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Background. Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple 
classes of antibiotics. This study describes the emergence of imipenemase (IMP)–encoding CPE among diverse Enterobacterales 
species between 2016 and 2019 across a London regional network.

Methods. We performed a network analysis of patient pathways, using electronic health records, to identify contacts between 
IMP-encoding CPE–positive patients. Genomes of IMP-encoding CPE isolates were overlaid with patient contacts to imply 
potential transmission events.

Results. Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter 
spp, and Escherichia coli); 86% (72 of 84) harbored an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68 of 72). 
Phylogenetic analysis of IncHI2 plasmids identified 3 lineages showing significant association with patient contacts and movements 
between 4 hospital sites and across medical specialties, which was missed in initial investigations.

Conclusions. Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak 
of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multimodal data 
incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key 
factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, 
allowing more interventions to stop transmission within hospital networks.
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patient pathways.
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Infections by carbapenemase-producing Enterobacterales (CPE) 
pose a substantial clinical, operational, and financial challenge 
[1]. These organisms are associated with high morbidity and 
mortality rates, and therapeutic options are severely restricted 
[2]. Carbapenemase genes are frequently carried on plasmids, 

which can easily transfer between bacterial species [3]. CPE out
breaks involving different bacterial species are often unrecog
nized, as many plasmids are variable in their gene content and 
have a broad host range [4]. Outbreaks of Enterobacterales car
rying imipenemase (IMP) gene blaIMP-1 are mostly sporadic and 

Multispecies Regional Imipenemase Plasmid CPE Outbreak • JID 2024:230 (15 July) • e159

The Journal of Infectious Diseases                                

M A J O R  A R T I C L E

https://orcid.org/0000-0002-8354-7647
https://orcid.org/0000-0001-6202-0662
https://orcid.org/0000-0001-6549-9621
https://orcid.org/0000-0002-2387-3774
https://orcid.org/0000-0001-7786-8252
https://orcid.org/0000-0002-2937-3420
https://orcid.org/0000-0001-5652-6472
https://orcid.org/0000-0002-5741-8622
https://orcid.org/0000-0002-8131-0128
https://orcid.org/0000-0002-8934-2343
https://orcid.org/0000-0002-6652-4785
https://orcid.org/0000-0001-7279-5322
https://orcid.org/0000-0001-6614-8698
https://orcid.org/0000-0002-2583-8366
https://orcid.org/0000-0003-1885-500X
https://orcid.org/0000-0002-1089-5675
https://orcid.org/0000-0002-7075-6896
https://orcid.org/0000-0003-1839-870X
mailto:f.davies@imperial.ac.uk
mailto:e.jauneikaite@imperial.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/infdis/jiae019


often localized to specific geographic locations [5, 6]. IMP genes 
are rarely isolated in the United Kingdom, but the number of 
IMP encoding Enterobacterales species isolates referred to the 
UK Health Security Agency has been increasing [7].

Colistin and polymyxin B remain the last-line therapeutic 
agents for CPE in most countries, partly owing to lack of access 
to newer agents; yet colistin resistance is increasing globally. 
Ten mobile colistin resistance genes (mcr-1—mcr-10) have 
been described to date, presenting a substantial global healthcare 
challenge [8, 9]. Although mcr genes are typically associated with 
phenotypic polymyxin resistance, mcr-9 does not appear to con
fer direct colistin resistance [10, 11] and is widespread in a wide 
range of bacterial species from human, animal, and environ
ments [11–14].

Person-to-person contact is a route of transmission for many 
infectious diseases. Consequently, understanding the patterns of 
these contacts, especially in healthcare settings, can offer detailed 
insight for targeted interventions [15]. However, such patient 
contacts become increasingly complex when incorporating mul
tiple layers of data. Network models provide flexible tools to cap
ture complex interactions (contact patterns) and offer a robust 
and reproducible method that has become widespread across 
disciplines [16, 17], incorporating both person-to-person trans
mission through contact networks [18] and spatial spread 
through networks representing physical locations [19].

So far, few studies have used network models of patient con
tacts in combination with detailed bacterial genomic analysis 
and demonstrated the advantages of such an approach by in
creasing the detail in outbreak characterization [20, 21]. Here, 
we combine plasmid phylogenomic analysis with patient contact 
networks to discover the spread of blaIMP and mcr-9 genes 
among bacterial species and patients in a large hospital network 
in London, United Kingdom, over 3 years, providing valuable in
sights for the management of CPE in hospital settings.

METHODS

Clinical Setting

This study was carried out using data from a regional network 
of London hospitals, comprising 7 hospital sites with a total 
of 2000 inpatient beds, with managerial responsibility assigned 
to 2 National Health Service trusts, and frequent transfers be
tween trusts and sites for specialist care. Cases were identified 
from one of these trusts (comprising 5 hospitals), with micro
biology and pathway data for those cases identified through a 
shared centralized microbiology laboratory and electronic 
health records system (Cerner). Since June 2015, an enhanced 
routine CPE screening program has been implemented in this 
trust [22]. When a new case of CPE was identified, the patient 
was isolated in a single room with contact precautions, the bed 
space and bathroom were terminally enhanced cleaned, and 
any contacts were rescreened for CPE.

Isolate Collection

CPE isolates were collected from patients identified through rectal 
screens or clinical sampling between June 2016 and November 
2019. Bacterial species were determined using Biotyper matrix- 
assisted laser desorption ionization time-of-flight mass spectrom
etry (Bruker Daltonics). One isolate per species was collected 
from each patient. Susceptibility to 21 antimicrobials was tested 
using the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) disc diffusion method, and colistin minimum 
inhibitory concentrations were retrospectively determined using 
MICRONAUT broth microdilution (BioConnections) for all via
ble CPE isolates carrying blaIMP genes (hereafter, blaIMPCPE) 
[23]. Further phenotypic and molecular characterization of CPE 
isolates were performed as described in the Supplementary 
Methods.

Whole-Genome Sequencing

Isolates of blaIMPCPE were grown aerobically on Columbia 
Blood Agar (Oxoid) at 37°C. Genomic DNA was extracted 
from overnight cultures using GenElute Bacterial Genomic 
DNA Kits (Sigma-Aldrich). Multiplexed DNA libraries were 
generated with Nextera XT (Illumina) and sequenced under a 
150–base pair paired-end layout for a minimum of 100-fold 
coverage on Illumina HiSeq 4000 systems (Illumina).

Phylogenomic Analysis

Quality control of sequencing reads, de novo genome assembly, 
and genetic characterization of isolates are described in the 
Supplementary Methods. A neighboring-joining tree of CPE ge
nomes was generated from pairwise average nucleotide distances 
using FastANI software, version 1.33 [24]. Plasmid sequences 
were reconstructed from genome assemblies using MOB-suite 
software, version 3.1.0 [25]. Reconstructed sequences of IncHI2 
plasmids were aligned against IncHI2 plasmid pKA_P10 
(GenBank accession no. CP044215.1), a second isolate from 
case 71 (IMP42), using Snippy (github.com/tseemann/snippy) 
to identify genetic variation. A recombination-corrected 
maximum-likelihood tree of IncHI2 plasmids was reconstructed 
from the sequence alignment using IQ-Tree software, version 
2.0.3 [26], as implemented using Gubbins, version 3.2.1 [27]. 
The date of the most recent common ancestor of IncHI2 plasmids 
was estimated using BactDating software, version .1.1.1 [28].

Network Analysis

To reveal potential transmission structure, a patient contact 
network was reconstructed from patients’ movement history 
(ward locations and time), which was extracted from electronic 
health record data of blaIMPCPE cases. A contact was defined as 
an event when 2 patients were present on the same ward on the 
same day. Time-aggregated patient contacts were subsequently 
clustered to reveal groups of patients linked together using the 
Walktrap community detection algorithm [29]. Contacts were 
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weighted by the time spent together, and a temporal analysis of 
patient interactions was performed to assess patient roles and 
positions in transmission. A spatial network of ward/hospital 
distributions was generated, allowing calculation of in-hospital 
infectious periods—days spent on the ward before the imple
mentation of infection prevention and control (IPC) measures, 
a network structure to determine ward/hospital spread, and a 
list of highly visited wards according to plasmid genetic 
clusters.

To investigate whether the identified lineages of IncHI2 plas
mids represented the transmission of blaIMPCPE, a Kendall rank 
correlation coefficient was calculated from pairwise phylogenetic 
distances between IncHI2 plasmids (extracted from the plasmid 
maximum-likelihood tree) and shortest-path distances between 
patients (from whom isolates carrying these plasmids were col
lected) in the contact network (Supplementary Methods).

Data Availability

Illumina reads and draft genome assemblies of 84 blaIMPCPE 
isolates were deposited in European Nucleotide Archive under 
BioProject PRJEB38818. See Supplementary Table 1 for sample 
information.

Ethical Considerations

This study was carried out in accordance with ethics reference 
21/LO/0170 (279677; protocol 21HH6538: “Investigation of 
Epidemiological and Pathogenic Factors Associated With 
Infectious Diseases”).

RESULTS

Incidence of blaIMPCPE

Following the introduction of the enhanced CPE screening 
program, blaIMPCPE was first observed in 2 trusts’ hospitals 
in June 2016 through routine rectal screening from a patient 
with no identifiable travel history. From November 2016, an in
creasing number of blaIMPCPE isolates was identified across 
Enterobacterales species (Figure 1A). The highest incidence 
of blaIMPCPE cases occurred between January and July 2019 
(Figure 1B). Altogether, blaIMPCPE isolates were recovered 
from screening or clinical samples from 116 patients admitted 
to these 5 hospitals by the end of November 2019, when num
bers of new cases rapidly dropped, and subsequent cases were 
sporadic and infrequent. No ward or service was identified as 
a potential focus for cross-transmission, and no enhanced 
IPC measures were taken, though the overall increase in CPE 
cases prompted general reinforcement of IPC practices. Only 
2 clusters of cases (5 of 116 cases) fit the conventional outbreak 
definition that ≥2 cases of the same bacterial species with the 
same resistance mechanism overlapping in time (cases 67 and 
71 and cases 80, 81, and 82). Pulsed-field gel electrophoresis 
typing of CPE isolates showed similar profiles, suggesting 

within-hospital transmission, and these 2 clusters were dealt 
with as local CPE transmission events. Furthermore, the daily 
number of occupied beds revealed a continuous burden of pa
tients colonized with blaIMPCPE (Figure 1C). This burden was 
particularly evident for patients colonized by Enterobacter, with 
424 total bed-days in the peak month (March 2019) across the 
hospital network.

Contact Network of blaIMPCPE-Positive Cases

A detailed patient contact network for 116 blaIMPCPE cases 
confirmed that 77 of 116 (66%) were in contact with ≥1 other 
blaIMPCPE case (ranging from 1 to 10 cases, with a median of 2; 
Figure 2 and Supplementary Table 2), creating 96 patient- 
contact pairs (Supplementary Table 3). Across all contact epi
sodes of blaIMPCPE cases, 59% of the episodes (57 of 96) in
volved 2 blaIMPCPE species and were therefore excluded 
from the conventional same-species definition of an outbreak 
when initially reviewed. The contact network split patients 
into 12 separate clusters, with interactions occurring across dif
ferent hospitals, as patients were transferred between wards 
and hospital sites (Figure 2). The largest contact cluster (cluster 
1) contained 45 patients and was further partitioned into 7 sub
clusters (labeled from 1.1 to 1.7) that comprised 13, 12, 2, 6, 5, 5, 
and 2 patients, respectively (Figure 2). The analysis of contacts 
at regional, hospital, and ward levels suggested involvement of 
different blaIMPCPE species in patient-to-patient transmission 
events and prompted phylogenomic analysis of available 
blaIMPCPE isolates.

Genomic and Phenotypic Characterization of blaIMPCPE Isolates

A total of 84 blaIMPCPE isolates (collected from 82 of 116 case 
patients) were available and viable for whole-genome sequenc
ing (WGS; Supplementary Table 1). These isolates belonged to 
15 species and were dominated by those of the Enterobacter 
cloacae complex (n = 51), followed by Klebsiella spp (n = 21) 
and Escherichia coli (n = 8) (Figure 3). Four patients (patients 
20, 24, 90, and 97) were colonized by 2 blaIMPCPE species 
(Supplementary Table 2).

Each of these 84 isolates carried either blaIMP-70 (n = 74) and 
blaIMP-4 (n = 10). IncHI2 plasmids (targeted by both probes for 
IncHI2 and IncHI2A replicons in the PlasmidFinder database) 
were detected in 72 isolates from 72 cases, and IncN3 plasmids 
were detected in 10 isolates from 10 cases (Figure 3). These 
plasmids were predicted to be conjugative with MOB-suite 
software for the presence of genes encoding MOBH-family re
laxases, type-F mating pair formation, and the origin of transfer 
(oriT). We have identified intI1 genes, and aminoglycoside 
resistance gene aac(6′)-Ib3 was found downstream of blaIMP, 
implying presence of the known multidrug-resistant class 1 in
tegron harboring blaIMP in IncHI2 plasmids [30].

Only IMP79 harbored both IncHI2 (without any blaIMP 

genes) and IncN3 (carried blaIMP-70) plasmids. Seventy of 
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the 72 IncHI2 plasmids carried either blaIMP-70 (n = 61) or 
blaIMP-4 (n = 9), and all IncN3 plasmids carried blaIMP-70 

(Supplementary Tables 4 and 5). Four isolates carried 
blaIMP genes that were not found in either IncHI2 or IncN3 
plasmids: 1 blaIMP-4 was integrated into the chromosome of 
IMP66, and blaIMP-70 was carried by an IncFIB/FII plasmid 
in IMP83 and by IncHI1 plasmids in IMP47 and IMP76. 
All blaIMPCPE isolates carried multiple β-lactam resistance 
genes and other antimicrobial resistance genes, yet only 
IMP89 had an additional carbapenem-resistance gene 
blaOXA-48 (Supplementary Table 1).

Gene mcr-9 was detected in 69 of 84 (82%) isolates, with 
mcr-9 identified present on 68 IncHI2 plasmids, 1 outlier 
IncHI2 plasmid (32% coverage of the 334–kilobase pair refer
ence plasmid pKA_P10 by sequencing reads), and none of 
the IncN3 plasmids (Supplementary Tables 4 and 5). The 
mcr-9 LAMP (Loop-mediated isothermal amplification) assay 
showed 100% concordance with the WGS results. MALDIxin 
testing did not reveal any lipid A modifications attributable 
to the mcr-9 gene in this study. Altogether, 12 isolates (all 

Enterobacter) were resistant to colistin (minimum inhibitory 
concentrations ranged between 4 and >64 μg/mL), including 
5 that demonstrated a skipped-well phenomenon suggestive 
of colistin heteroresistance (Supplementary Table 1), a phe
nomenon reported elsewhere [31].

Genetic Relatedness Between Plasmids

All 72 reconstructed IncHI2 plasmids belonged to the same 
plasmid taxonomic unit PTU-HI2 and overlapped with 65%– 
89% of the reference sequence pKA_P10. Representative se
quences of these plasmids are compared in Supplementary 
Figure 1. Altogether, 144 single-nucleotide polymorphic sites 
were identified in the alignment of these 72 plasmids after cor
recting for recombination events, with pairwise phylogenetic 
distances (sums of branch lengths in the plasmid tree) ranged 
from 0 to 115 single-nucleotide polymorphisms (SNPs). 
Specifically, of the 72 plasmids analyzed in the tree, 43 (60%) 
differed by ≤3 SNPs, and 55 (76%) differed by ≤5 SNPs. This 
high degree of similarity between IncHI2 plasmids suggests po
tential horizontal gene transfer or transfer of full plasmids 
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Figure 1. Characteristics of confirmed carbapenemase-producing Enterobacterales (CPE) isolates carrying blaIMP genes (blaIMPCPE) and CPE species. Colors in each panel 
indicate the genus of CPE. A, Total number of bed-days when inpatients (rows labeled by isolate identifier [IMP]) were present in a hospital ward before confirmation of 
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between different bacterial species. In the case of IncHI2 plas
mids present in the same species, a comparison between the 
plasmid and Enterobacter hormaechei (the most common spe
cies in our data) phylogenetic trees showed likely vertical trans
mission events as closely related isolates had highly similar 
plasmids (Supplementary Figure 2). By contrast, reconstructed 
IncN3 plasmids showed large structural variation in the plas
mids (Supplementary Figure 3), and no reliable phylogenetic 
tree could be reconstructed.

The phylogenetic tree of IncHI2 plasmids indicated 3 major 
lineages A, B, and C (Figure 4 and Supplementary Table 6). All 
IncHI2 plasmids from the 4 cases of dual-species blaIMPCPE 
colonization belonged to lineage C. The estimated date of the 
most recent common ancestor of the 72 IncHI2 plasmids was 
1765, with a large 95% confidence interval of 1536–1895, de
spite a desirable convergence of the optimized molecular clock 

model (Supplementary Figure 4), suggesting a lack of temporal 
signals in reconstructed IncHI2 plasmids.

Comparison Between Plasmid Lineages and Patient Clusters

Pairwise phylogenetic distances between IncHI2 plasmids and 
shortest-path contact distances between patients showed a sig
nificant correlation (Kendall correlation coefficient = 0.19; p =  
0.0000003), despite WGS data being unavailable for isolates 
from 24 cases. This correlation between plasmid population 
structure and patient contact network suggests that ward con
tacts mediated transmission of these plasmids between patients 
or from unidentified common sources. When case contacts 
were weighted by patients’ time spent together, the blaIMPCPE 
outbreak was heavily weighted toward hospital 3, the specialist 
referral center for cardiology, renal, hematology, and hepatobili
ary services, with 72.1% of contacts occurring there.

Figure 3. A neighbor-joining tree of 84 carbapenemase-producing Enterobacterales isolates carrying blaIMP genes. This tree was constructed from average nucleotide 
distances between genomic sequences and was midpoint rooted. The color at the end of each branch indicates the bacterial species identity for that isolate. The innermost 
ring indicates the type of plasmid detected; the second ring, the allelic variant of the blaIMP gene detected; the third ring, the presence or absence of gene mcr-9; and the 
outermost ring, hospitals. The scale bar indicates the pairwise average nucleotide divergence (as a percentage). Abbreviation: IMP, imipenemase.
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The role of hospital 3 as the center of this outbreak was con
firmed by the analysis of the spatial distribution and movement 
of patients colonized with blaIMPCPE carrying IncHI2 plasmids 
(Figure 5). The largest lineage (lineage C) was found to be the 
most prevalent on wards within hospital 3 (1919 patient bed- 
days) and followed bidirectional transfer pathways to and from 

hospitals 1, 2, and 4, which all have large general medical and 
surgical admissions areas. Lineage A followed a similar pattern 
of distribution, though with fewer transfers identified to hospital 
2, which may have been due to unidentified or missing case data.

The association between plasmid lineages and ward/ 
specialties over the study period showed the most common 
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associations across critical care and renal services (Supplementary 
Table 7). The only exception was general internal medicine and 
general surgery predominated in plasmid lineage A at hospital 
4, which has more general wards and less specialist services 
than the other hospital sites in the network. Despite the predom
inance of cases being identified in specialties with high risk for in
vasive disease, only 4 clinical infections were identified during the 
study, and no bloodstream infections.

DISCUSSION

Following the detection of a new mechanism of resistance, in
vestigation of its origin and mode of transmission is challeng
ing, especially in healthcare settings, where investigations 
usually focus on single-species transmissions. With confound
ing factors such as multiple bacterial species and spread over 
different hospital locations, new methods to investigate poten
tial outbreaks are much needed. The incorporation of plasmid 
genomics and patient networks into our analysis changed the 

way the emergence of blaIMPCPE was visualized and produced 
a clearer understanding of the cumulative burden of cases, 
high-risk ward locations, and pathways for potential cross- 
transmission in our regional healthcare system. As patients 
were found to follow common routes, with regular reencoun
ters, this information can provide dynamic risk assessments 
to be introduced along those pathways, to prevent future cross- 
transmission events of any healthcare-associated pathogen 
[33]. Detailed genomic analysis of plasmids enhanced our un
derstanding of the relatedness of different patient isolates to the 
network analysis and of the similarity to those plasmids identi
fied in other hospitals in the United Kingdom [30]. It moreover 
revealed concerning information about unsuspected resistance 
mechanisms, with potential for antibiotic treatment failures 
that were missed by conventional laboratory susceptibility 
testing.

In the current study, we characterized IncHI2 plasmids as the 
main vehicle in horizontal transfer of the metallo-β-lactamase 
gene blaIMP and colistin resistance gene mcr-9. These 72 

A B

Figure 5. Epidemiology of blaIMPCPE genetic clusters across patient interactions and movement. (A) Patient contact network overlaid with plasmid lineages A, B, and C. 
Each node represents a patient, edges represent recorded ward contacts between confirmed blaIMPCPE cases. The edges are coloured according to the hospital site and the 
width of the edge is proportional to the duration of the contact (143 days). Nodes are coloured according to the three lineages of IncHI2 plasmids, and patients with isolates 
that did not have any IncHI2 plasmids detected are uncoloured. Node labels indicate IncHI2 plasmid names in Supplementary Table 2 (eg, ‘88’ indicates plasmid pIMP88, and 
‘100/101’ indicates plasmids pIMP100 and pIMP101 from the same case). The presence/absence of IncN3 plasmids in blaIMPCPE isolates is denoted by node shapes. (B) 
Hospital-level patient movements. The movement of patients carrying blaIMPCPE are indicated by arrows between hospitals. Repeated transfers of patients between wards 
are aggregated into edges with proportionally greater edge widths (grouped by sequenced and non-sequenced). Edges with sequencing data are coloured according to IncHI2 
plasmid lineages. This network was generated from Supplementary Table 3 and visualized using Cytoscape software, version 3.10.1 [32]. Abbreviation: IMP, imipenemase.
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plasmids were predominant in multiple bacterial species across 
epidemiologically linked patients, highlighting the need for inte
gration of genomics into routine clinical practice. The mcr-9– 
carrying IncHI2 plasmids have been identified from human, an
imal, and environmental samples globally [12, 14]. These plas
mids are known to carry integron-associated genes encoding 
resistance against aminoglycosides, β-lactams (eg, by blaCTX-M, 
blaIMP, blaVIM, and blaNDM genes), chloramphenicol, macro
lides, quinolones, rifamycin, sulfonamides, tetracycline, and tri
methoprim, as well as heavy-metal resistance genes, and they 
facilitate the transmission of these between bacterial species 
[12, 14, 34–36]. Notably, we did not find phenotypic expression 
of mcr-9 although we detected this gene in 69 of the 84 isolates 
(82%) in our study, which is in line with previous reports 
[11, 37]. Bacterial hosts have been shown to maintain IncHI2 
plasmids long term, even when exposed to different conditions 
(presence or absence of antimicrobials or nutrient-rich or 
nutrient-restricted culture medium); this has been attributed 
to the plasmid–chromosome coevolution that helps reduce 
fitness costs of the plasmid while compromising its conjugation 
capacity [38, 39]. This may have contributed to the successful 
proliferation of IncHI2 plasmids in our hospital network.

Our study supports the concept that plasmid analysis across 
different resistance mechanisms, as well as among different 
species, should be the standard for investigations in the future. 
Network analyses and cumulative burden analyses can help 
identify targets for WGS, particularly where resources are not 
sufficient to support WGS of all new CPE cases identified. 
The small number of clinical infections from this outbreak 
compared with other CPE outbreaks from our hospital network 
[40] and other reports of blaIMPCPE [11, 14] is noteworthy, and 
it poses questions about the wider importance of this plasmid 
and the resistance mechanisms revealed in this study. This ob
servation reinforces the argument that screening for silent car
riage of CPE in hospitals is key to preventing spread [41–43], 
and cautious antimicrobial stewardship is essential to prevent 
expression of hidden resistance mechanisms [44].

We acknowledge several limitations of our study. First, we 
did not have long-read sequences to recover complete plasmid 
sequences. As a result, our plasmid tree may omit some similar
ities and differences between identified IncHI2 plasmids. 
Furthermore, a comparison between complete sequences of 
IncHI2 plasmids from our hospital network and those from 
UK or global collections is not presented here and is the subject 
of future work. Second, full pathway data across the hospital 
during the 3 years of the outbreak were available only for iden
tified positive cases, not for all patients in the hospitals during 
the study period. It was therefore not possible to fully establish 
potential missed cases flagging as close contacts but with poten
tial for missed screening or false-negative results. Full pathway 
movement data for all positive cases identified within our 
hospital network were available, yet neither pathway details 

nor genomic data were available for other blaIMPCPE-positive 
patients identified in the 2 other regional hospitals who did 
not visit our institution, thus reducing the understanding in 
our analysis. Third, interactions at other potential hospital 
locations such as interventional imaging or endoscopy were 
not examined in this study, nor was environmental sampling 
performed, which could inform future studies on modes of 
transmission.

Nevertheless, this study highlights a previously unidentified 
extent of transmission and thus provides valuable new insights 
into the spread of an emerging resistance mechanism. 
Moreover, our novel multilayered methods, incorporating 
plasmid phylogeny with contact network analysis, provide in
valuable tools for outbreak investigation that can be generalized 
to a wide range of scenarios.
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