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Abstract: Resistance to last-resort antibiotics is a global threat to public health. Therefore, surveil-
lance and monitoring systems for antimicrobial resistance should be established on a national and
international scale. For the development of a One Health surveillance system, we collected exemplary
data on carbapenem and colistin-resistant bacterial isolates from human, animal, food, and environ-
mental sources. We pooled secondary data from routine screenings, hospital outbreak investigations,
and studies on antimicrobial resistance. For a joint One Health evaluation, this study incorporates
epidemiological metadata with phenotypic resistance information and molecular data on the isolate
level. To harmonise the heterogeneous original information for the intended use, we developed a
generic strategy. By defining and categorising variables, followed by plausibility checks, we created a
catalogue for prospective data collections and applied it to our dataset, enabling us to perform pre-
liminary descriptive statistical analyses. This study shows the complexity of data management using
heterogeneous secondary data pools and gives an insight into the early stages of the development of
an AMR surveillance programme using secondary data.

Keywords: One Health; molecular surveillance; cluster analysis; data collection; Enterobacteriaceae;
multidrug resistance; carbapenem; colistin; mcr-1

1. Introduction

The emerging threat of antimicrobial resistance (AMR) has been declared by WHO [1]
as “one of the top ten global public health threats facing humanity”. An infection with
multidrug-resistant (MDR) pathogens is harmful and dangerous to the patient affected,
and the AMR problem in general is deemed an arm’s race between the development of new
antimicrobial agents and the resistance mechanisms. Multiple factors drive the spread of
resistances, like wider use of antibiotics in general [2,3], false or inappropriate prescription
of antibiotics [4], and the (over-)use of antibiotics in animals and humans [5].

Therefore, the establishment of a sustainable monitoring and surveillance system
(MOSS) to follow the development of AMR is crucial to understanding the drivers of
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AMR spread and consequences on AMR and to developing new strategies for a sustain-
able AMR reduction. A lot of investigations attempt AMR MOSS on a national [6,7] or
international [8–10] level. These systems summarise a lot of efforts in harmonising pheno-
typic results from the laboratory perspective as well as from the population perspective to
have a representative insight into the recent AMR situation (in a country/region). These
systems, however, often lack meta information, which was confirmed by a recent study on
salmonella genomes, which found that minimum metadata (country, year, and source) is
frequently lacking [11].

The phenotypic resistance pattern, which is used in other studies [12,13], provides only
limited information on the relationship between resistant bacteria, which justifies the use
of methods for genotyping like whole genome sequencing (WGS), which provides data as
complementary information. For example, chromosomal- and plasmid-located resistance
genes can yield improved predictions of transmission pathways and probabilities. On
the other hand, other systems (such as specific research studies) may have complex data
structures thar incorporate microbiological and WGS information in detail but are often
based on limited and biassed data collection, which impedes cross-sectoral evaluation.

MOSS systems, in general, systematically collect and analyse data of public health
relevance. While monitoring systems focus on the documented observation of defined
measures only, surveillance systems aim towards the prevention or intervention of a public
health issue [14]. However, the use of secondary data in a MOSS may result in different or
even missing meta information, which hinders the straightforward interpretation of data
on the target population and consequently limits the interpretation for AMR transmission
between groups or even biases the results. MOSS often includes data from various sources,
which needs to be appropriate according to the system’s objectives. The amount and quality
of meta data will therefore strongly influence the processing of the information and the
outcome of the data analysis. This especially refers to the interpretability of the data [15].
While an AMR MOSS system does not work without high-quality resistance data, it can
also be assumed not to be put in an epidemiological or public health context without the
high-quality meta data associated with it.

Our study aims to develop an AMR MOSS that incorporates monitoring information
from different sectors of AMR, which are the human-, animal-, and food-perspectives of AMR,
and sector-specific backgrounds, considering its relations and interactions towards a One
Health evaluation to feed into recommendations for public health. To achieve our surveillance
system, it therefore consists of the meta data, the phenotypic resistance data, and the molecular
genetic resistance information, which should be open to a One Health perspective.

To pilot a One Health approach, this study focuses on carbapenem-resistant
Enterobacteriaceae (CRE) as an important example for both public (human) and animal
health. These carbapenemases are frequently plasmid-encoded and can be transferred
between bacterial species, and infections with CRE are associated with high mortality [13].
Treatment options for CRE and carbapenemase-producing Enterobacteriaceae (CPE) infec-
tions are limited, and polymyxins are often the only alternative [16]. A cross-resistance
between CRE and added resistance against polymyxins is therefore especially threatening to
the patient and to public health in general. In contrast to carbapenems, colistin is widely ad-
ministered in livestock (e.g., in Germany), resulting in the dissemination of colistin-resistant
bacteria in the animals and the food chain and transmission to humans [16]. Therefore,
carbapenems and polymyxins are on the WHO’s list of critically important antibiotics. This
study uses data from the German research project “GÜCCI”, a genome-based surveillance
project for transmissible colistin and carbapenem resistance in Gram-negative bacteria. We
aim to develop strategies to join clinical and epidemiological information and define the
requirements for data analysis.

The following paper elucidates the process of data processing for the development
of an AMR MOSS. In a step-by-step approach, we show how we define and categorise
different variables within the One Health setting. The harmonised data is finally analysed to
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extract a first glimpse of the One Health situation for transferable colistin and carbapenem
resistance in Enterobacteriaceae in Germany.

2. Results
2.1. General Data Collection

Data collected for this study originated from different backgrounds: human samples
from hospital care, laboratory samples from pre-existing research studies, animal samples
from routine screenings, and food samples from routine monitoring studies.

The data was assessed and harmonised as previously described. As shown in
Tables 1 and 2, we assessed the data individually based on the data provider (RKI, BfR, and
RUB) and the data source (bacterial isolates from humans, animals, and food), respectively.
Heterogeneity between the data providers becomes apparent. All isolates had been sub-
jected to phenotypic AMR tests (Table 1), but tested antimicrobials and/or corresponding
breakpoints and subsequent classifications varied between data providers and data sources,
which are shown in Table 2. All results of the antimicrobial resistance testing are shown in
the Supplementary Materials (Table S3).

Table 1. Schematic overview of isolates by data origin.

Provider *
RKI RUB BfR

Isolates total 353 2147 83

Meta Data

Data source 353 2147 83

Isolation date 338 2147 83

State 206 2146 0

City 0 2147 68

Regional code 264 1571 0

Matrix 292 2145 83

Sample location origin 212 222 83

Bacterial Typing

MALDI Bacterial species identification 353 2146 83

WGS Confirmation of bacterial species 127 2146 83

MLST data 282 319 83

Phenotypic Data

Phenotypic AMR testing 353 2147 83

Genotypic Data

WGS data 147 222 83

PCR data 353 2147 83
* Providers: National Reference Centre for Multidrug-resistant Gram-negative Bacteria at Ruhr-University Bochum
(RUB), Robert Koch Institute Germany (RKI), and the German Federal Institute for Risk Assessment (BfR).

Data selection between providers differed due to the purpose of the primary investiga-
tion at each institution. Human patients were sampled due to AMR suspicion, and bacterial
isolates were sent to our project partners’ laboratory only if they displayed characteristics
of special interests. Animal and food samples are subjected to regular monitoring and
further analysed by the respective partner laboratories. All of the data included here was
preselected for colistin or carbapenem resistance.

Table 1 shows an overview of the variables that remained for data analysis after
harmonisation. If unavailable data exceeded a certain percentage or was incomparable to
variables from other datasets, the entire variable was not used for further data analysis.
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Table 2. Frequency distribution of AM-resistance tests, separated by source. Isolates were pre-selected
for either colistin or meropenem resistance.

Antimicrobial
Human Animal Food

n * % n * % n * %

Aminoglycosides

Amikacin 234 9.44 1 1.89 8 15.69

Gentamicin 315 12.71 44 83.02 48 94.12

Kanamycin 270 10.89 11 20.75 22 43.14

Tobramycin 45 1.82 0 0.00 0 0.00

Beta-lactams

Ampicillin 270 10.89 44 83.02 48 94.12

Aztreonam 45 1.82 0 0.00 0 0.00

Cefepime 45 1.82 12 22.64 15 29.41

Cefotaxime 315 12.71 44 83.02 48 94.12

Cefotaxime/Clavulanic Acid 0 0.00 16 30.19 15 29.41

Cefotiam 68 2.74 44 83.02 44 86.27

Cefoxitin 270 10.89 13 24.53 23 45.10

Ceftazidime 315 12.71 44 83.02 48 94.12

Ceftazidime/Clavulanic Acid 0 0.00 16 30.19 15 29.41

Ertapenem 1889 76.20 12 22.64 15 29.41

Imipenem 2192 88.42 12 22.64 15 29.41

Meropenem 2458 99.15 36 67.92 29 56.86

Mezlocillin 68 2.74 1 1.89 6 11.76

Mezlocillin/Sulbactam 68 2.74 1 1.89 6 11.76

Piperacillin 45 1.82 0 0.00 0 0.00

Piperacillin/Tazobactam 45 1.82 0 0.00 0 0.00

Temocillin 0 0.00 16 30.19 15 29.41

Quinolones

Ciprofloxacin 315 12.71 44 83.02 48 94.12

Moxifloxacin 45 1.82 0 0.00 0 0.00

Nalidixic acid 270 10.89 44 83.02 48 94.12

Diaminopyrimidins

Sulfamethoxazole/Trimethoprim 315 12.71 1 1.89 6 11.76

Sulfamethoxazole 0 0.00 43 81.13 44 86.27

Trimethoprim 0 0.00 43 81.13 44 86.27

Macrolides

Azithromycin 0 0.00 37 69.81 26 50.98

Polymyxins

Colistin 1570 63.33 53 100.00 49 96.08

Others

Chloramphenicol 267 10.77 44 83.02 48 94.12

Fosfomycin 45 1.82 6 11.32 14 27.45

Tetracycline 79 3.19 43 81.13 40 78.43

Tigecycline 45 1.82 36 67.92 25 49.02

Oxytetracycline 190 7.66 1 1.89 8 15.69

Streptomycin 191 7.70 11 20.75 22 43.14

Tests total 2479 53 51
* The total amount of measured resistance (n) varies also due to the different amounts of isolates tested.
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2.2. One Health Use Case “Colistin-Resistant E. coli Isolates”

For a comparative One Health data analysis with data from all sources, variables
existing in all respective sources should be used to ensure comparability. For example,
the phenotypic resistance profiles of isolates can only be compared if all isolates have
been tested for each antimicrobial in question. Thus, a thorough data assessment, as
shown above, was necessary before further data analysis. Table 2 shows the number of
isolates tested for each antibiotic; the number of resistant isolates is documented in the
Supplementary Materials (Table S3).

In the following analyses, we selected E. coli isolates displaying phenotypic resistance
to colistin exemplarily. Resistance to ertapenem and imipenem was detected in a very low
number among isolates from animals and food (Table 2); thus, we chose colistin resistance
as the determining factor for this exemplary case study. We examined the genomic data of
these isolates as an analytic case study. Isolates with neither PCR nor WGS results were
not included. In the end, 155 colistin-resistant E. coli isolates (67 human, 44 animal, and
44 food) remained for analysis. A total of 187 resistance determinants were documented, of
which some encode for resistance to the same antibiotic class. Therefore, we categorised
the information into groups based on the antibiotic class to which the gene mediates
resistance using RefGene [17]. Included in the antibiotic classes and single substances were
beta-lactams, aminoglycosides, phenicols, diaminopyrimidins, macrolides, lincosamides,
sulfonamides, tetracyclines, quinolones, colistin, rifamycin, bleomycin, streptothricin, and
fosfomycin, respectively. Genetic resistance analysis was performed by cluster analysis
to get a first insight into putative relatedness between isolates. A heatmap (positive and
negative findings per antimicrobial class) and a dendrogram were calculated using the
Jaccard coefficient and centroid method, ranking the dendrogram values between 0 and 1.
We included the multi-locus sequence type (MLST) beside the isolate ID (Figure 1).

Although all 155 isolates were resistant to colistin, including 99 isolates with the re-
sistance gene mcr-1, 14 isolates with mcr-1-like, and 9 isolates with mcr-1.2, interestingly,
32 human isolates and 1 animal isolate with colistin resistance did not display any docu-
mented mcr-like gene. Conspicuously, 10 of these 32 human isolates belonged to sequence
type (ST) 131; this clonal lineage did not appear in mcr-positive isolates. Furthermore, some
genotypic resistances often appear in combination, such as resistance to beta-lactams and
aminoglycosides and resistance to sulfonamides and tetracyclines, throughout all isolate
sources. STs within the collective were diverse, with most appearing individually or in
very low numbers. However, E. coli-ST744 (n = 17) and E. coli-ST10 (n = 14) were observed
in all three isolate sources.

To demonstrate the variation in resistance profiles, the Jaccard distances to the isolate
with the maximum amount of resistance were calculated. With this, distances close to 0
may be interpreted as multidrug-resistant, while distances close to 1 indicate isolates with
a high degree of susceptibility. These descriptive measures were calculated by the data
source, data supplier, and region in which the isolate was detected (Table 3).

Descriptive statistics of human, animal, and food data show similar results between
the sources of the isolates (Table 3). This supports the cluster analysis of human, animal,
and food isolates clustering together (Figure 1) and suggests the close genetic relatedness
of resistant isolates from different sources and/or the transmission of AMR determinants
between sources.

Comparing the distances between data origins within the collective reveals no sta-
tistically significant differences between the three data suppliers. However, within the
collective under study, RUB isolates appear slightly distinct from RKI and BfR data, which
is probably due to the low number of isolates in this collective, which were also mostly
pre-selected for carbapenem resistance (n = 2). RKI isolates are from previous research stud-
ies, pre-selected for colistin resistance. BfR samples are gathered from routine screenings;
however, in our study, they were pre-selected for colistin resistance. The lack of differences
visible in the outcome of this calculation suggests that the reason for data collection might
have a minor impact only on the genetic profile of the isolates.
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Figure 1. Heatmap and cluster analysis of genetic resistance of 155 E. coli isolates with phenotypic 
colistin resistance. The heatmap (positive and negative findings per antimicrobial class) and a 
dendrogram were calculated using the Jaccard coefficient and centroid method, ranking the 
dendrogram values between 0 and 1. Resistance determinants were categorised in groups according 
to the antimicrobial class to which they mediate resistance (blue). E. coli isolates from human 
patients are highlighted with a blue dot, animal isolates in orange, and food isolates in green. 
Isolates of the most frequent sequence types ST744 and ST10 in this collection were highlighted with 
a red arrow and with a blue arrow, respectively. 
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Figure 1. Heatmap and cluster analysis of genetic resistance of 155 E. coli isolates with phenotypic
colistin resistance. The heatmap (positive and negative findings per antimicrobial class) and a den-
drogram were calculated using the Jaccard coefficient and centroid method, ranking the dendrogram
values between 0 and 1. Resistance determinants were categorised in groups according to the an-
timicrobial class to which they mediate resistance (blue). E. coli isolates from human patients are
highlighted with a blue dot, animal isolates in orange, and food isolates in green. Isolates of the most
frequent sequence types ST744 and ST10 in this collection were highlighted with a red arrow and
with a blue arrow, respectively.

Furthermore, we compared the genetic distances of the isolates by region. For this,
isolates were categorised by German federal state and subsequently separated by re-
gion “North” (i.e., Bremen, Hamburg, Lower Saxony, Mecklenburg-Western Pomerania,
and Schleswig-Holstein), “East” (i.e., Berlin, Brandenburg, Saxony, Saxony-Anhalt, and
Thuringia), “South” (i.e., Baden-Wuerttemberg and Bavaria), and “West” (i.e., Hesse, North
Rhine-Westphalia, Rhineland-Palatinate, and Saarland) (see also Supplementary Table S4).
Again, no statistically significant difference was detected between the regions.

Generally, with an average coefficient of variation (CV) of around 28%, we observe
a moderate variance of the resistance patterns on the population level, but also a large
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range of distances between the isolates, suggesting a high genetic diversity in the resistance
profiles. In a One Health AMR MOSS such as this, this was to be expected and additionally
highlights the importance of epidemiological data analysis in combination with genome
data analysis.

Table 3. Descriptive measures for Jaccard distances to the “most multi-resistant” isolate” of 154 colistin-
resistant E. coli isolates by data source, data supplier, and region.

n Mean Med. Std. Cv Min 5%-Perc. 95%-Perc. Max

data source

Human 66 0.61 0.54 0.19 30.48 0.23 0.38 0.92 0.92

Animal 44 0.50 0.46 0.15 29.66 0.31 0.31 0.85 0.85

Food 44 0.55 0.54 0.13 24.30 0.38 0.38 0.77 0.85

data supplier

RKI 71 0.60 0.54 0.18 29.51 0.23 0.38 0.92 0.92

RUB 2 0.42 0.42 0.05 12.86 0.38 0.38 0.46 0.46

BfR 81 0.52 0.46 0.15 28.14 0.31 0.38 0.85 0.85

region

North 24 0.53 0.46 0.15 28.19 0.31 0.38 0.85 0.85

South 13 0.53 0.46 0.16 29.17 0.38 0.38 0.85 0.85

West 72 0.61 0.54 0.18 29.04 0.31 0.38 0.92 0.92

East 19 0.56 0.54 0.16 29.19 0.31 0.31 0.85 0.85

unknown 26 0.46 0.46 0.10 20.94 0.23 0.31 0.62 0.69

ALL 154 0.56 0.54 0.17 29.76 0.23 0.38 0.85 0.92
Legend: n sample size; mean arithmetic mean; med. median; std. standard deviation; cv coefficient of variation;
min minimum; 5%-perc. 5%-percentile; 95%-perc. 95%-percentile; max maximum.

3. Discussion

This investigation elucidates the process of data harmonisation on the example of a
One Health AMR surveillance programme, which is based on the secondary use of data
from diverse origins and sources. While there are guidelines for general secondary data
use processes, including harmonisation processes for human data in epidemiology [18],
these processes are rare in monitoring laboratory data. However, following [18], the use of
secondary data always depends on an individual use case and its related purpose. Here we
showed in multiple instances how a harmonisation process may take place, with which
heterogeneous data may be pooled.

Molecular monitoring systems generally collect data and usually perform data analysis,
such as cluster analysis, based on genomic information alone [19–21]. Data specifically
generated for a MOSS suffices for this type of analysis; however, in our case, secondary data
requires additional steps. Secondary data, as opposed to primary data, usually does not
include the possibility of gathering all the information from each data source and therefore
requires harmonisation.

Harmonisation of secondary data is therefore crucial in a One Health MOSS due to all
the restrictions presented here. These restrictions make it difficult to set up an exclusive
One Health system, which has also been extensively discussed [22]. Even if working with a
catalogue, a predetermined survey, or any other attempt at categorising data from various
origins, different interpretations of those catalogues may occur and therefore lead to biases.
Working with data without catalogues or surveys specifically made for them (i.e., secondary
data) makes this more difficult because harmonisation aids like catalogues are developed
after the data is collected.
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Catalogues for this project were customarily developed. These catalogues, however,
were designed specifically for this study and might need adjustments if additional data is
collected in the future. However, a use case based on specific scientific hypotheses to run
the MOSS may be drafted. Therefore, to ensure the plausibility of the data, different steps
in constructing the One Health MOSS have to be discussed. These are the quality of the
information, the use cases defined, and the epidemiological outcome related to the MOSS.
In addition, political and socioeconomic influences, such as, for example, data privacy
issues, were not included here but finally have to be discussed as well.

3.1. Intrinsic and Extrinsic Quality of Information

During plausibility control of the data, it becomes apparent that differences between
the data collection methods exist due to the different purposes of our partner institutions.
However, even if data are of high quality for their original purpose, for the matter of a
One Health system, differences are evident, which is also a multi-faceted issue that exceeds
epidemiological research. Therefore, an intrinsic quality and an extrinsic quality (for use in
One Health) must be distinguished here.

Reducing extrinsic data quality differences, like standardising resistance evaluation
norms, has already been extensively discussed [23,24]. The same is true for data quality
in terms of the amount of information. As an example, while PCR data is pre-selected for
previously determined genes of interest, WGS data contains all documented resistance
determinants. Protocols for laboratory methods differ based on different standards and
requirements of human or veterinary medicine, and experimental conditions vary between
locations, as well as bioinformatic pipelines, AST plates, etc. This is in line for international
systems as well, like the WHO-GLASS MOSS [8], which disregards the AMR interpretation
rules as well. These differences in data collection are fine from a clinical perspective.
However, from an epidemiological perspective, this often makes data harmonisation a
challenge and also leads to a substantial loss of information.

All in all, the processes applied lead to a degree of different representativeness of the
resistance situation in the different populations of the associated One Health pillars. This
is due to the pre-selection of the isolates in some subsets before colistin resistance testing,
although the number of isolates included is substantial (n= 2583 in total). However, the
number of human isolates exceeds the number of animal and food isolates greatly, which
causes a “One Health imbalance”.

Due to the different reasons for data collection, the isolates were tested for AMR
under different circumstances, which influences the outcome of the analysis. Clinical
isolates, for example, often display a great variety of AMR because testing for AMR is
performed after antibiotic treatment. Another example is the routine AMR testing of food
and veterinary samples. Some antimicrobials, such as carbapenems, were not used in
veterinary medicine in Germany, which may explain the very low amount of carbapenem
resistance in animal and food isolates. Colistin, on the other hand, is widely used in
livestock animals, particularly in poultry farms [25,26], but is a last-line antimicrobial in
human medicine. However, in human clinics, colistin is tested and considered for treatment
(if ever) only when/after carbapenem resistance has been confirmed [27]. This was also the
rationale for selecting colistin resistance as the determinant for the analytic case study, to
ensure that results were not falsified due to this type of data selection.

3.2. Use Cases Defined

The manifold differences within the isolate-collection indicate that the data presented
here is neither a representative sample from an overall target population nor a register of
all relevant cases, which is a typical pattern in classical MOSS [8,19,28]. Therefore, the meta
data included in the MOSS as well as the procedures for constructing the combined data
have to be considered to develop use-case-based analyses.

After the harmonisation process and joining the data, the overlap of the remaining
information is considerably smaller in our example. The data can, however, be used to
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draw conclusions and suggestions related to selected parts of the population of isolates. In
order to analyse secondary data for passive surveillance, two previous steps are required:
data harmonisation and data selection. While data harmonisation was not possible for
laboratory analyses in the past, informed data selection in combination with post-hoc meta
data requires more effort but allows for a more thorough analysis, which is necessary when
working with secondary data pools. Data selection based on a specific research question
also allows for more diverse usability.

3.3. Antibiotic Resistance Outcome

The use of different laboratory methods by providers and by sources resulted in
different AMR information as outcome variables or, more generally, as AMR patterns. This
information is complex, like the phenotyping of different components and genotyping of
different resistance determinants and virulence factors, which are identified with different
technologies and methods. Therefore, the use of multivariate analysis methods like cluster
analysis techniques will be influenced as well, especially if the AMR outcome is different.
However, cluster analyses can give an insight into the putative genetic relatedness of
isolates, as shown in previous studies [20,29], but they also require at least harmonised or
plausible comparable AMR outcome data. Our exemplary cluster analysis (see Figure 1)
revealed two E. coli sequence types, ST10 and ST744, that appear in larger numbers within
our selected collective of colistin-resistant E. coli isolates from humans, animals, and food.
Both lineages belong to pathogenic E. coli with increasing importance and have been
documented in various global outbreaks [30–33]. ST131, which was present in isolates
without mcr-like resistance determinants, is another high-risk clone [34] with the potential
to spread colistin resistance independent from plasmids.

Combining specialised sets of genetic and phenotypic resistance information and
joining it with meta data and bacteria typing data is therefore the required next step to do a
One Health analysis. This shows that evaluating genetic data separately lacks conclusive
evidence for a comprehensive interpretation in an epidemiological context due to the
heterogeneity of missing values in output variables.

The combination of genetic information with meta data, with consideration of data
harmonisation and selection, brings a unique opportunity for One Health assessments.
While the overall effort necessary with these types of data analysis is higher, the cost-benefit
ratio also shows a significant advantage: results from larger-scale One Health analysis using
these methods could potentially be used for public health recommendations. However, the
number of isolates that can be evaluated together and presented here is low, so we cannot
predict the outcome of large-scale data analysis. Nonetheless, our general approach on
how to handle heterogeneous secondary data pools is applicable for other AMR MOSS.
The strategy presented here may also be applicable to other research areas evaluating
heterogeneous secondary data pools.

4. Material and Methods
4.1. Data Acquisition

This study utilised secondary data on AMR gathered by the responsible institutions
in Germany as a pilot exercise for a secondary data use approach. Data from bacterial
isolates was provided in the scope of the German research project “GÜCCI” by the Na-
tional Reference Centre for Multidrug-resistant Gram-negative Bacteria at Ruhr-University
Bochum (RUB), by Robert Koch Institute Germany (RKI), and monitoring data by the
German Federal Institute for Risk Assessment (BfR).

The data is pooled from various, heterogeneous origins that have been collected from
2007 to 2020, i.e., before the Corona crisis changed habits and processes, both in sampling
as well as in the priorities within laboratory work. By identifying and framing procedures
for combining human, animal, food, and environmental data, we wanted to develop an
integrated One Health AMR MOSS. It is important to note that the data was not collected
specifically for this study (i.e., secondary data), which aims to gain insight on the results of
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AMR data in retrospect with joint data analysis using harmonisation strategies, plausibility
checks, and basic epidemiological analysis, respectively. The heterogeneity of the data is
part and implication of the One Health approach we are attempting here.

In detail, the data analysed here has been collected from clinical samples, screen-
ing samples, or past AMR research studies. For this, the RUB collected and analysed
carbapenem- and colistin-resistant isolates from hospitalised patients throughout Ger-
many. These isolates were screened for the presence of carbapenemase genes and plasmid-
mediated colistin resistance genes (mcr). The RKI analysed isolates of special interest, i.e.,
carbapenem-resistant isolates from routine sampling in hospitals and specific research
studies that require in-depth laboratory testing. These samples originated from different
sources, mainly humans, but rarely from food or the environment. Colistin resistance
in human clinical isolates is not routinely determined and assessed in all laboratories.
Therefore, selected sentinel laboratories that routinely determine colistin susceptibility
in human clinical isolates have sent isolates with colistin resistance for confirmation and
further analyses to the RKI since 2016. The BfR provided data on colistin-resistant isolates
from routine screenings and in-depth laboratory analyses for AMR of livestock, food, and
environmental samples.

In order to be assessable within the means of our study, the data collected from all
project partners is subjected to plausibility checks. All corresponding laboratories perform
high-standard protocols for sample or isolate analysis, but meta data is often unavailable
or sparsely documented and is influenced by the objectives of primary investigation and
data collection. We receive the data as a collective dataset from our partners; however, each
piece of information about individual isolates requires a thorough examination for usability.
Measured values (e.g., MIC) are double-checked, and related variables are compared for
plausibility with clinical breakpoints for resistance determination.

In summary, we evaluate clinical data from hospitalised patients, animal data from
livestock husbandry, and food-related data from retail samples routinely screened for
AMR-carrying bacteria. Isolates were included in this study if they either displayed a
phenotypic resistance to meropenem and/or colistin or contained previously published
resistance determinants for carbapenems and/or colistin.

4.2. Data Structure

The data collection for resistant isolates here is from different providers with different
sources (human, animal, and food). Therefore, they use different laboratory methods for
resistance determination and collect different meta data linked to the isolates. Isolates
from human patients and animals were from various (clinical) materials, such as blood,
urine, or stool/faeces/caecal samples. Isolates from food were collected by enrichment-
or cultivation-dependent approaches investigating parts of the food matrix. All isolates
were identified using standard laboratory methods and then subjected to phenotypic
resistance analysis by either broth microdilution or agar disc diffusion, evaluated according
to internationally standardised norms (CLSI or EUCAST). Molecular analyses included
PCR- or WGS-based screening for different resistance genes, with a focus on plasmid-
mediated colistin resistance mediating genes (e.g., mcr-1) and carbapenemase-encoding
genes (e.g., blaVIM-1).

For setting up a surveillance system, we categorised the variables of the different
origins into four general data pillars, i.e.,

- meta data, which contains epidemiological and clinical information about the original
samples

- bacterial typing data, which contains information about the identification and differ-
entiation of bacterial strains

- phenotypic data, which contains information related to phenotypic resistance
- genotypic data, which contains genetic resistance information.

These four pillars will establish the basis for a surveillance system. An overview of all
these data items by pillar is shown in the target structure for harmonisation in Table 4.
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Table 4. One Health usability of data.

Variable RUB RKI BfR Usability Comment

Meta Data

Date of sampling ✓ ✓
Requires harmonisation

of documentation

Date of isolation ✓ ✓ ✓
Requires harmonisation

of documentation

Reasons for data
collection

clinical isolates with
AMR suspicion Isolates of special interest Routine screenings/regular

monitoring
Evaluable in a One Health

context

Regional Code ✓ ✓
Requires harmonisation

of documentation

City ✓ ✓
Requires harmonisation

of documentation

Federal state ✓ ✓
Evaluable in a One Health

context

Source Human Human, Food Animal, Food Evaluable in a One Health
context

Age ✓ ✓ For human data only

Gender ✓ ✓ For human data only

Sample location origin ✓ ✓ ✓
differentiated by data

source

Matrix ✓ ✓ ✓
differentiated by data

source

Bacterial Typing

Bacterial species ✓ ✓ ✓
Requires harmonisation

of documentation

Method ✓ ✓, with WGS confirmation ✓, with WGS confirmation differentiated by data
provider

MLST ✓ ✓ ✓
Evaluable in a One Health

context

Phenotypic Data

Method BMD, Agar disc diffusion, BMD,
autom. AST

BMD,
autom. AST

Not evaluable in a One
Health context

Evaluation norm EUCAST EUCAST CLSI/EUCAST Not evaluable in a One
Health context

Tested Antibiotics ✓ ✓ ✓ Requires harmonisation

Interpretation ✓ ✓ Requires harmonisation

Genotypic Data

Method PCR, WGS PCR, WGS PCR, WGS differentiated by data
provider

Resistance Determinants ✓ ✓ ✓
Requires harmonisation

of documentation

Legend: ✓variable present; RUB National Reference Centre for Multidrug-resistant Gram-negative Bacteria at
Ruhr-University Bochum; RKI Robert Koch Institute Germany; BfR German Federal Institute for Risk Assessment;
WGS whole genome sequencing; (p)MLST (plasmid) multi-locus sequence typing; BMD broth microdilution;
autom AST antibiotic susceptibility testing by automated system VITEK II (Biomérieux, Nuertingen, Germany).

Some of the transferred variables were identical in each dataset; others were hardly
directly comparable (like laboratory methods) or were simply unavailable/unattainable
(Table 4, usability comment). The minimum required information for isolates analysed
in this study was, aside from the aforementioned AMR: date of sample collection, type
of sample source (human, animal, or food), and bacterial species. Aside from identical
variables, some information about the isolates was similar between sources, but required
additional processes to develop an interface between them. While all isolates were subjected
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to phenotypic and genotypic resistance analysis, laboratory methods differed. Therefore,
the data or its interpretation needed to be harmonised to suit a One Health assessment.

However, other variables remained disjunctive, which goes in line with covering
different sectors. Sample matrices, for example, were different between human, animal,
and food data. Any food item was categorised according to official German food regulations
and followed a strict definition with official catalogues (e.g., type of meat, fresh or frozen).
Animal samples were classified by animal species and also by facility type (e.g., breeding
facility, fattening facility, slaughterhouse) and isolate matrix (e.g., dust/skin samples,
face samples). Both animal and food samples underlie strict rules for definition and
categorisation by the German food- and veterinary surveillance and monitoring [35], which
do not exist for human clinical samples. Human isolates contained additional information
about the age and gender of the patient, whether the patient was hospitalised or not,
and isolate material (e.g., blood, urine). All these variables were available in a different
context for animal or food samples (sex and age might be included in the definition for
the subpopulation sampled, only healthy animals were sampled, and food was derived
from healthy animals only). Therefore, this data does not need to be/cannot be harmonised
unless separated by data source (human, animal, or food) first.

All isolates were subjected to AST by either broth microdilution (BMD) or agar disc
diffusion (ADD). Phenotypic AMR data contained the measured values (zone diameter
or minimal inhibitory concentration (MIC)) and interpretation according to the respective
breakpoints or epidemiological cut-off values. Both methods used in this study varied
regarding the use of automated systems (such as Vitek 2, bioMérieux Inc., Nürtingen,
German [36]) or manual BMD procedures. For MOSS development, we considered the mea-
sured MIC or zone diameter (ZD) values. The interpretation of the results into “resistant”
(R), “intermediate/susceptible increased exposure” (I), and “susceptible” (S) depended on
the norms applied. The Clinical & Laboratory Standards Institute (CLSI) established differ-
ent clinical breakpoint values than the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), which are additionally frequently updated and adapted to the current
situation. EUCAST also provides epidemiological cut-off values (ECOFFs), which are used
for regular monitoring of health animal populations and products thereof. The discrepancy
between those two guidelines alone impacts resistance interpretation [37]. These norms are
applied depending on whether the data is evaluated according to a clinical/therapeutic
inquiry or whether the data is assessed for a public health observation.

4.3. Data Quality and Harmonisation Methods

Based on the original data structure shown in Table 1, data harmonisation is crucial
for the development of a surveillance programme based on secondary data. Previous
studies showed the importance of data harmonisation as well [24]. Here, we elucidated
that process in a step-by-step approach. Data quality assessment for this study refers to the
completeness, accuracy, plausibility, and precision of documentation.

After we assessed the structure of the raw original data, we defined a target structure
for the monitoring system within the concept of the four main pillars described above. The
variables observed were classified as

Pillar Meta Data

- Date of sampling
- Date of isolation
- Regional Code
- City
- State
- Data Source
- Reasons for data collection
- Sample location origin (with separated catalogues by source)
- Matrix/Material (with separated catalogues by source)
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Pillar Bacterial Typing

- Identified bacterial species
- MLST
- Plasmid replicons (data not shown in the result section)
- pMLST (data not shown in the result section)
- Determination method of bacterial species identification

Pillar Phenotypic AMR Data

- Method
- Interpretation norm
- Tested AM
- Measured value (of MIC/ADD)
- Interpretation result

Pillar Genomic AMR Data

- Method
- Resistance determinants

For this study, data was harmonised manually following the above structure by in-
depth consultation with the project partners about their respective data. However, the
generic components of this process can be used as a framework for future activities.

Metrically scaled data, here the date of sampling and the patient’s age, can be directly
compared between different data sources. For nominal data, usually catalogues are a
commonly used tool to classify data into categories. Officially standardised catalogues exist
for some variables only. These are, for example, the German federal coding matrices for
food monitoring [38], the list of municipal information systems, and the National Center for
Biotechnology Information (NCBI) Reference Gene Catalogue [17]. For most of the variables
defined above, no formal catalogues exist. Therefore, we generated custom catalogues
to categorise variables into comparable groups to guide the harmonisation process (see
Supplementary Tables S1 and S2).

Bacterial species were identified on a lab-dependent basis. However, usually a con-
firmation step is performed in each laboratory [39]. Therefore, we considered whether
a defined bacterial species changed after a confirmation run. The bacterial species are
documented in Supplementary Table S2.

Within the harmonisation process, several challenges have to be addressed. First,
incomplete datasets with missing observations may appear. This cannot be influenced
directly within secondary data in hindsight, and therefore, missing data is a reoccurring
issue that needs to be addressed and documented to optimise the data usability. Generally,
we divided the missing data into the following categories:

- data not documented
- data documented insufficiently or with low quality and
- data documented as wrong or not plausible.

The reasons for missing data are manifold. One reason is that observations of variables
may simply not have been acquired. Documentation of meta data from human hospitalised
patients, for example, usually follows individual adapted protocols per hospital and there-
fore is not standardised. Additionally, hospital data underlies the data privacy restrictions,
so using personal information directly is limited or even omitted due to limited resources
for pseudonymisation or other privacy measures regarding data processing and handling.
This is a specific concern for missing meta information, e.g., the subject’s disease indication
and other information from the healthcare setting.

First, not-documented data on phenotypic resistance (i.e., “not documented” due to
“not tested”) was identified for all data sources used. Test panels for AMR were compared
across data sources. For the One Health approach, only antimicrobials tested in every data
source remained for combined analyses. Data sources also use different norms to interpret
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the results, whether an isolate is resistant or not [40,41]. This information could not be
harmonised but was kept for further.

Second, data that was acquired but differed in quality was nonetheless included. The
amount of information on a variable may vary depending on the data source. For instance,
the location of an isolate was reported with different aggregation levels, like a detailed city
or a 3-digit postal code only, which stratifies Germany into approximately 100 sub-regions.
However, the quality of the regional information differs as well. The location of the origin
of an isolate could be interpreted as the location where the sampling took place, the location
of the laboratory performing the isolation, or the home or even the birthplace of the patient.
The data provided here contained no information in this regard, which will restrict the
development of use cases for secondary data.

Third, wrong or not plausible data may occur for various reasons. This especially
regards information that has been acquired post-hoc from the raw data. For example,
extracting the location origin from only the first three digits of the postal code generally
retrieves information on the federal state level. However, in very specific cases, the first
three digits of a postal code are shared by two federal states, thus resulting in a possibly
false category. If information on the federal state cannot be obtained or concluded from
other variables, the category was assigned at random.

Therefore, preliminary and post-hoc data evaluation step-checking for these items is
necessary. Especially regarding the use case, i.e., here, the One Health context (view below).

An isolate analysed by WGS was associated with positive or negative findings of resis-
tance genes because a gene not found in the WGS screen is likely not present in the isolate.
This means that resistance genes not identified are interpreted as “not apparent”. In addi-
tion, based on different bioinformatics pipelines, the denotation of resistance determinants
was not standardised beforehand. Therefore, a post-hoc denotation was applied [15].

Similarly, we evaluated PCR data. Resistance determinants discovered by PCR were
treated as a positive finding; however, genes not tested by PCR were not compared to
WGS information.

4.4. Definition of Use Cases for One Health Data Analysis

After individual harmonisation, we combined all the data for the One Health assessment.
Therefore, for a One Health analysis, data has to be selected based on a specific research
hypothesis, which should be formulated as a so-called use case. However, if data is not
feasible for a One Health assessment, it may still be incorporated in analytic case studies.

As an exemplary One Health Use Case here, we evaluated E. coli isolates with pheno-
typic colistin resistance. Within our AMR surveillance system, we focused on discovering
putative transmission paths of resistant pathogens, as well as genetic resistance patterns.

4.5. Statistics

Statistical evaluations in this study were generally performed with SAS, Version 9.4
TS Level M5 (SAS Institute Inc., Cary, NC, USA). Comparison of data sources and general
improvement of completeness and plausibility were done with ordinary data management
and data description routines.

Comparing isolates from humans, animals, food, and the environment, as well as
AMR patterns, was conducted with classical contingency tables. To generate a multivariate
statistical outcome for phenotyping and genotyping, resistance profiles were generated,
and we followed the statistical concepts of Anderson et al. and Ruddat et al. [42,43]. In
that context, we evaluated resistance determinants based on their respective antimicrobial
classes to overcome the discrepancies in data quality. Genetic profiles of isolates were
measured by transforming information on resistance determinants into 0–1-vector matrices
and then calculated as distance measures using the Jaccard coefficient without prioritising
any specific gene. These distances can take on values from 0 (identical distance, i.e., genetic
profile) to 1 (no accordance in genetic profile).
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With this, we selected one isolate as an “epidemiological reference” based on the
genetic profile of resistance determinants and measured distances. This designated isolate
contained resistance determinants coding for all documented antibiotic classes. The isolate
is a human E. coli isolate from a clinical urine sample collected in Bavaria with phenotypic
resistance to colistin, meropenem, imipenem, and ertapenem. We used the distance of each
isolate to this reference to describe differences in data source and origin, as well as the
region of the sample, as parameters. Here, small distances to the reference indicate isolates
with multiple resistance genes. In contrast, distances close to one indicate isolates with
only a few resistance genes. To check for statistical significance between these groups, the
permutation test of Anderson et al. was used [42,43].

In addition, a cluster analysis was conducted hierarchically using the centroid method.
Heatmaps and dendrograms were plotted using the R package “ggplot2” (R version 1.4.1717).

5. Conclusions

In summary, our study shows that heterogeneous secondary data pools can be used for
passive AMR MOSS. However, analysing data requires thorough previous harmonisation
and data selection in order to make conclusive interpretations for a One Health assessment.
Secondary data pools in published MOSS aim to harmonise data by, e.g., broadening
the categories and harmonising based on common information rather than differences.
In contrast, our approach is to turn joint data pools into smaller data collectives while
considering the differences. Any results presented in this study are preliminary, also
regarding the possibility that datasets might be incomplete and additional data might be
provided by future collaboration partners.
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//www.mdpi.com/article/10.3390/antibiotics13070656/s1, Table S1: Scaling of variables by data
source, Table S2: Isolates by sample origin, Table S3: Isolates by genera, Table S4: Number and proportion
of phenotypically resistant isolates by antibiotic and antibiotic class, Table S5: Example for data selection
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ADD Agar disc diffusion
ARS Antimicrobial Resistance Surveillance
AMR Antimicrobial resistance
AST Antimicrobial susceptibility testing
BMD Broth microdilution
CLSI Clinical and laboratory standards institute
CRE Carbapenem-resistant Enterobacteriaceae
CPE Carbapenemase producing Enterobacteriaceae
CV Coefficient of variance
EARS-Net European Antimicrobial Resistance Surveillance Network
EUCAST European Committee on Antimicrobial Susceptibility Testing
GLASS Global Antimicrobial Resistance and Use Surveillance System
MDR Multidrug-resistant
MIC Minimum inhibitory concentration
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