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Abstract

Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes

approximately 3 million deaths each year; however, its pathological mechanisms are not

fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum offi-

cinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine

pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The

therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model

and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall

and air space expansion damaged by PPE were improved by HX110B administration.

HX110B also effectively suppresses the expression levels of pro-inflammatory mediators

including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective

factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired

OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its

effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated

that HX110B could be a promising therapeutic option for COPD treatment.

1. Introduction

COPD is the third most serious cause of mortality, accounting for approximately 6% of total

deaths worldwide [1]. COPD is a progressive and heterogeneous disease associated with exces-

sive inflammatory responses of the lungs to injurious gases and particles [2]. It is characterized

by the destruction of the gas-exchanging surface followed by airflow limitation, which is not

completely reversible. The typical symptoms of COPD are cough, breathlessness, dyspnea, and

increased sputum production [3, 4]. Bronchodilators and inhaled corticosteroids can provide

some symptomatic relief temporarily; however, there is no treatment to stop disease exacerba-

tion [5, 6]. Thus, there is a huge unmet medical need to treat the underlying disease

progression.

Emphysema and chronic bronchitis are the representative clinical phenotypes of COPD

with different pathogenesis [7]. Emphysema is characterized by destruction of the alveolar
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airways and is a representative manifestation of progressive COPD [8]. The main cause of

emphysema has not been established. However, cigarette smoking is considered a major risk

factor for emphysema, leading to immune cell recruitment and epithelial cell activation [9, 10].

Infiltrated alveolar macrophages and neutrophils cause an imbalance between protease and

antiprotease activity, which can result in alveolar tissue disruption [11]. Furthermore, emphy-

sema progression can be aggravated by chronic inflammatory responses and oxidative stress

[12].

Interleukin-6 (IL-6), interleukin-1β (IL-1β), macrophage inflammatory protein-2 (MIP-2),

and inducible nitric oxide synthase (iNOS) are well-known pro-inflammatory mediators asso-

ciated with lung injury [13]. IL-6 has been reported to be a predictive pro-inflammatory bio-

marker for sepsis and acute lung injury. IL-1β, MIP-2, and IL-6 are key inflammatory

cytokines that induce neutrophil infiltration and activation [14–17]. iNOS is expressed by

macrophages, neutrophils, and epithelial cells, and its expression can be upregulated by cyto-

kines such as IL-1β [18]. Additionally, induction of iNOS causes excessive NO production and

leads to indiscriminate nitrosylation by NO compounds, which can disrupt mitochondrial

metabolism and cell necrosis [19, 20].

Interleukin-10 (IL-10), clara (Club) cell protein-16 (CC16), surfactant protein-D (SP-D),

and soluble receptor for advanced glycation end products (sRAGE) are involved in the regula-

tion of lung inflammation. IL-10 is a key cytokine that suppresses proinflammatory responses

by resolving neutrophilic lung inflammation and deactivating macrophages. In several animal

studies, IL-10 has been shown to reduce subepithelial fibrosis and inhibit airway inflammation

by regulating the immune system [21–24]. CC16, secreted by bronchiolar Clara cells, is a ther-

apeutic protein for lung epithelial injury. CC16 attenuates oxidative stress and inflammatory

responses by inhibiting phospholipase A2 [25–27]. In many studies, serum levels of CC16

were reduced in patients with lung injury caused by smoking and air pollution. Furthermore,

the reduced levels of CC16 may indicate airflow limitation and asthma [26, 28, 29]. SP-D is a

major regulator of the host defense system that contributes to immune and inflammatory reg-

ulation by modulating immune cell activity. SP-D is a pulmonary collagen synthesized in

respiratory epithelial cells and is often increased under epithelial inflammation-related condi-

tions [30, 31]. A recent study showed that SP-D protects against structural damage, oxidative

stress, and fibrosis by suppressing alveolar macrophage activity [32]. sRAGE is a soluble form

of RAGE expressed by alveolar type I cells [33]. sRAGE binds to the membrane of alveolar epi-

thelial cells and is released into the alveolar space during pulmonary inflammation [34].

sRAGE has anti-inflammatory effects and is strongly associated with the progression of

emphysema [35, 36].

Peroxisome proliferator-activated receptors (PPARs) are well-known immunomodulators

that regulate gene transcription by binding to specific elements of the target gene. PPARs are

involved in the cellular responses of resident and structural cells involved in inflammation and

tissue remodeling in chronic lung diseases. Among PPARs, especially because PPARγ has anti-

oxidant and anti-apoptotic properties, it has generally been considered a notable anti-inflam-

matory target for respiratory diseases. PPARγ is activated by forming heterodimers with the

retinoid X receptors (RXRs), and the PPARγ/RXR heterodimer can hinder the expression of

mRNA for IL-6 and TNF-α, while encouraging that for anti-inflammatory cytokines such as

IL-10 [37]. A recent study on airway related diseases revealed that the expression of PPARγ
mRNA and protein levels is downregulated in alveolar macrophages in patients with asthma,

unlike in healthy people. This indicates that downregulation of PPARγ expression is associated

with exacerbation of pulmonary disease [38, 39]. In a similar vein, it has been reported that

agonists of PPAR and RXR have therapeutic effects on various pulmonary disease models,

including emphysema and asthma [40–45]. Particularly, RXRγ agonists have been shown to
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have significant treatment effects on emphysema patients [46]. The therapeutic effect of the

PPAR/RXR signaling pathway on respiratory diseases was previously reported to be mediated

by IL-10 and CC16 [47, 48]. Furthermore, PPARγ is involved in regulating proliferator-acti-

vated receptor gamma co-activator-1 alpha (PGC1α), which is a widely known regulator of

mitochondrial oxidative metabolism. The activation of PPARγ/PGC1α signaling stimulates

mitochondrial biogenesis, and PPARγ contributes to rescuing mitochondrial function while

reducing reactive oxygen species [49–52]. Additionally, PPAR agonists not only increase mito-

chondrial mass but also significantly improve oxidative phosphorylation system (OXPHOS)

gene expression impairment that causes metabolic dysfunction [53].

Three plants, Dioscorea batatas, Taraxacum officinale, and Schizonepeta tenuifolia, were

selected for our study based on their functions. Their properties described in traditional

Korean medicine literature are as follows [54]: Dioscorea batatas has been widely used for

nutritional and medicinal purposes with various effects. Dioscorea batatas is known to be

effective in lung nourishing, cough relief, and various inflammatory diseases owing to its anti-

oxidant and anti-inflammatory activities [55–57]. Taraxacum officinale is known to have ther-

apeutic effects on various respiratory diseases, such as lung abscesses, upper respiratory tract

infections, emphysema, bronchitis, and pneumonia [58–60]. Liu et al. (2010) showed that a

water extract of T. officinale suppressed LPS-induced acute lung injury (ALI) by decreasing

pro-inflammatory cytokines production and regulating oxidative stress-related responses.

Medical practitioners in Asian countries such as Korea and China have utilized S. tenuifolia to

treat respiratory infections, including colds, fevers, and sore throat [61, 62]. Recent studies

suggest that S. tenuifolia has immunomodulatory activities and can inhibit pulmonary inflam-

matory responses via regulating the TLR4 signaling pathway [63].

In our previous study, we developed HX110B, an ethanol-extracted mixture of D. batatas,
T. officinale, and S. tenuifolia [54]. We revealed that HX110B regulates Nrf2-HO-1 signaling

pathway and consequently ameliorates LPS-induced ALI [54]. Here, our aim is to investigate

the therapeutic effects of HX110B on emphysema in a PPE-induced mouse model.

2. Materials and methods

2.1. Cell culture and reagents

All reagents used for cell culture were purchased from Invitrogen (USA) unless otherwise

specified. PPE, ketoprofen, GW6471, GSK3787, SP16832, and HX531 were purchased from

Sigma-Aldrich (USA). BEAS-2B cell line (ATCC, USA) was cultured in complete RPMI1640

medium (supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL

streptomycin) and incubated at 37˚C in a humidified atmosphere containing 5% (v/v) CO2

until confluent.

2.2. Preparation of HX110B extract

HX110B was obtained as previously mentioned [54]. Dioscorea batatas, Taraxacum officinale
and Schizonepeta tenuifolia were purchased from Humanherb Co., Ltd. (Gyeongsan, Korea).

Their species were determined through DNA sequencing analysis (miDNA Genome Research

Institute, Kunsan, Korea). HX110B was prepared by mixing three dried herbs in a weight ratio

of 1:1:1, and then extracting the mixture with 25% ethanol. The voucher specimens used in

this study were kept at the herbarium of Helixmith Co., Ltd. (Seoul, Korea). Voucher Speci-

men No: S14161213 for Dioscorea batatas; F02170525 for Taraxacum officinale; H2719121 for

Schizonepeta tenuifolia.
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2.3. High-performance liquid chromatography (HPLC)

The chemical characteristics of HX110B were analyzed using HPLC photodiode array (Waters

Alliance e2695 system; Waters, USA). HX110B extract was dissolved in 50% methanol and fil-

tered using a 0.45 μm polyvinylidene fluoride (PVDF) filter before use. The detailed conditions

of the HPLC analysis are provided in our previous study [54].

2.4. Evaluation of correlation coefficient

The correlation coefficient (R) is used to evaluate equivalence, indicating the correlation

between each peak area established in the standard chemistry profile (Batch 1) and each corre-

sponding peak area in the equivalent target chemistry profile (Batch 2 and 3). The correlation

coefficient was calculated using the function of Pearson correlation coefficient calculation in

Excel program (Microsoft, USA).

2.5. Experimental animals

All animals (C57BL/6, male, 7 weeks old, Raonbio Inc., Yongin, Korea) used in the experiment

were cared for according to the standard guidelines set by the Institutional Animal Care and

Use Committee of Helixmith Co., Ltd. All mice were quarantined and acclimatized by housing

in an air-conditioned animal facility for at least 7 days under a 12-hour light and dark cycle.

All experimental procedures were approved by the Institutional Animal Care and Use Com-

mittee of Helixmith Co., Ltd. (Approval Number: VIC-20-11-001).

2.6. PPE-induced emphysema mouse model

PPE was prepared by dissolving in saline (0.9% NaCl) at 1 unit/head. The mice were then ran-

domly allocated into five groups (n = 6): NC, PPE, HX110B (50 mg/kg), HX110B (100 mg/kg),

and HX110B (200 mg/kg). For administration, anesthesia was induced by inhalation using 2%

isoflurane (Hana Pharm Co., Ltd, Korea) with a tabletop anesthesia system, and then the mice

received a single intratracheal injection of either PPE (1 unit) or saline. Afterwards, all animals

were injected intraperitoneally with ketoprofen (5mg/kg in saline) to alleviate pain, followed

by daily oral administration of HX110B for 3 weeks. After treatment, the mice were sacrificed

by CO2 inhalation and analyzed. For lung tissue harvesting, animals were anesthetized, exsan-

guinated, and euthanized immediately. Fresh paraformaldehyde (PFA) was immediately

injected through the tracheal cannula at a constant rate until the lungs became taut. The lungs

filled with PFA were maintained for at least 2 minutes without releasing the tied trachea in the

maximally inflated state.

2.7. H&E staining

Lung samples fixed in 4% PFA were serially dehydrated with graded ethanol series, embedded

in paraffin, and sectioned at 4 μm thickness. The sections were stained with hematoxylin and

eosin (H&E). The air space area was calculated for each mouse by quantifying the number of

intersections between the horizontal and vertical grid lines and alveolar walls in 10 non-over-

lapping fields.

2.8. RNA isolation and qRT-PCR analysis

Total RNA from mouse lungs and cell lines was extracted and purified using TRIzol (Invitro-

gen), and cDNA was synthesized using oligo dT primers (QIAGEN, USA) and Reverse Tran-

scriptase XL (Takara, Japan) from 1 μg of RNA. Real-time quantitative RT-PCR was

performed using SYBR Premix (Takara) and a Thermal Cycler Dice Real Time System TP800
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(Takara). PCR was conducted with initial denaturation at 95˚C for 5 s, annealing, and elonga-

tion at 60˚C for 30 s. A list of sequences of the qPCR primer pairs is provided in S1 Table.

2.9. Luciferase reporter plasmid assay

The luciferase reporter assay was performed following a previously described method [54, 64,

65]. Briefly, BEAS-2B cells were transfected with a PPRE-reporter plasmid (QIAGEN) or

RXRE-reporter plasmid (QIAGEN) using Lipofectamine 3000 (Invitrogen). After 24 h, trans-

fected cells were treated with various concentrations of HX110B and receptor-specific antago-

nists for 18 h. The cell lysates were extracted and used for luciferase activity assays using a dual

luciferase reporter assay system (Promega, USA) and Varioskan LUX (Thermo Fisher, USA),

following the manufacturer’s instructions.

2.10. Statistical analysis

Three independent experiments were conducted, and all values are expressed as the

mean ± SEM. Student’s t-test was employed to statistically analyze the differences between two

groups, while one-way analysis of variance (ANOVA) with Tukey’s correction was utilized for

conducting multiple comparisons.

3. Results

3.1. Quality of HX110B is controlled by HPLC analysis

The results of HPLC profiling of HX110B are shown in Fig 1A. To confirm batch-to-batch

consistency, a total of 18 peaks were selected as representative components, and the UV spec-

tra of these peaks were analyzed to identify the major components contained in HX110B (Fig

1B). Equivalence between the three HX110B batches was evaluated based on the selected peaks

of batch 1. As a result, each equivalence showed a significantly high correlation of over 0.999

(Fig 1C). In addition, since equivalence is affected by the peak area, equivalence was evaluated

except for peak 10, which occupies about 50% of the area. Even in that case, there was a high

equivalence of 0.990 or more between the three different batches. Taken together, it was found

that the quality of raw materials produced through the manufacturing process of HX110B was

kept constant.

3.2. HX110B ameliorates PPE-induced lung emphysema

In our previous research, we developed HX110B composed of three plants that produce syner-

gistic effects on inflammatory responses [54]; therefore, we hypothesized that HX110B would

have therapeutic effects on emphysema, a respiratory inflammation disease. The therapeutic

effects of HX110B on emphysema-like conditions were evaluated using a mouse emphysema

model induced by PPE. Mice were administered 1 unit of PPE intratracheally and orally

administered three different doses of HX110B (50, 100, and 200 mg/kg) daily for 3 weeks. Rep-

resentative results from the histological assessment are shown in Fig 2. H&E staining was used

to estimate the changes in lung structure induced by HX110B at different concentrations. As

shown in Fig 2A–2E, PPE-treated mice showed a destroyed lung architecture with enlarge-

ment of the airspace, whereas HX110B-treated mice showed significantly improved PPE-

induced alveolar wall damage in a dose-dependent manner. Quantitative analysis of the air

space area also indicated that HX110B treatment attenuated the exacerbation of air space

enlargement mediated by PPE (Fig 2F).
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Fig 1. Details of the quality control of HX110B. The batch-to-batch consistency of HX110B was ensured by monitoring its

HPLC profile. (A) HPLC profiles of HX110B extract. (B) UV spectra of the peak and measured peak area. (C) Calculated

Correalation coefficient between the three different batches of HX110B.

https://doi.org/10.1371/journal.pone.0305911.g001
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3.3. HX110B reduces the mRNA level of pro-inflammatory mediators in

the lung of PPE-treated mice

IL-6, IL-1β, MIP-2, and iNOS are well known to be important for the development and worsen-

ing of lung disease [66–69]. As shown in Fig 3, the mRNA expression levels of IL-6, IL-1β, MIP-

2, and iNOS were intensely increased in the PPE-treated group, but those of HX110B-treated

groups were significantly diminished. These results showed that HX110B may help alleviate the

worsening of lung injury by controlling the production of pro-inflammatory mediators.

3.4. HX110B improves the diminished expression of lung-protective factor

in the lung of PPE-treated mice

The lung-protective effect of HX110B was further tested by determining the expression levels

of IL-10, CC16, SP-D, and sRAGE, which have been reported to ameliorate the pathological

Fig 2. Effects of HX110B on PPE-induced emphysema. The ameliorating effects of HX110B on PPE-induced emphysema were

examined as described in the Materials and Methods section. (A-E) Histological images of H&E-stained lung tissue sections. (F)

Quantification of the pulmonary air space area. ##p< 0.01 vs. the NC group, *p< 0.05, **p< 0.01 vs. the PPE group.

https://doi.org/10.1371/journal.pone.0305911.g002
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manifestations of emphysema. These factors are known to suppress pro-inflammatory

responses in lung tissues. In particular, CC16 and SP-D have been reported to possess lung-

protective properties against oxidative stress, which can lead to the deterioration of emphy-

sema [25–27, 32]. In the elastase-treated condition, the RNA expression levels of these factors

were greatly reduced compared to those in the NC group; however, these effects were signifi-

cantly improved when the mice were administered HX110B (Fig 4).

3.5. HX110B improves the expression of OXPHOS genes in the lung of

PPE-treated mice

Recent studies have demonstrated that dysfunction of mitochondria is related to COPD patho-

physiology [70]. Metabolic dysfunctions, which are mainly mediated by impaired OXPHOS

Fig 3. Effects of HX110B on the expression of pro-inflammatory mediators in mice lungs. Total RNA was extracted from mouse lungs and subjected

to analysis for IL-6, IL-1β, MIP-2, and iNOS using qRT-PCR. (A-D) Changes in the RNA level of pro-inflammatory mediators. ##p< 0.01,

####p< 0.0001 vs. the NC group; **p< 0.01, ***p< 0.001, ****p< 0.0001 vs. the PPE group.

https://doi.org/10.1371/journal.pone.0305911.g003
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gene expression, are found in patients with COPD because they contribute to exacerbating

lung disease conditions [70, 71]. In this context, OXPHOS gene expression was evaluated to

verify the potential therapeutic efficacy of HX110B in improving mitochondrial dysfunction-

related gene expression. Fig 5 shows the changes in the expression levels of OXPHOS subunit

genes, including ND1 and NDUFB9 for complex I, CytB and UQCRB for complex III, COX2

for complex IV, and ATP5A1 for complex V. The RNA levels of OXPHOS subunits were

markedly reduced by PPE treatment; however, the administration of HX110B significantly

improved the expression levels of these factors (Fig 5).

Fig 4. Effects of HX110B on the expression of lung-protective factors in mice lungs. Total RNA extracted from mouse lungs was analyzed for IL-10,

CC-16, SP-D, and sRAGE using qRT-PCR. (A-D) Changes in the RNA level of lung-protective factors in mice lungs were measured. ###p< 0.001,

####p< 0.0001 vs. the NC group; *p< 0.05, **p< 0.01, ***p < 0.001, ****p< 0.0001 vs. the PPE group.

https://doi.org/10.1371/journal.pone.0305911.g004
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3.6. HX110B upregulates the expression of IL-10 and CC16 in BEAS-2B

cells

To identify the detailed mechanism of HX110B based on in vivo studies, the BEAS-2B derived

from normal human bronchial epithelium was used to evaluate the changes in lung-protective

factors with and without HX110B treatment. HX110B was used to treat cells at concentrations of

0.75, 1.5, and 3.0 mg/mL for 48 h, and the expression levels of IL-10 and CC16 were quantified

by measuring the mRNA levels. Both mRNA expression levels of IL-10 and CC16 were relatively

increased in the HX110B-treated group at all doses in comparison with those in the NC group;

in particular, the 3.0 mg/mL treatment group showed a prominent increase in expression (Fig 6).

However, the expression of SP-D and sRAGE did not change after HX110B treatment (S1 Fig).

3.7. PPAR and RXR signaling pathways play a prominent role in the

induction of IL-10 and CC16 gene expression by HX110B

Because PPAR and RXR are well-known regulators of inflammation-related gene expression

[37], we used a luciferase reporter plasmid containing PPRE or RXRE sequences to investigate

whether HX110B regulates mitochondrial function and ROS-related factors through the

PPAR-RXR signaling pathway. As a result, when the cells transfected with PPRE- or RXRE-

containing plasmids were treated with HX110B, the luciferase activity was enhanced as the

concentration of HX110B increased; in particular, the HX110B-treated group at 3 mg/mL

demonstrated superior results compared to those from other concentrations (Fig 7A and 7B).

Fig 5. Effects of HX110B on the expression of OXPHOS genes in mice lungs. Total RNA extracted from mouse lungs was analyzed for ND1, NDUFB9,

CytB, UQCRB, COX2, and ATP5A1 using qRT-PCR. (A-F) Changes in the RNA level of OXPHOS genes in mice lungs were measured. ###p< 0.001,

####p< 0.0001 vs. the NC group; *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 vs. the PPE group.

https://doi.org/10.1371/journal.pone.0305911.g005
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To further verify the relationship between PPARs and RXR, the following receptor-specific

antagonists were used: PPARα (GW6471), PPARβ (GSK3787), PPARγ (SP16832), and RXR

(HX531). When cells were treated with each antagonist, the gene expression levels of both IL-

10 and CC16 were significantly reduced when cells were co-treated with GW6471, SP16832, or

HX531. Interestingly, in the case of CC16, it increased when cells were co-treated with a

PPARβ antagonist (Fig 7C and 7D). Overall, these data suggest that HX110B may regulate the

expression of IL-10 and CC16 through the PPARα, PPARγ, and RXR signaling pathways.

4. Discussion

In this study, we prepared HX110B, consisting of three herbal plants: T. officinale, D. batatas,
and S. tenuifolia. We used a PPE-induced mouse model and an in vitro model using BEAS-2B

cells to determine the therapeutic effects of HX110B on emphysema. The results demonstrated

that HX110B treatment improved the PPE-induced respiratory symptoms and pathological

characteristics in vivo. HX110B treatment promotes the gene expression of lung-protective

factors such as IL-10, CC16, SP-D, and sRAGE, and upregulates the expression of OXPHOS

genes that are closely related to mitochondrial regulation, leading to a decrease in pro-inflam-

matory mediators. In vitro analysis revealed that HX110B exerted its effects by activating the

PPAR-RXR signaling pathways. Overall, our data indicate that HX110B may be an efficacious

therapeutic agent for emphysema.

The lungs have the largest internal surface area of approximately 150 m2. The lungs are con-

tinually exposed to the external environment with the largest surface area, which is highly effi-

cient for the uptake and transfer of oxygen to tissues. Therefore, it is vulnerable to exogenous

Fig 6. Effects of HX110B on the expression of IL-10 and CC16 in BEAS-2B cells. BEAS-2B cells were cultured with various concentrations of

HX110B (0.75, 1.5, and 3 mg/mL) for 48 h. Total RNA was extracted and analyzed for IL-10 and CC16 using qRT-PCR. (A and B) Changes in IL-10

and CC16 RNA levels were measured. **p< 0.01 vs. the NC group.

https://doi.org/10.1371/journal.pone.0305911.g006
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pollutants, contributing to increased oxidative stress and the generation of free radicals from

inflammatory cells [72, 73]. The lung has an effective and highly specialized antioxidant

defense mechanism with various antioxidants, including glutathione, vitamins, superoxide dis-

mutase, and enzymes regulated by a redox-sensitive Nrf2 transcription factor to maintain

homeostasis [73–76]. However, oxidative stress, which can lead to DNA, lipid, and protein

damage, is induced when an imbalance occurs between antioxidants and oxidants [77].

Increased oxidative stress has a very close correlation with the pathophysiology of various lung

Fig 7. HX110B regulates PPAR and RXR signaling pathways in BEAS-2B cells. The effects of HX110B on PPAR and RXR signaling

pathways were examined using luciferase activity assay and quantitative RT-PCR. The experimental protocol is detailed in the Materials

and Methods section. (A and B) Changes in luciferase activity. (C and D) Changes in the RNA levels of IL-10 and CC16 were. *p< 0.05,

**p < 0.01, ***p < 0.001, ****p< 0.0001.

https://doi.org/10.1371/journal.pone.0305911.g007
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diseases, for instance, ARDS, COPD, and idiopathic pulmonary fibrosis (IPF). Oxidative stress

is one of the major factors contributing to the progression of lung disease; for example, both

COPD and IPF patients exhibit increased oxidative stress levels as well as decreased antioxi-

dant defenses, when compared with normal individuals [78, 79]. In our previous study, we

revealed that HX110B markedly suppresses oxidative stress responses via the Nrf2-HO-1 sig-

naling pathway. Therefore, it is possible that the therapeutic effects of HX110B on PPE-

induced emphysema may be due to antioxidative stress.

Diverse botanical extracts and their marker compounds have been reported to contribute

to the suppression of excessive inflammation [80, 81]. Allantoin, chicoric acid, and luteolin-3’-

glucuronide are effective marker compounds of HX110B involved in the regulation of inflam-

matory responses. Allantoin is a natural and non-toxic compound that is efficacious against

lung inflammation and oxidative stress [82, 83]. Furthermore, allantoin attenuates oxidative

stress via the SIRT1/Nrf2 pathway in the MCD-induced NASH mouse model [84]. Chicoric

acid (CA) is a promising natural antioxidant with various biological activities, including anti-

inflammatory properties. Recent studies have revealed that CA restrains IL-1β, IL-6, and TNF-

α and downregulates the NF-κB pathway, thereby diminishing oxidative stress and the inflam-

matory response [85–87]. Furthermore, CA also upregulates Nrf2, HO-1, PPARγ, PGC-1α,

and SIRT1 expression and ameliorates mitochondrial function through the PI3K/AKT path-

way [87–89]. Luteolin possesses the properties for anti-inflammatory, antioxidant, and antivi-

ral effects. Luteolin-3’-glucuronide, a major metabolite in systemic circulation, was shown to

influence the inflammatory response by encouraging the deactivation of transcription factors

such as NF-κB and AP-1 [90–92]. Consequently, the anti-inflammatory effects of HX110B

might be due to the synergistic effects of the properties of the respective components in

HX110B.

Mitochondria are considered potential targets for the treatment of lung diseases because

they play a critical role in lung function by regulating cellular metabolism and airway immune

responses. As mitochondria participate in cellular process regulation, for example cell signal-

ing and cell death, mitochondrial dysfunction may lead to airway contractility, oxidative stress,

and apoptosis, which are implicated in the pathological progression of lung diseases including

COPD, IPF, and asthma [70, 93–95]. More than 40 different cell types composing the lung

depend on mitochondrial metabolism, and among them, cytotoxic exposure of lung epithelial

cells reduces mitochondrial gene expression and OXPHOS activity. Additionally, OXPHOS

gene expression is abnormally regulated in human bronchial smooth muscle cells of COPD

patients, resulting in a decreased mitochondrial number and increased cyclooxygenase activity

[95, 96]. Similarly, in another study, a decrease in OXPHOS gene expression was observed in

lung tissue and alveolar type 2 cells of patients with emphysema, resulting in a decrease in the

number of mitochondria [71]. In this study, HX110B restored OXPHOS gene expression to

normal levels in emphysema-like conditions. This indicates that HX110B can improve mito-

chondrial dysfunction that causes various respiratory diseases by regulating OXPHOS activity.

To verify this possibility, we are currently determining the effect of HX110B on mitochondrial

function using various techniques, such as measuring mitochondrial mass, mitochondrial

membrane potential value, and oxygen consumption rate.

IL-10 is a representative immunoregulatory cytokine known to suppress the development

of COPD by regulating the inflammatory response in lung tissue [97–99]. Similarly, it has

been reported that COPD patients have lower IL-10 concentrations in their blood [100, 101].

Additionally, CC-16 is a factor that aids in the recovery of lung injury, and decreased expres-

sion levels are observed in patients with lung damage due to smoking [27]. Moreover, it has

been reported that CC-16-deficient mice exhibit COPD-like symptoms [102]. Consequently,

IL-10 and CC-16 are very important factors that regulate the development of emphysema.
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Furthermore, they are not limited to emphysema, as they have been reported to contribute to

various human diseases. For instance, the precise function of CC16 is not clearly understood;

however, a recent study suggested that CC16 could be a target gene for lung cancer treatment,

as it has immunomodulatory, anti-inflammatory, and anti-cancer effects [103]. Furthermore,

serum CC16 concentrations are closely related to the severity of cystic fibrosis owing to its

effect on systemic inflammation [104]. IL-10, a well-known anti-inflammatory cytokine, has

been reported to have therapeutic effects in various inflammatory diseases such as autoim-

mune disease, tissue damage, cancer, chronic renal disease, and inflammatory bowel disease

[105, 106]. It is also known that IL-10 exhibits therapeutic effects in various fibrotic diseases,

including IPF and nonalcoholic steatohepatitis, by inhibiting the pro-fibrotic signaling path-

way [107, 108]. HX110B significantly enhanced the expression levels of CC16 and IL-10 via

the PPAR and RXR signaling pathways. Moreover, because the PPAR-RXR system exists

throughout the body, HX110B has the potential to exhibit therapeutic effects in diverse dis-

eases, including COPD.

As shown in the HPLC profile in Fig 1, HX110B contains a variety of polyphenols and fla-

vonoid compounds. Which of these active compounds mediates the efficacy of HX110B has

not yet been determined. Similar to the unique properties of botanical extracts, in which vari-

ous ingredients simultaneously modulate various targets, the effect of HX110B is likely to be a

combination of the effects of several constituents, rather than a single specific compound.

Among the components included in HX110B, those related to the PPAR activation mechanism

of HX110B identified in this study are as follows. Chicoric acid, which is contained in the high-

est amount in HX110B, has been shown to treat methotrexate-induced liver injury by activat-

ing the PPARγ signaling pathway [89]. Chlorogenic acid significantly increased mRNA and

protein expression of PPARγ in the 3T3-L1 preadipocyte cell line [109]. Anti-depressant-like

and anti-inflammatory effects of rosmarinic acid have been reported to be inhibited by PPARγ
antagonists [110, 111]. Hesperidin exhibits anti-apoptotic effects through activation of PPARγ,

thereby ameliorating ischemia and reperfusion injury [112]. Therefore, various components

included in HX110B are expected to act comprehensively to activate the PPAR signaling path-

way efficiently. To accurately identify this possibility, we are conducting molecular docking

simulation study to calculate the binding modes and binding free energies between the PPAR

and each component.

A limitation of this study is that the expression of all genes was tested only at the mRNA

level. Since all gene expressions must be translated into protein to be effective, testing only

changes in mRNA expression cannot verify whether the gene is functionally active. However,

in this study, there were several technical problems, and it was difficult to measure protein

expression under our experimental conditions. First, all available ELISA kits were of a grade

that did not guarantee animal tissue sampling. In fact, when ELISA was performed on the

whole extract of lung tissue using these kits, a significant level of background signal that inter-

fered with the normal data analysis was observed. The main cause of this phenomenon is prob-

ably the matrix effect that commonly occurs during ELISA analysis of animal tissue samples.

Moreover, excessive background signals were also observed when performing western blotting

and immunohistochemical analysis, which is expected to be due to the low specificity of the

primary antibody used. Due to these technical issues, in this study, it was inevitable to indi-

rectly confirm the effect of HX110B by measuring mRNA expression levels. However, as

shown in Fig 2, lung damage caused by PPE was restored to a normal level by HX110B admin-

istration, and similar gene expression profile changes were observed by HX110B treatment in

other lung disease model experiments ([54] and unpublished data). Therefore, we believe that

the HX110B-induced RNA expression changes were responsible for the therapeutic effect of

HX110B. We plan to introduce a sensitive protein analysis technique, such as the TR-FRET
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assay, to identify the precise mechanism of action underlying the therapeutic effects of

HX110B.

In conclusion, HX110B has high potential for development as a therapeutic agent for

COPD due to its multiple mechanisms of action that were identified in this study. The plants

used in HX110B formulation have been used by humans for a long time and are therefore con-

sidered safe. Indeed, HX110B did not show any adverse effects in the acute- or repeated-dose

toxicity studies. To verify the potential of HX110B as a treatment for COPD, we are currently

planning a clinical trial involving individuals who complain of abnormal respiratory

symptoms.
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