. Including multiple classes

three disease classes and one healthy class makes the model more versatile and clinically rele-

vant. This multi-class approach mimics real-world diagnostic scenarios better than binary clas-

sification. This comparative analysis helps identify the strengths and weaknesses of each

model. Providing a detailed analysis of the model performance e.g., accuracy, sensitivity, speci-

ficity, and precision for each class gives a comprehensive understanding of its diagnostic capa-

bilities. This helps identify areas where the model performs well or needs improvement. By

training and fine-tuning CNN models specifically for the classification of retinal diseases, we

work to achieve higher classification accuracy compared to existing methods.

6 Conclusion

The classification of eye diseases is valuable for assessing the current health status of the eye,

evaluating treatment outcomes, and selecting appropriate therapies. To facilitate early-stage

identification and screening for eye disease patients, the development of a fully automated sys-

tem is crucial. Such a system should be non-invasive, clinically reliable, reproducible, and have

a manageable decision-making process. DL techniques combined with medical imaging offer a

promising approach for providing detailed descriptions of detected diseases. Deep neural net-

works can learn hierarchical representations of images to aid in the diagnosis of various eye

conditions. However, it is challenging to diagnose several eye conditions using a single neural

network due to the similar appearance of fundus images of different diseases. To tackle this

problem, this research suggests a DL-based CNN architecture. The objective of this model is to

classify fundus images and provide a non-invasive detection for several vision disorders. The

outcome of the suggested model is measured in terms of validation and testing accuracies,

which are 89.81% and 88.72%, respectively. In the future, the model could also be used for

other diseases and also in other medical fields. Image enhancement techniques and segmenta-

tion may also be applied for more accurate results. Future research may also extend the work

to multi-label classification as datasets grow and model capabilities advance. Dataset deficiency

is one of the major limitations in the medical field.
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