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Context-aware geometric deep learning for
protein sequence design

LucienF.Krapp1,2, FernandoA.Meireles1,2, LucianoA.Abriata 1,2, JeanDevillard1,
Sarah Vacle1,2, Maria J. Marcaida1,2 & Matteo Dal Peraro 1,2

Protein design and engineering are evolving at an unprecedented pace lever-
aging the advances in deep learning. Current models nonetheless cannot
natively consider non-protein entities within the design process. Here, we
introduce a deep learning approach based solely on a geometric transformer
of atomic coordinates and element names that predicts protein sequences
frombackbone scaffolds aware of the restraints imposed by diversemolecular
environments. To validate the method, we show that it can produce highly
thermostable, catalytically active enzymes with high success rates. This con-
cept is anticipated to improve the versatility of protein design pipelines for
crafting desired functions.

Designing proteins de novo to engineer their properties for functional
tasks is a grand challenge with direct implications for biology, medi-
cine, biotechnology, andmaterials science. One key application area is
the engineering of protein therapeutics1,2. It involves creating proteins
tailored to target specific diseases or conditions with high precision.
Such an approach has been shown to be a competitive alternative to
small molecule-based medicines3. It opens possibilities to revolutio-
nize the way we treat many health issues, from autoimmune diseases
to cancers, offering potentially more effective and personalized
treatments compared to conventional drugs.

Additionally, engineering enzymatic functions represent another
promising challenging task for protein design. Enzymes, as natural
catalysts, play crucial roles in various biological processes. By designing
new enzymes, or modifying existing ones, one can create catalysts that
facilitate reactions that are rare or non-existent in nature4. This can have
profound implications for numerous industries, including pharmaceu-
ticals, where custom enzymes can be used to synthesize complex drug
molecules more efficiently5, and in environmental technology, where
designed enzymes might break down pollutants or plastics with
enhanced efficiency6. Protein engineering, therefore, not only shows
tremendous potential for industrial processes and environmental sus-
tainability but also opens new avenues in scientific research and bio-
technological innovation.

While physics-based approaches have contributed to the
advancements of protein engineering, deep learning methods have
recently brought a dramatic acceleration by enhancing the success

rates and versatility of protein design pipelines7. Among the most
recent and notable examples, ProteinMPNN, based on an encoder-
decoder neural network, is able to generate protein sequences
experimentally proven to fold as intended8,9. More recently, coupled
with denoising diffusion probabilistic models for the generation of
protein backbones, ProteinMPNN and RFdiffusion have shown
remarkable success10. In addition, ESM-IF1, based on a hybrid protein
language model and structural model, is capable of generating
highly diverse proteins well outside the known universe of natural
sequences11,12. The model has also recently found experimental vali-
dation reporting a very high success rate13. More broadly, deep learn-
ing approaches are pervasive in the field, finding broad application in
several protein design tasks14–17, like for example MaSIF which specia-
lizes in the design of protein interactions via learned protein surface
fingerprints18,19 or Chromawhich is able to generate protein backbones
and sequences under arbitrary constraints using diffusion20.

Current protein design models can natively handle multiple pro-
tein chains in their inputs, allowing them to design the sequences of
interacting proteins. However, they only poorly handle non-protein
entities within the design process, which hampers their versatility and
limits their scope of applicability. We have recently introduced a deep
learning model that can help mitigate these limitations, the Protein
StructureTransformer (PeSTo21), a geometric transformer architecture
that operates on atom point clouds. It integrates different advances in
deep learning such as transformer attention22 and utilizes both a scalar
and vector state to represent the atoms23. Representing molecules
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uniquely by element names and coordinates, PeSTo can be applied to
and predict protein interfaces with virtually any kind of molecules,
either other proteins, nucleic acids, lipids, ions, small ligands, cofac-
tors or carbohydrates24.

In this work, we leverage the unique features of this model and
introduce CARBonAra (Context-aware Amino acid Recovery from
Backbone Atoms and heteroatoms), a protein sequence generator
model basedonPeSTo. Traineduniquelyon structural data available in
the PDB25, CARBonAra predicts amino acid confidences at all positions
of a given backbone scaffold that can be provided alone or complexed
to any kind and number of molecules that help to drive sequence
design. The model performs excellently against the state of the art in
in silico benchmarks and it is validated experimentally for the
challenging case of engineering the structure and function of an
enzymatic system.

Results
Sequence prediction from backbone scaffolds
Building on the architecture of our previous Protein Structure Trans-
former – PeSToModel21, CARBonAra predicts the likelihood of finding
a given amino acid at each position of a protein sequence from an
input backbone scaffold using a deep learning model composed of
geometric transformers (Fig. 1a). CARBonAra takes as input the coor-
dinates and elements of the backbone atoms (Cα, C, N, O) and adds
virtual Cβ atoms using ideal bond angles and lengths. The geometry is
described using distances and normalized relative displacement vec-
tors between each atom. At its core, CARBonAra is built of geometric
transformer operations, each gradually processing the information of
a larger local neighborhood from 8 up to 64 nearest neighbors. The
geometric information is equivariantly encoded from the vectorial
state, while the scalar state represents invariant quantities of the
geometry under the global rotation of the atomic point cloud. The
geometric transformer operation encodes the interactions of all
nearest neighbors and employs a transformer toprocess the scalar and
vectorial information and update the state of each atom. Finally, by
pooling the atom states from atomic to residue level, we trained the

model to predict amino acid confidences at eachpositionof a protein’s
sequence in the form of a position-specific scoring matric
(PSSM, Fig. 1a, Supplementary Algorithm 1, Supplementary Fig. 1 and
“Methods”). Practically, these confidences can be interpreted as and
mapped into probabilities by characterizing the probability of a cor-
rect prediction given a prediction confidence for each amino acid type
(Supplementary Fig. 2). Like other models such as ProteinMPNN,
CARBonAra supports autoregressive predictions by imprinting the
prior sequence information of specific amino acids into the backbone
atoms using one-hot encoding see “Methods”.

Most importantly, CARBonAra inherits PeSTo’s capability to
work solely with element names and atomic coordinates, eliminating
the need for extensive parametrizations and thus allowing for easy
adaptation to various scenarios. As a result, CARBonAra can parse
and process any molecular entity near the protein backbone being
designed, which includes a range of inputs such as other proteins,
small molecules, nucleic acids, lipids, ions, and water molecules.
Leveraging this inherent flexibility of CARBonAra, we have been able
to incorporate all biological assemblies from the RCSB PDB into our
training dataset see “Methods”. This includes proteins in complex
with other molecular entities like ions, ligands, nucleic acids, and
more. The training dataset is composed of approximately 370,000
subunits, with an additional 100,000 subunits utilized in the valida-
tion dataset, all sourced from RCSB PDB biological assemblies
annotated as the most likely25. Following a slightly more stringent
protocol compared to previously established methods8,11, the testing
dataset consists of about 70,000 subunits, distinct from the training
set with no shared CATH domains and filtered at less than 30%
sequence identity see “Methods”. This selection criterion ensures the
robustness of our testing, as it excludes similar folds and sequences
present in the training dataset.

For sequence design of isolated proteins or protein complexes
from backbone structures without non-protein molecules in the con-
text, CARBonAra performs on par with state-of-the-art methods
like ProteinMPNN and ESM-IF1 for sequence prediction (Fig. 1b) at a
competitive computational cost (approximately 3 times faster than
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Fig. 1 | CARBonAra’s architecture and comparison with state-of-the-art meth-
ods. a The model applies multiple geometric transformer operations to the coor-
dinates and atom element of a backbone scaffold with added virtual Cβ to predict
the amino acid confidence at each position in the sequence expressed as a position-
specific scoring matrix. b Comparison of the sequence recovery of different
methods for monomers and dimers with indicated median sequence recovery.

c Percentage of AlphaFold predicted structures, in single-sequence mode, above a
TM-score threshold using sequences sampled in the same way for different
methods. d Sequence recovery as a function of the average Cβ distance of the 8
nearest neighbors. e Consensus prediction recovery rate against the reference
experimental structure recovery rate, derived from 500 frames sampled from 1 μs
molecular dynamics simulations for 80 monomers.
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ProteinMPNN and 10 times faster than ESM-IF1 on GPUs, see Supple-
mentary Fig. 3).Ourmethod achieves amedian sequence recovery rate
of 51.3% for proteinmonomer design and 56.0% for dimer designwhen
reconstructing protein sequences from backbone structures.
Although having a similar recovery rate, the median sequence identity
between the optimal sequence of the threemethods ranges from 54 to
58% (Supplementary Fig. 4). Moreover, we observe that CARBonAra
can generate high-quality sequences that fold as intended when pre-
dicted using AlphaFold in single-sequence mode, with a TM-score
above 0.9 (Fig. 1c). We observed that CARBonAra learned the tighter
amino acid packing at protein cores, thus resulting in higher recovery
rates and reflecting the lower tolerance to substitutions typical of
buried amino acids (Fig. 1d and Supplementary Figs. 5a, b) while
allowing for higher variability on the protein surface unless additional
functional or structural constraints are provided.

Methods for sequence prediction from a backbone scaffold are
trained mainly on experimental data with ideal backbone geometry,
which can lead to a decrease in performance when applied to the
generatedbackbone. Adding noise to the geometry during the training
can mediate this problem8. We characterized the robustness of our
method by applying CARBonAra to structural trajectories from mole-
cular dynamics (MD) simulations.We observed no significant decrease
in sequence recovery (53 ± 10%) from the consensus prediction
(54 ± 7%) due to conformation changes of the backbone and an
increase in cases that previously showed low recovery rates (Fig. 1e).
Simultaneously, we observed a general reduction in the number of
possible amino acids predicted per position (Supplementary Fig. 6)
suggesting that exploring the conformational space is limiting the
sequence space thus enabling the design of targeted structural
conformations.

Sampling the sequence space
As in other methods for protein sequence prediction, the site-specific
amino acid confidences/probabilities need to be somehow sampled to
derive sequences that embody actual proteins. ProteinMPNNand ESM-
IF1 use the logit output of the model as the energy of a Boltzmann

distribution to describe the amino acid probabilities at a user-defined
sampling temperature. In contrast, CARBonAra uses multi-class amino
acid predictions that generate a space of potential sequences, opening
various possibilities for sequence sampling. For example, one can
tailor sequences tomeet specific objectives, such as achievingminimal
sequence identity or low sequence similarity to design unique
sequences with a specific fold. We show that we can generate
sequences with as low as approximately 10% sequence identity and
20% sequence similarity while still recovering an AlphaFold predicted
structure close to the scaffold structure (lDDT > 80) (Fig. 2a, b, see also
“Methods”). Some of the generated sequences are not only different
from the scaffold protein but also from any known protein (Fig. 2c). As
an example, one of these cases uses the birch pollen allergen Bet v 1
protein (PDB ID: 6R3C) as scaffold. We generated a sequence with 7%
identity and 13% similarity to the original scaffold, pushing the limits of
sequence similarity. A BLAST26 search reveals no significant matches
and the AlphaFold predicted structure of the created sequence has a
lDDT of 70 (Fig. 2d).

Context-aware sequence prediction
More importantly, leveraging PeSTo’s architecture, CARBonAra has
the ability to perform protein sequence prediction conditioned by a
specific non-protein molecular context. On a test set composed of
structureswith folds different than the training set (see “Methods”), we
show that the overall structure median sequence recovery increased
from 54% to 58% (Supplementary Fig. 7) when an additional molecular
context is provided. In particular, CARBonAra achieves median
sequence recovery rates of 56% at protein interfaces for protein
interacting partners and 55% for interfaces with nucleic acids, i.e., a
significant improvement over predictions without context (Fig. 3a).
Similarly, recovery rates at protein interfaces improve significantly if
small-molecule entities such as ions (67%), lipids (57%), ligands (61%)
and glycans (50%) are included. This correlates with the latest devel-
opments of PeSTo where we addressed the possibility of re-training
specific models addressing carbohydrate-protein interfaces (PeSTo-
Carbs24). Including thesemolecules not only boosts sequence recovery

a b
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Fig. 2 | Sequence sampling. Local Distance Difference Test (lDDT) of AlphaFold
predicted structures to the reference scaffold monomers for sequences generated
using CARBonAra with, as objective, maximum sequence identity, minimum
sequence identity, and low sequence similarity, against the (a) sequence identity
and (b) sequence similarity. c lDDT of the AlphaFold predicted structures as a

function of the highest expect value (E-value) of the generated sequences from a
BLAST26 search. d Scaffold, in white, from the birch pollen allergen Bet v 1 protein
(PDB ID: 6R3C). AlphaFold predicted structure, shown in red, from the generated
sequencehasa lDDTof 70 fromthe referencescaffold. The generated sequencehas
a 7% identity and 13% similarity with the original scaffold protein.
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in their surroundings but also reduces the number of amino acid
possibilities to sample from (Fig. 3b).

An exemplary case to illustrate the power of this approach is the
endonuclease domain of ColE7, which interacts with duplex DNA in a
zinc-dependent manner27 (Fig. 3c). The sequence recovery rate
obtained byCARBonAra showed a significant increase from29% to 52%
at the metal and DNA interfaces when the zinc ion or the 12-bp DNA
duplex was included as resolved in the native structure (Fig. 3d). Thus,
imposing the presence of non-protein interacting interfaces can
enhance the sequence recovery rate significantly, also with respect to
predictions done by ProteinMPNN (24%) and ESM-IF1 (43%) (Supple-
mentary Table 1). Interestingly, when a non-nativemolecular context is
provided, such as a larger ion (e.g., calcium) the sequence recovery
rate decreases (Supplementary Fig. 8). Thus, the predicted amino acid
confidence of an ion pocket is widely dependent on the given context,
as also illustrated for the case of BJP-1, a zinc-dependent metallo
β-lactamase (Fig. 3e). In the absence of the zinc ions in BJP-1’s active
site, CARBonAra’s prediction does not lead to the complete recovery
of the zinc coordinating residues (Fig. 3f). By keeping the zinc ions in
the structure, CARBonAra’s context awareness allows the full recovery
of the correct zinc coordinating residues in the active site of the

Metallo β-lactamase (Fig. 3g). This showcases that the absence or
presence of different atoms leads to different predictions indicating a
high sensitivity of the context for the outputs from CARBonAra.

Engineering a β-lactamase enzyme
We next sought to test CARBonAra’s predictions by designing variants
of an enzyme and studying their structural and functional features in
vitro. Relevant for enzyme design is the possibility of designing
sequences under the restraints provided by a desired substrate or
high-affinity ligand. We thus used the TEM-1 β-lactamase backbone
scaffold in complex with a β-lactam substrate (i.e., nitrocefin) to gen-
erate potential new sequences holding β-lactamase activity (Fig. 4a).
Without context, the catalytic S70 and substrate-binding R244 are not
predicted, having low confidences of 0.39 and 0.11, respectively
(Fig. 4b). However, when the prediction is donewith nitrocefin docked
at the catalytic pocket, the catalytic triad S70, K73, and E166, along
with key residues necessary for β-lactam binding (i.e., N132, R244) all
have a high prediction confidence ( > 0.8) and low ranking (top 2)
(Supplementary Fig. 9). Importantly, in this case, the sequence
recovery is maximal when also the catalytic water is considered, hint-
ing at a very high sensitivity for the molecular context.
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Fig. 3 | Context-aware amino acid recovery allows the design of functional
proteins. aSequence recovery at the interface (residueswithin 5Å)without andwith
proteins, nucleic acids, ligands, ions, lipids, and glycans binders. b Number of pre-
dicted possible amino acids per position at the interface (residues within 5 Å) with-
out and with proteins, nucleic acids, ligands, ions, lipids, and glycans binders
(considering a confidence prediction threshold of 0.5). c Colicin E7 endonuclease
domain in complex with DNA and a zinc ion (PDB ID: 1ZNS). The protein-DNA

interface (residues within 4Å) is highlighted in blue. The protein-zinc shell is high-
lighted in red (residues within 3 Å). d Estimated accurate prediction probability for
the scaffold amino acids at the protein-DNA interface and the protein-zinc shell with
and without the presence of DNA and zinc. eMetallo β-lactamase structure of BJP−1
with the catalytic pocket containing two zinc ions (PDB ID: 3LVZ). The pocket of an
AlphaFold predicted structure from a CARBonAra-designed sequence applied to the
scaffold backbone without zinc ions (f) and containing the original zinc ions (g).
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In order to test designed TEM-like enzymes, we sampled CARBo-
nAra’s predictions with docked nitrocefin using imprinting. Imprinting
in CARBonAra allows the identification of arbitrary sequence informa-
tion to any position in the backbone scaffold as prior information for
the prediction. By randomly imprinting previously predicted amino
acids, this protocol allows the generation of diversity in sampled
sequences while using the maximum confidence prediction, ensuring
high-quality sequences (see “Methods”). Using this approach, we gen-
erated 900 sequences and ranked them using the predicted lDDT
provided by AlphaFold (pLDDT) in single-sequence mode (see “Meth-
ods”). Single-sequence predictions have been shown to correlate with
experimental success, offering ametric for assessing the foldability and
functional potential of new designs28.

We tested the top 10 sequences with the highest pLDDT for
in vitro validation. While all 10 variants expressed at high yields in
E. coli, 4 were also soluble at high concentrations and displayed
features of well-folded proteins: far-UV circular dichroism spectra
features similar to those of TEM-1 (Supplementary Fig. 10), thermal
denaturation profiles indicative of much higher stability (Tm ~80 °C
or higher vs. ~ 42 °C for wild-type TEM-1) and of two-state unfolding
behavior (Fig. 4c), size exclusion profiles and SEC-MALS-derived
molecular weights consistent with monomeric states (Supplemen-
tary Fig. 11), and well-spread resonances in NMR spectra (Supple-
mentary Fig. 12). All 4 designed mutants displayed weak to no
enzymatic activity against nitrocefin at 30 °C but substantial activity
at 70 °C, a temperature at which the natural β-lactamase TEM-1 is

totally inactive (Fig. 4d). From the concentrations required to see
similar levels of activity for TEM-1 at 30 °C and the designed
β-lactamases at 70 °C, we estimate the latter have lower catalytic
efficiency at this temperature (estimated kcat/KM ~ 103−104 M−1s−1 vs.
106−107M−1s−1 for TEM-1 at 30 °C). In this context, it is important to
stress that the large excess in thermal stability relative to TEM-1
(40 °C or more) confers the designed mutants ample space for the
evolution of their catalytic properties. Comparing the new designs to
other class A β-lactamases, they have at most ~55% identity to the
TEM-1 β-lactamase and from ~30 to ~50% identity with other proteins
of the family such as SHV, KPC, or CTX-M (Supplementary Fig. 13 and
Supplementary Table 2). They are more diverse within their own
clade than the other families (Fig. 4e), effectively clustering into a
new family-level group within class A β-lactamases.

Implications for molecular evolution
Given its features, CARBonAra has promising prospects for the stu-
dies of protein evolution, as ameans to relate sequence and structure
entirely in silico. Specific to the case of TEM β-lactamases tested here
experimentally, protein designmethods can clearly advance possible
routes of mutation by predicting which amino acids are tolerated in
the mutational landscape. Notably, the TEM designs picked up sub-
stitutions (relative to TEM-1) known to be relevant for substrate
profile extension (R164H, A237T, A237S, I127V, H153R, T200S, I173V,
M155I, V84I)29,30 and stabilizing mutations like F60Y, S82H, G92D,
plus some very strong stabilizing mutations like M182T and R275Q
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Fig. 4 | β-lactamase enzyme engineering and experimental characterization.
a Nitrocefin docked using AutoDock Vina48 at the active site of the serine
β-lactamase TEM-1 (PDB ID: 1BT5). Relevant residues for substrate recognition and
hydrolysis are shown inblue, nitrocefin ingreen, and the catalyticwatermolecule in
red. b Prediction confidencewith and without the substrate and the catalytic water
for the relevant amino acids at the catalytic pocket. (c–d) Experimental char-
acterization of the 4 soluble designs based on the TEM-1 backbone. (c) Thermal
denaturation profiles presented as the circular dichroism signal at 222 nm against
temperature (see also Supplementary Figs. 10–12 for further structural

characterization). d Catalytic activity as fraction of substrate converted to product
uponhydrolysis of 200μMnitrocefinby TEM-1 and theTEM-like lactamasedesigns,
at different temperatures. Proteins were incubated at the indicated concentration
(e) Extract of the phylogenetic tree of class A β-lactamases focused on TEM
β-lactamases (see Supplementary Fig. 13). fCorrelationof thepredictionswith deep
sequencing analysis of TEM-1. g Correlation variation by adding the context
(nitrocefin and catalytic water) for the amino acids close (in Cβ distance) to the
substrate.
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that stand as global suppressors of the destabilization caused by
function-enhancing mutations29,31,32.

Along this line, given that tolerance to amino acid substitutions
has been widely studied in TEM β-lactamases through full mutational
mapping, we took the chance to compare CARBonAra’s residue-wise
amino acid probabilities with thosemeasured experimentally through
deep sequencing of a library of all single-residuemutants of the TEM-1
β-lactamase33. We observed an average correlation of 0.51 ± 0.21
between the amino acid preferences inferred from CARBonAra and
those measured via deep sequencing (Fig. 4f), which is similar to the
correlation between the deep sequencing data and the multiple
sequence alignment of this enzyme’s family (0.52 ± 0.22). Moreover,
we observed that adding the context to the active site of TEM-1 (i.e.,
docked nitrocefin and the catalytic water) improved the correlation
locally (i.e., for amino acids within 5 Å) and also affected the predic-
tions of amino acids further away (up to 10 Å), hinting at the possibility
to study the effect of a specific context locally as well as their long-
range influences such as allosteric pathways (Fig. 4g). By sampling a
large number of sequences, the derived patterns of amino acid varia-
tion recover structure-consistent coevolution patterns just as seen in
alignments of natural serine β-lactamases (Supplementary Fig. 14).
Suchkindof predictions couldbe relevant to inform future biophysics-
consistent models of protein evolution34,35.

Discussion
Here, we have presented CARBonAra, a method for sequence predic-
tion from backbone coordinates that is sensitive to the molecular
context, allowing the crafting of defined functionalities, accepts
imprinting of specific amino acids, requires no atomic parametrization
nor surfacecalculations, and runsdesign tasks in few seconds.Wehave
also presented in silico examples of CARBonAra’s unique feature, i.e.,
the capability to design protein sequences that fold as intended under
the constraints of a specific interacting molecular environment. We
showed experimentally on a workhorse system (i.e., TEM-1 serine β-
lactamase) how CARBonAra can approach the challenging case of
enzyme engineering, designing actual proteins that fold and remain
catalytically active at high temperatures. We furthermore explored
focused strategies for sampling protein sequence space from CAR-
BonAra’s output.

Since it is not given that a protein sequence produced from the
top-scoring amino acids is functional, sampling strategies are needed
to produce proteins that can actually be expressed recombinantly
in vitro and are stable and functional. To the best of our knowledge,
this has not been tested thoroughly, not even in works reporting
successful designs. We have shown here that appropriate sampling
strategies can generate rich information not only to produce
proteins that work but also to generate synthetic multiple-sequence
alignments that reflect the natural variation observed in
natural sequences or sampled by mutagenesis and selection experi-
ments. This has implications beyond the niche of protein design
itself, particularly opening a window to peek into how proteins
evolve within the framework of biophysics-consistent models of
protein evolution.

Increasing success rates upon computational design is important
on the fundamental side to really achieve mastery in this field and,
more practically, to lower costs while attempting actual expression
and purification in the lab. Now that AI-based methods are starting to
settle, this becomes an important point for discussion7. Different
methods and reports present success rates that vary largely, but it is
often not clearhoweachmethod is evaluated.With a very conservative
evaluation, Chroma sets its success rate at around 3%20 while the
RoseTTAFold/ProteinMPNN papers report an average success of 15%
across several proteins10. From our side, we have one, possibly anec-
dotal observation hitting at 40% successful proteins with the TEM-1 β-
lactamase designs reported in this work. Similarly high success rates

hitting 40–55% have been reported for TIM barrels and NTF2 folds,
standing out from their previous average 15%10.

Beyond its direct application in designing new proteins and
tuning protein functions, CARBonAra seems to be well-suited for
improving thermostability, as seen with other protein design meth-
ods that also produce robust, highly thermostable proteins.
One interesting aspect opened by this observation relates to the
intellectual property of designed sequences for stabilizing enzymes
for manufacture and industrial processes: often, designed enzymes
are protected in a way that covers a small but substantial range of
sequence similarity. This has historically been comprehensive
enough; however, modern protein design methods, CARBonAra
included, can come up with proteins of much lower similarity that
preserve function and are highly stable36.

Looking into the future and compared to other methods for
protein design, CARBonAra runs with some advantages, mainly
related to its inner working based only on element names and
coordinates, not requiring any further parametrization or inter-
mediate computation. CARBonAra appears thus more flexible than
the alternatives, in that it can intrinsically parse any kind ofmolecular
system and thus can be trained on other kinds of biomolecules (e.g.,
nucleic acids, small molecules, ions, even water) or molecules not
found in biological assemblies, such as materials and surfaces, pro-
vided sufficient data are available.

In conclusion, CARBonAra, uniquely based on structural data,
stands as a conceptually different approach to protein sequence
prediction and design, possessing the additional flexibility required
to address the future challenges in molecular design and synthetic
biology.

Methods
Datasets
The training dataset is composed of ~370,000 subunits, the valida-
tion dataset of ~100,000, all downloaded from RCSB PDB, labeled as
the first biological assembly (95% of which are annotated as such by
the authors or automatically predicted as such and then confirmed
by the authors). The test dataset is composed of ~70,000 subunits
(single-chain proteins) with no shared CATH domains with
the training set and less than 30% sequence identity with the test set.
Within the test dataset, we extracted subunits without any
shared CATH domains and maximum 30% sequence identity with
any training set of PeSTo ( ~ 370,000 subunits), ProteinMPNN
( ~ 540,000 subunits), or ESM-IF1 ( ~ 18,000 subunits). This compar-
ison dataset is composed of 228 subunits: 76 monomers, 37 dimers,
and other 22 multimers. Note that ProteinMPNN and ESM-IF1 both
use CATH classification and 40% sequence identity clustering for
training and testing.

Features and labels
During the processing phase, we kept only the backbone of proteins
(Cα, C, N, O), disregarding the hydrogen atoms, while adding the vir-
tual Cβ using the ideal angle and bond length in the same way as in
ProteinMPNN8. The structures we used to train the model can contain
any type of molecule, including water, ions, nucleic acids, and any
other non-protein molecules. The input scalar state contains the one-
hot encoded 30 most frequent atomic elements in the PDB database.
The last one-hot channel represents any other or unknown element.
The input vector state is initialized randomly drawn from an isotropic
normal distribution.We incorporated the geometric features using the
pair-wise distance matrices and normalized displacement vector ten-
sor. The output of the model is prediction confidence for each amino
acid position among the 20 possible amino acid types (Supplementary
Fig. 11). These types are represented as one-hot encoded labels. We
optimized the model for multi-class classification of the 20 possible
amino acids per position using a binary cross-entropy loss function.
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Protein structure transformer architecture
The deep learning architecture of CARBonAra is almost identical to
PeSTo21. We first embedded the input features into an input state size
(S) of 32 using a three-layer neural network with a hidden layer size of
32. We then applied sequentially four sets of eight geometric trans-
formers (S = 32, Nkey = 3, Nhead = 2), see Supplementary Algorithm 1
and Supplementary Fig. 1. The four sets of eight geometric transfor-
mers have a corresponding increasing number of nearest neighbors
(nn = 8, 16, 32, 64). In instanceswhere thenumber of atoms is less than
the set number of nearest neighbors (nn), we assigned any additional
non-existent interactions to a sink node. We configured this sink node
with a constant scalar and vector state of zero. Next, the geometric
residue pooling module reduced the atomic-level encoding of the
structure into a residue-level description. This aggregation used a local
multi-head mask on the atoms that constitute each residue (S = 64,
Nhead = 4). Finally, we employed a multi-layer perceptron in the last
module, which used three layers of hidden size (S = 64) to decode the
state of all residues and computed the prediction, consequently gen-
erating a confidence score of the 20 possible amino acids through a
sigmoid function ranging from 0 to 1.

Training
We trained our neural network architecture for 16 days on a single
NVIDIA V100 (32 GB) GPU. To manage memory usage during training,
we limited the subunits to a maximum of 8192 atoms (approximately
100 kDa), excluding hydrogen atoms. Furthermore, subunits contain-
ing fewer than 48 amino acids were not considered in the training
process. The post-processing effective dataset contains 86610 struc-
tures in the training dataset and 24601 structures in the validation
dataset.

Sequence sampling
We sampled the optimal sequence by taking the highest confidence
amino acid per position from the prediction. To generate sequences
with minimum sequence identity to the scaffold, we selected the
highest confidence predicted possible amino acid above the positive
prediction threshold of 0.5, which is not the original amino acid from
the scaffold. The original amino acid is only used in the sequence
generated if it is the only possible option within the positive predic-
tions. Our criterion for defining the similarity between twoamino acids
relies on their BLOSUM37 62 score. We considered them as similar if
this score is above zero. We sampled low sequence similarity to the
original scaffold by restricting the positively predicted amino acids.
When the options were available, we selected the amino acid with the
highest BLOSUM 62 score below or equal to zero compared to the
reference scaffold. If there are no options with a BLOSUM 62 score
below or equal to zero, we sampled the positive predicted amino acid
with the lowest BLOSUM 62 score. We noticed that taking only the
minimumBLOSUM62 similarity score generates sequences with a bias
towards special amino acids (i.e., cysteine, proline, glycine). We per-
formed a BLAST26,38 analysis to measure the novelty of the generated
sequences with minimum identity and low similarity using the non-
redundant protein sequences database with an expected value (E-
value) cut-off at 100.

Alphafold and alphafold-multimer validation
In the case of the monomers, we sampled the highest confidence
sequence from the predictions of CARBonAra for 142 subunits of the
testing dataset. We also generated sequences using ProteinMPNN and
ESM-IF1, both with a sampling temperature of 1e–6. We modeled
the structures from the generated sequences with ColabFold39 (ver-
sion 1.5.2) using the alphafold2_ptm model, in single-sequence mode
and with 3 recycles40. In the case of the dimers, we generated
sequences for one subunit, given the sequence of the other subunit.
We sampled the sequence with the highest confidence from

CARBonAra for the 31 dimers in the testing dataset for a total of 62
complexes with conditioning. We predicted the structures from
the generated sequences with ColabFold (version 1.5.2) using the
alphafold2_multimer_v2 model, in single-sequence mode and with
5 recycles41. To evaluate the sampling flexibility of CARBonAra, we
sampled sequences with maximum identity, minimum identity, and
low similarity using CARBonAra’s multi-class predictions. In this case,
we used AlphaFold using multiple sequence alignment since a low
sequence identity or similarity negates the sequences matching the
reference scaffold in themultiple sequence alignment information.We
assessed the predicted structures from the generated sequence with
the original scaffold using the TM-score42 and Local Distance Differ-
ence Test43 (lDDT) on the Cα coordinates.

Molecular dynamics simulations
We selected 20 complexes from the Protein-Protein Docking
Benchmark 5.0 dataset44 based on structure resolution and para-
meterization difficulty. For each complex, we conducted a standard 1
µs-long molecular dynamics (MD) simulation in the NPT ensemble
(at 1 atm and 300K, following a 2 ns NVT equilibration and using
settings as per ref. 45) for the bound receptor, unbound receptor,
bound ligand, and unbound ligand. We set up all systems using
Amber ff14SB46 and its recommended TIP3P water model, running
MD simulations with Amber1647. For the 80 (single chain structure)
MD, we sampled 500 frames for each simulation and computed the
average prediction confidence.

Comparison with deep sequencing
As a case study, we showed that CARBonAra’s residue-wise estimated
probabilities (Supplementary Fig. 11) can be reliably correlated with
experimentally determinedmutations for the classA β-lactamaseTEM-
1. This widely studied enzymehas been subjected to deepmutagenesis
by Deng et al., where the authors analyzed the effect of consecutive
triple point mutations along the whole extension of the protein, cov-
ering all 20 naturally occurring amino acids per position33. The gen-
erated libraries were introduced in E. coli and selected based on
ampicillin resistance. These data were used to compute a statistical
change in free energy of binding (ΔΔGstat) of mutation of all wild-type
residues in the protein. This value was calculated asΔΔGstat = RT ln(pwt/
pmut), where pwt and pmut are the probabilities of finding the wild-type
and mutant amino acids, respectively, at the analyzed sequence posi-
tion. Deng et al. also performed the same calculation on a MSA of
156 sequences of class A β-lactamases, to compare the conservation
profile of this family with the requirements imposed by the muta-
genesis assays. Aiming at assessing CARBonAra’s ability to recover
evolutionary-related residue profiles, we used its residue-wise esti-
mated probabilities to compute the ΔΔGstat per position of TEM-1. We
used two structures of TEM-1 as input for the model: TEM-1 in the apo
state (PDB ID: 1JTG, removing all non-protein atoms) and TEM-1
retaining its catalytic water and β-lactam nitrocefin at the catalytic
pocket. Docking of this ligand to TEM-1was carried out with AutoDock
Vina48 and the analyzed pose was selected based on the proximity of
the carbonyl group of the β-lactam ring to the catalytic residue S70.
We then calculated Pearson’s correlation coefficient (ρ) of the deep
sequencing andCARBonAra’s estimatedΔΔGstat per sequence position.

Nitrocefin docking to TEM-1
This step was necessary because there are no structures currently
available of nitrocefin complexed with TEM-1. The docking was carried
out with AutoDock Vina48. We obtained the 3D coordinates of nitro-
cefin from thePubChemdatabase (PubChemCID: 6436140) andused a
search space of size 40x40x40 Å centered on the enzyme’s active site
(determined by visual inspection). The exhaustiveness parameter was
set to 200 and 30 models were generated. The analyzed pose was
selected based on the proximity of the carbonyl group of the β-lactam
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ring to the catalytic residue S70. We also looked for interactions
between nitrocefin and residues R244 and N132, known for the stabi-
lization of cephalosporins in TEM-149,50.

Sequence sampling using imprinting
CARBonAra producesmatrices (i.e., position-specific scoringmatrices,
Fig. 1a) that score preferences for each of the 20 amino acids at each
position of the designed sequence. The prediction confidence can be
converted into a probability (Supplementary Fig. 11). Imprinting in
CARBonAra allows the specification of arbitrary sequence information
to any position in the backbone scaffold as prior information for the
prediction. To efficiently sample the sequence space, we developed an
imprinting protocol where first we predict and select the amino acids
with the highest confidence score at each sequence position. After-
ward, we randomly select between 10 to 90% of these amino acids to
imprint on their corresponding backbone positions. We then use the
backbone with imprinted information to run a second CARBonAra
prediction, from which we select the amino acids with the highest
confidence score at each position to build the designed sequence. This
strategy promotes sequence diversitywhile providing high-confidence
amino acids per position by scrambling each time the set of amino
acids is imprinted after the first prediction. When designing TEM-like
enzymes, we used as the input its structure constrained by the pre-
sence of the catalytic water and nitrocefin. We predicted a total of
900 sequences within the imprinting range 10-90%, and first filtered
for sequences thatwere able to recover TEM-1’s catalytic triad plus two
residues known to accommodate β-lactams in the active site (namely
S70, K73, N132, E166, and R244). These sequences were then modeled
with AlphaFold in single-sequence mode and ranked based on the
highest plDDT. Only the first 10 top-ranked sequences were selected
for in vitro validation. The sequences of the 4 that were soluble
underwent further experimental validation and are reported in Sup-
plementary Dataset 1.

Material
We purchased HEPES from Chemie Brunschwig AG (Basel, CH), iso-
propyl β-d-1-thiogalactopyranoside (IPTG) from Huberlab (Aesch, CH)
and all other chemicals from Merck (Darmstadt, DE), unless specified.

Protein expression and purification of TEM-like designs
The coding sequences for WT TEM-1 and all the variants were opti-
mized for Escherichia coli (E. coli) expression and cloned into the
pET28a(+)-TEV expression vector (Genscript) between NdeI and XhoI,
such that the resulting constructs have a N-terminal His-tag followed
by aTEV cleavage site. Theplasmidswere transformed inRosetta (DE3)
cells (Promega). Protein expression was induced by the addition of
1mM IPTG when the cells reached an optical density of 0.6 and sub-
sequent growth overnight at 20 °C. Cell pellets were resuspended in
lysis buffer (20mM HEPES, pH 7.5, 500mM NaCl and cOmplete™
Protease Inhibitor Cocktail (Roche)), lysed using sonication, and cen-
trifuged (20000xg for 35min at 4 °C). The supernatant was applied to
a HisTrapHP column (Cytiva) previously equilibrated with lysis buffer.
The proteins were eluted with a continuous gradient over 40 column
volumes of elution buffer (20mM HEPES, pH 7.5, 500mM NaCl,
500mM Imidazole). Subsequently, pure fractions were additionally
purified by Size Exclusion Chromatography (Superdex S200 Increase,
Cytiva) in 20mM HEPES, pH 7.5, 300mM NaC, 1mM TCEP. The pro-
teins were flash-frozen in liquid nitrogen and stored at –20 °C.

Size exclusion chromatography coupled to multi-angle light
scattering
The molecular weights of the constructs were determined by size
exclusion chromatography coupled to multi-angle light scattering
(SEC-MALS). The mass measurements were performed on a Dionex
UltiMate3000 HPLC system equipped with a 3 angles miniDAWN

TREOS static light scattering detector (Wyatt Technology). The sample
volumes of 5−10 μl at a concentration of 8mg/mL, were applied to a
Superose 6 Increase 3.2/300 column (Cytiva) previously equilibrated
with 20mMHEPES pH7.5, 300mMNaCl at a flow rate of 0.08mL/min.
The data were analyzed using the ASTRA 6.1 software package (Wyatt
technology), using the absorbance at 280 nm and the theoretical
extinction coefficient for concentration measurements.

Circular dichroism
CD spectra were collected on 10μM protein solutions in 50mM Tris
pH 7.5, 150mM NaCl, using a Chirascan CD polarimeter (Applied
Photophysics, UK) in 1mm path cuvettes, at 20 °C. Thermal dena-
turation curves were acquired by heating the sample from 20 to 98 °C
every 1 °C, collecting full spectra and plotting the trace at 222 nm.

NMR spectroscopy
The 1H, 15N HSQC spectrum of TEM design D4 was obtained on a
15N–labeled 250 µM sample prepared inMES pH 6.5 with 200mMNaCl
and 10% 2H2O, at 318 K. It was acquired in a Bruker Avance II 800MHz
(1H frequency) spectrometer equipped with a CPTCIXYZ cryoprobe,
using a standard 15N HSQC pulse program with water suppression and
sensitivity enhancement, 256 increments in the indirect dimension,
and a recycle delay of 1 s.

β-Lactamase activity
TEM−1 and 4 TEM-like designed proteins were incubated at the indi-
cated concentrations (Fig. 2f) with 200 µMnitrocefin in 20mMHEPES,
pH 7.5, 300mM NaCl at either 30 or 70 °C in a 1mm path length cuv-
ette while monitoring the absorbance at 485 nm changing over time
using a Chirascan CD polarimeter (Applied Photophysics, UK).
All temperatures reported involve thermal equilibration of cuvette,
buffer, nitrocefin and protein at the indicated temperature for 5min
before mixing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. We used publicly available data as described in
Methods. The data and code to reproduce the datasets and experi-
ments are available at [https://github.com/LBM-EPFL/CARBonAra].
Themolecular dynamics simulations used for the analysis are available
at [https://doi.org/10.5281/zenodo.12636580]. Previously published
structure can be accessed via the accession codes: 6R3C, 1ZNS, 3LVZ,
1BT5 and 1JTG. The source data underlying Figs. 1b-e, 2a-c, 3a-
b,d and 4b–d, f, g are provided as a Source Data file. Source data are
provided in this paper.

Code availability
The source code is available at [https://github.com/LBM-EPFL/
CARBonAra]. An archived version of the code used to produce the
results presented in this work is available at [https://github.com/LBM-
EPFL/CARBonAra/releases/tag/article].
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