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One Half of the Pair: Prioritizing Tuberculosis Transmitters for
Early Detection

Although there has been considerable progress in the tools available
for reducing global TBmorbidity—including improved TB treatment
options for multidrug-resistant tuberculosis, the programmatic
scale-up of rapid molecular diagnostics, and renewed public health
efforts—global TB incidence has decreased only incrementally in the
past decade, a result driven in large part by the failure to contain
community TB transmission in high-prevalence settings (1). The
future of global TB control and continued progress toward
elimination will depend substantially on reducing transmission.

In high–TB burden settings, individuals with TB are most often
detected passively. Case detection may trigger an array of responses
that could include household- or venue-based screening to identify
secondary cases or to identify individuals who were recently infected.
Although active case finding is efficient and can identify additional
individuals with TB orMycobacterium tuberculosis infection, the
efficacy and efficiency of approaches in active case finding to reduce
community rates of TB in high-burden settings are unclear (2–4).
One key hurdle is the magnitude of individuals with undiagnosed TB:
nearly 40% of all TB cases or approximately 4 million cases per
year (1), resulting in prolonged transmissibility and unchecked
transmission. Additionally, even those who are eventually diagnosed
are estimated to spend a year or more in an infectious state before
diagnosis (5). Although all TB is transmitted, are there individuals
who are more likely to transmit TB in the community? If so, should
those who are most likely to develop and transmit TB be prioritized
for early detection activities?

In this issue of the Journal, Trevisi and colleagues (pp. 222–233)
report on the identification of social, demographic, and clinical
characteristics of individuals involved in TB transmission in a

well-described community setting in Lima, Peru (6). Moreover, they
also report on the key profiles of individuals who are more likely to be
recipients ofM. tuberculosis. This population-based study, with a
prospective collection of demographic and clinical data, allowed a
rich source of data for a descriptive analysis. Nearly 75% or 2,518 of
M. tuberculosis cultures were available for whole-genome sequencing
(WGS). Direct transmission (DT) pairs were identified throughWGS
with pairs having up to three SNPs and a diagnosis of more than
60days apart, and the first reported patient with TB assumed to
be the transmitter. Among the 3.1 million possible isolate pairs,
1,447 (0.06%) pairs were identified with three SNPs or fewer. In a
multivariate analysis, the investigators found that young age (,35 yr),
male sex, and smoking were risks for being a transmitter (defined as
earlier diagnosed individual within a pair). In addition, a history of
imprisonment for either the transmitter or the recipient was a risk for
being identified as a pair for direct transmission. If either the
transmitter or the recipient had a history of alcohol use, the risk was
increased.When evaluating the clinical characteristics using this
process for identifying direct transmission pairs, features that are well
recognized as promoting transmission, such as cavitary chest X-ray
and sputum smear status, were identified as significant risks for
transmission, which supported the authors’ approach. Although it is
reassuring that the study findings largely support many key
observations described previously (4, 7, 8), they add further nuance to
TB transmission dynamics by disaggregating transmission pairs.

A critical determination in this study was the identification of
DT pairs on the basis of the prespecified genetic distance threshold
(i.e., SNP threshold). Although the threshold utilized in this study is
more stringent than usual, the authors based the cutoff values on
a priori data from the parent study, in which 93% of within-
household DT pairs had a genetic distance less than or equal to three
SNPs (9). Although the authors performed sensitivity analyses using
varying cutoff values, it would have been helpful to present the
analysis aligning with a threshold more commonly used in the field
(e.g., 5 or more SNPs, or 12 SNPs) (10).

Although the temporal ordering of case detection determined
transmitters and receivers within a DT, directionality was assumed
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but neither established nor inferred usingWGS data. Using
transmission inference tools to project strain pair ordering could
further refine and add statistical support for the classification (11). In
addition, transmitter and receiver states are likely dynamic and
interchangeable (e.g., a transmitter was also a receiver). Whether the
characteristics identified in this cohort are externally valid to other
regions, such as in low-incidence or HIV hyperendemic settings, will
be important to consider in the future.

The authors rightly point out the many limitations that may
influence the findings of the study. The authors identify well-known
TB-related attributes that may influence transmission dynamics,
lending credence to their study. Determining who transmits more
efficiently is complex and is likely shaped by clinical (e.g., cavitation)
and pathogen (e.g., strain type) features; time to diagnosis and
treatment; and, ultimately, howmobile and connected individuals are
with others (12).

Efforts to enhance and target early detection are challenged by
fundamental scientific uncertainty about differences in infectivity
across different TB disease states (13). Specifically, subclinical TB (i.e.,
microbiologically detectableM. tuberculosis infection without typical
TB symptoms) can comprise approximately 50% of all prevalent TB
at any given moment and is overlooked by most symptom-based
strategies., Modeling studies suggest that subclinical TB may be a
major source of transmission (14). Whether attributes that are
associated with transmitters, identified in this report, also translate to
infectious individuals exhibiting minimal symptoms will be
important to assess.

Early detection of individuals with infectious forms of TB has
been a central ambition of TB control programs for decades.
However, the most effective and efficient ways to find individuals
who are most likely to transmit TB have eluded TB control programs,
particularly in high-burden settings with limited resources. TB
prevalence in Peru, like other high-burden countries, is high for many
reasons, including social determinants of health. Current approaches
for TB control with passive case detection and contact identification
have been inadequate to impact the trajectory of the epidemiology
substantially. This study highlights an important role of men,
particularly youngmen, and those with histories of incarceration as
groups involved in transmission, consistent with a growing body of
literature (8, 15). With a better understanding of the characteristics of
who transmits TB and to whom, the approach to TB control in high-
burden settings can be more focused on the early detection of TB
with a symptom-free screening approach in areas such as prisons and
areas with many youngmen as a start.�
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