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Abstract: With the widespread phenomenon of antibiotic resistance and the diffusion of multiple
drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative
agents against pathogenic microorganisms. Since an association between biofilm formation and
antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years
focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing
(QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research
and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted
the attention of researchers and has become a new strategy for controlling harmful microorganisms.
Among these, a number of both natural and synthetic compounds have been progressively identified
as able to interrupt the intercellular communication within a microbial community and the adhesion
to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played
by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural
and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and
Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.

Keywords: antibiotic resistance; biofilm; Quorum Sensing; Quorum Quenching

1. Introduction

Quorum Sensing (QS) is a global gene regulation mechanism based on bacterial cell-to-
cell communication achieved through the release, detection, and response of extracellular
signaling molecules called autoinducers (AIs) [1]. It can be considered an adaptive response
to the high cellular density at which the cumulative production of AIs occurs, enabling
detection and response through a specific transcriptional regulator. In Gram-positive
and Gram-negative bacteria, different types of QS systems have been widely described,
and different classes of AIs have been identified [2]. QS allows bacteria to perceive their
surroundings, regulate their density and behavior, and optimize the use of available
nutrients, giving them the ability to live as multicellular organisms. What is more, it makes
the cell community manage self-competition as well as collectively interact with their
host. QS regulates several biological processes including bioluminescence, sporulation,
competence, antibiotic production, and virulence factor production by pathogenic bacteria,
as well as the formation and maintenance of biofilm, the complex, three-dimensional
structures representing a long-established survival mechanism for bacteria [3]. The high
cell density that is created in the biofilm makes it the ideal condition for QS regulation. In
fact, numerous QS-dependent genes code for the biosynthesis of exopolysaccharides that
directly participate in the architecture of mature biofilms. Biofilms play a fundamental role
in pathogenesis as they can evade the human immune response, and bacteria forming them
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exhibit resistance to treatment with various antibiotics, making fighting these infections
even more challenging, leading to prolonged illness and contributing significantly to high
morbidity and mortality rates [4]. The important role played by biofilms in microbial
infections is more than relevant if we consider that the National Institutes of Health (NIH)
revealed that among all microbial and chronic infections, 65% and 80%, respectively, are
associated with biofilm formation. These infections are contracted in hospital settings by
patients undergoing long-term hospitalization or in close contact with medical devices and
implants on which biofilms form, increasing the risk of infection during surgeries or other
medical procedures. They are colonized with extreme efficiency by microorganisms of the
skin flora, including Gram-positive bacteria such as Staphylococcus aureus, which use them
as “entry routes” to the patient’s internal organs, causing infections with often very serious
outcomes [5].

Starting from the above consideration, recently, control strategies have been developed
to activate so-called Quorum Quenching (QQ), thus providing new possibilities for dealing
with infectious diseases and overcoming and solving the problem of microbial resistance.
QQ interferes specifically with the QS system of bacteria, hindering the exchange of infor-
mation between them and reducing the expression level of hazard factors. It may be mainly
achieved by inhibiting the production of AI molecules, by inhibiting AI detection through
the inactivation of the receptors, or by enzyme-catalyzed degradation or modification of
the AI molecules. Different classes of QQ enzymes as well as QQ inhibitors have been
identified so far, thus highlighting how they exhibit substrate specificities [6].

The present paper aims to review the current knowledge regarding the implication
of the biofilm process in the phenomenon of antibiotic resistance and the QQ strategies.
The first section describes the stages of biofilm formation and its structural elements as
well as its intrinsic characteristics that are the basis of biofilm-induced antibiotic resistance.
The next section reviews the mechanisms of inhibition of the QS signaling pathway for
controlling biofilm formation and then focuses on the antibiofilm mechanisms of different
natural and synthetic QS inhibitors. The final section reports the strategies which are
currently being adopted as biocontrol solutions in various fields.

2. Biofilm and Antibiotic Resistance

Biofilm is an aggregation of microbial cells attached to biotic or abiotic surfaces
embedded in a self-produced extracellular polymeric substance (EPS). The shift in bacteria
from a free-swimming planktonic state to a biofilm-making sessile encompasses multiple
stages: attachment to a surface, microcolony formation, biofilm maturation, and bacterial
dispersion [7]. During the initial stage of biofilm formation, planktonic cells interact very
briefly and transiently with a surface through Van der Waals forces by using flagella, pili,
and fimbriae, depending on favorable environmental conditions. The gradual buildup in
cellular cAMP levels and a gradual corresponding increase in type IV pili in the surface-
associated cells make the attachment irreversible, and the cells start the production of an
extracellular polymeric matrix composed of polysaccharides, proteins, and extracellular
DNA (eDNA) that clump together, forming microcolonies [8].

EPS-embedded growing cells organize themselves into a three-dimensional structure,
in which they interact, communicate, and cooperate through the complex communication
system of QS. Lastly, intrinsic factors of the bacterial community, namely genetic changes,
overpopulation, and intense competition for nutrients, as well as environmental pertur-
bations like changes in nutrient concentrations and temperature, oxygen deficiency, and
metabolite accumulation, lead to the dispersion of bacterial cells that return to a planktonic
state [9].

The intrinsic properties of biofilms provide the microbial community with characteris-
tics towards antibiotic resistance. It is interesting to consider Chen and Wen’s perspective,
according to which bacterial biofilm is a particular kind of persistent bacterial infection [10].
Besides its structural role in biofilm, EPS represents a physical barrier for a biofilm since it
hinders or reduces the penetration of antimicrobial compounds in the innermost layers.
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An example, ionic interactions between antimicrobial drugs and the EPS matrix may limit
their penetration. The negative charge of polysaccharides effectively blocks the penetration
of positively charged antibiotics such as aminoglycosides [11]. In addition, the EPS barrier
leads to an incomplete penetration of antibiotics, and therefore, the cells in the biofilm
layer encounter sub-inhibitory concentrations of the drug, becoming tolerant [12,13]. It has
also been reported that extracellular DNA (eDNA), a key constituent of the EPS matrix, by
acting as a metal cation chelator, activates the PhoPQ/PmrAB systems that control various
genes involved in nutrient utilization, metal homeostasis, acid pH tolerance, and virulence
in Pseudomonas aeruginosa [14]. The heterogeneity of the microenvironment within biofilm,
characterized by a progressive gradient of pH, oxygen, and nutrients from the top to the
bottom of the biofilm, also contributes to the acquisition of drug-resistant phenotypes.
Andrè and coll. reported that pathogens benefit from hypoxia, which has been proven
to activate various mechanisms of pathogen virulence [15]. An acidic microenvironment
promotes faster bacterial evolution toward elevated antibiotic resistance, as evidenced
by promoting the selection of stable genetic mutations and increasing the expressions of
multiple biofilm- and virulence-related genes [16]. Further, in reduced levels of nutri-
ents and oxygen, cells globally decrease their bacterial metabolic and growth rates, thus
promoting the emergence of persister cells, a subpopulation of transiently slow-growing
or growth-arrested cells that are tolerant to antibiotics and able to survive for extended
periods in the absence of nutrients and lethal stresses [17,18]. The presence of persister
cells can result in the recalcitrance and relapse of persistent bacterial infections, and it
has been linked to an increase in the risk of the emergence of antibiotic resistance [19].
The increased resistance capacity of biofilms is also attributable to the upregulation of
efflux pumps in response to antimicrobial exposure, thereby extruding multiple classes of
antimicrobial compounds into the extracellular environment. A few efflux pump genes
were found upregulated, mainly in the upper layer of biofilms. These include AcrAB-TolC
in Escherichia coli, AdeFGH in Acinetobacter baumannii, PA1874-1877 and MexAB-OprM in
P. aeruginosa, Resistance–Nodulation–cell Division (RND) in Burkholderia cenocepacia, and
AcrD in Salmonella enterica [20–23]. Efflux pumps are also implicated in the secretion of
QS molecules and thereby indirectly modulate gene expression remodeling underlying
cell-to-cell adhesion, EPS and virulence factor production, and biofilm formation [24].
Lastly, within a biofilm, mobile genetic elements, including plasmids, transposons, and
integrons, may facilitate the spread of resistance genes among the microbial community
through horizontal gene transfer [25].

3. Anti-QS Approaches to Overcome Biofilm Resistance

Over the past two decades, several agents of diverse origins have been identified to
suppress biofilm formation through the inhibition of the QS signaling pathway by exerting
inhibitory effects at multiple levels. According to their target, these agents are generally
grouped into three categories: inactivators of signaling molecules, inactivators of signaling
receptors, and inhibitors of signaling cascade, through the mechanisms described below.

3.1. Inactivation of Signaling Molecules

Since inter- and intra-species bacterial communication is sensed, maintained, and
powered by QS mechanisms and represents a crucial step for biofilm formation, an effective
strategy to interrupt this communication is represented by the use of inhibitors capable
of suppressing the synthesis of, inactivating, or degrading the AI signaling molecules.
Studies on P. aeruginosa revealed that (z)-5-octylidenethiazolidine-2,4-dione (TZD-C8) sig-
nificantly downregulates the expression of LuxI-type acyl-homoserine lactone synthases
by interfering with both the Pseudomonas Quinolone Signal (PQS) and 3-oxo-C12-HSL
signaling pathways [26]. In vitro studies also reported that subminimal growth-inhibitory
concentrations of some macrolide antibiotics are able to reduce N-acyl homoserine lactone
(AHL) synthesis in P. aeruginosa. Tateda and coll. revealed that azithromycin interferes
with the synthesis of autoinducers by reducing the concentration of 3-oxo-C12-HSL and C4-
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HSL by 94 and 72%, respectively, and the expression of the transcriptional activator genes
lasR and rhlR and of the two autoinducer synthase genes lasI and rhlI [27]. Subminimal
growth-inhibitory concentrations of erythromycin were found to suppress the synthesis of
homoserine lactone autoinducers as well as the production of hemagglutinins, proteases,
and hemolysins [28].

Alternatively, AHL production could be blocked by targeting its two precursors, which
are S-adenosylmethionine (SAM), an amino donor for the generation of the homoserine
lactone ring moiety, and acyl carrier protein (ACP) for the acyl side chain of the AHL
signal. Various analogues of SAM, such as S-adenosylhomocysteine, S-adenosylcysteine,
and sinefungin, were demonstrated to be potent inhibitors of AHL synthesis [29]. A low
concentration of azithromycin inhibits the expression of numerous genes belonging to the
SAM synthesis pathway which, in turn, leads to a decrease in AHL production by LasI and
RhlI [30]. What is more, triclosan reduces AHL synthesis by inhibiting the precursor of
enoyl-ACP reductase [31].

A wide range of molecules have been progressively identified to inhibit AI-2 synthesis
via the downregulation of the LuxS enzyme across a wide spectrum of bacteria. Next to
S-homoribosyl-L-cysteine and L-homocysteine, sinefungin, a variety of halogenated fura-
nones, and natural compounds like surfactin were recognized to downregulate the luxS, pfs,
and speE genes, with a significant reduction in AI-2 production in several bacterial species,
such as Streptococcus pneumoniae, Streptococcus suis, and Staphylococcus epidermidis [32–35].

Ultimately, the inactivation or degradation of signal molecules by AHL quenching
represents another effective QQ strategy interfering with bacterial communication. In
this context, three different classes of enzymes have been progressively discovered and
classified according to their mechanism of action. These enzymes, their substrates, and
relative effects on biofilm inhibition are reported in Table 1.

Table 1. Quorum Quenching enzymes, their substrates, and their relative mechanisms of inhibition
of biofilm.

Enzyme Category Name Source Substrates Effect Reference

Lactonases

AiiA Bacillus sp. Priestia
aryabhattai

C4-, C6-, C8-,
C10-HSL; 3OC4-,

3OC6-, 3OC8-,
3OC12-HSL;

3-OH-C4-HSL

Inhibition of biofilm and
production of pyocyanin,

rhamnolipid, and
exopolysaccarides in P.

aeruginosa, Vibrio cholerae,
and S. aureus.

[36,37]

AiiB Agrobacterium
tumefaciens

C4-, C6-, C7-, C8-,
C10-HSL; 3OC6-,

3OC8-HSL

Reduction in the bacterial
virulence in Erwinia

carotovora.
[38]

AiiK Lactobacillus casei,
Kurthia huakui C10-HSL

Attenuation of swimming
motility, virulence factor
production, and biofilm
formation in Aeromonas

hydrophila and P. aeruginosa

[39,40]

Aii810 Bacteria from
Mao-tofu 3OC12-HSL Inhibition of virulence and

biofilm in P. aeruginosa. [41]

bpiB01, B04, B07 Bacteria from soil
samples

3OC8-HSL; 3OC6-,
3OC8-,

3OC12-HSL

Biofilm inhibition in
P. aeruginosa. [42]

DlhR, QsdR1 Rhizobium sp. 3OC8-HSL

Inhibition of biofilm and
other QS-dependent

processes in P. aeruginosa,
Chromobacterium violaceum,

and A. tumefaciens.

[43]
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Table 1. Cont.

Enzyme Category Name Source Substrates Effect Reference

Lactonases

ND Geobacillus
kaustophilus

3-OH-C10-HSL,
3-OH-C12-HSL

Distruption of biofilm on
multiple strains of A.

baumannii.
[44]

MCP Mycobacterium
avium

C6-, C7-, C8-, C10-,
C12-HSL

The enzyme is a
metal-dependent

N-acylhomoserine lactonase
[45]

MomL Muricauda olearia C6-HSL Attenuation of the virulence
of P. aeruginosa. [46]

SsoPox-1 Sulfolobus
solfataricus

C4-, C6-, C8-,
C12-HSL; 3OC6-,
3OC8-, 3OC10-,

3OC12-HSL

Attenuation of QS signaling,
virulence factor production,

and biofilm formation
in vitro.

[47]

PON1-3 Homo sapiens

C7-, C12-,
C14-HSL; 3OC6-,

3OC10-,
3OC12-HSL

Inhibition of biofilm
formation and extracellular

virulence factors in P.
aeruginosa.

[48]

YtnP Stenotrophomonas
maltophilia 3O-C12-HSL

Inhibition of biofilm
formation, induction of

biofilm decomposition, and
reducetion of extracellular

virulence factors
production.

[49]

Acylases

Aac Ralstonia
solanacearum

C7-, C8-, C10-HSL;
3OC8-HSL

Inhibition of QS mechanism
in C. violaceum. [50]

AhlD Arthrobacter sp. OHHL, OHL and
OdDH

Reduction in the AHL
amount and pectate lyase

activity in Erwinia carotovora.
[51]

AhlM Streptomyces sp.
C6-, C8-, C10-HSL;

3OC6-, 3OC8-,
3OC12-HSL

Decrease of the production
of virulence factors,

including elastase, total
protease, and LasA, in P.

aeruginosa.

[52]

aibP Brucella melitensis 3OC8-,
3OC12-HSL

Decrease of endogenous
AHL accumulation within

Brucella melitensis.
[53]

AiiD Ralstonia sp. OC6-, OC8-,
OC10-, OC12-HSL

QQ activity in P. aeruginosa
achieved through an

Acyl-homoserine lactone
acylase hydrolyses the AHL

amide, releasing
homoserine lactone and the

corresponding fatty acid.

[54]

AiiO Ochrobactrum sp.
A44 3OC4-14-HSL Inhibition of the virulence in

Pectobacterium carotovorum. [55]

GqqA Komagataeibacter
europaeus C8-, C10-, C12-HS Inhibiton of biofilm

formation. [56,57]

HacA, B Pseudomonas
syringae

C6-, C8-, C10-,
C12-HSL; OC8-,
OC10-, OC12-,

OC14-HSL

Inhibition of biofilm
formation, and colony

morphology.
[58]
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Table 1. Cont.

Enzyme Category Name Source Substrates Effect Reference

Acylases

MacQ Acidovorax sp.

C6-, C8-, C10-,
C12-HSL;

3OC8-HSL; OC6-,
OC8-, OC10-,

OC12-, OC14-HSL

Interference with the QS
system. [59]

PA2385 P. aeruginosa 3COC12-HSL

QQ activity achieved
through an

N-acyl-homoserine lactone
acylase

[60]

PvdQ P. aeruginosa
C8-, C10-,
C12-HSL;

OC12-HSL

Attenuation of P. aeruginosa
virulence. [61,62]

QuiP P. aeruginosa
C8-, C10-,
C12-HSL;

OC12-HSL

Gene expression regulation
of QS systems in P.

aeruginosa.
[63]

Slac1, 2 Shewanella
loihica-PV4 3OC10-HSL Exhibition of in vitro QQ

activity. [64]

Oxidoreductases

BdcA E. coli 3OC6-HSL Dehydrogenase/reductase
activity. [65]

BpiB05 Bacteria from soil
sample 3-oxo-C8-HSL Exhibition of in vitro QQ

activity. [66]

BpiB09 Bacteria from soil
sample 3-oxo-C8-HSL

Reduction in pyocyanin
production, decreased
motility, poor biofilm

formation in P. aeruginosa.

[67]

CYP102A1 Bacillus megaterium
C12-20-HSL (ω-1,

ω-2, ω-3
hydroxylated)

In vitro oxidation of AHLs
and their lactonolysis

products acyl homoserines.
[68]

ND Rhodococcus
erythropolis

3-oxo-AHL,
N-(3-oxo-6-

phenylhexanoyl)
homoserine
lactone, 3-

oxododecanamide,
n-(3-

oxododecanoyl)-L-
homoserine

lactone

Exhibition of AHL
oxidoreductase and
amidolytic activities.

[69]

QQ-2 Bacteria from
water sample

3-oxo-C6-HSL;
3,4,4-trihydroxy-2-

pentanone-5-
phosphate

Reduction of AHL and AI-2
in QS-inactive

hydroxy-derivatives and
inhibits biofilm formation in

Klebsiella oxytoca and
Klebsiella pneumoniae.

[70]

AHL lactonase hydrolyzes the ester bond of the homoserine lactone ring [71]. Most
of the AHL-degrading enzymes are lactonases belonging to the metallo-lactamase super-
family [72]. Identified for the first time by Dong and coll. in Bacillus species isolated from
soil samples, these enzymes have been progressively discovered in several other bacterial
species, including A. tumefacens, Bacillus stearothermophilus, K. pneumoniae, Rhizobium sp.,
Mycobacterium avium, Muricauda olearia, and V. cholerae [6,36,38,43,45,46,51]. Most of the
known AHL-lactonases have high affinity and stability at high temperatures and do not
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display any preference for the length of the carbon acyl side chain attached to the lactone
ring [73].

Still identified in only a limited number of bacterial species, AHL acylases catalyze the
degradation of the AHL amide bond, generating free fatty acids and a lattone
ring [52,54,60,74,75]. It has been suggested that acylases degrade AHL with a long side
chain than with a short side chain [76]. Lastly, several AHL oxidoreductases are known
from various bacteria, reducing or oxidizing the acyl chain of the AHL, thus inhibiting
the specific binding of the autoinducer to its receptor [65,66,69]. Only a few enzymes
degrading or modifying AI-2 have been currently identified. Xavier and coll. identified
in E. coli the kinase LsrK responsible for the phosphorylation of AI-2 as well as LsrG,
potentially involved in the degradation of phospho-AI-2 [77,78]. In addition, since AI-2
in its dephosphorylated form is unable to bind to its receptor, and therefore the signal-
ing cascade does not begin, it follows that many compounds exerting inhibition activity
against LsrK have been progressively identified [79–81]. Furthermore, high concentrations
of imidazole, a furan carbocyclic analogue of AI-2, decrease the antibiotic resistance of a
clinical ampicillin-resistant E. coli strain by significantly downregulating the transcription
of the lsrR gene that, in turn, reduces the function of AI-2 [82]. More recently, by using
a metagenomic approach, several non-toxic biomolecules were identified. Particularly, it
was demonstrated that the oxidoreductase QQ-2, simultaneously interfering with AI-2
and AHL, reduces 4-hydroxy-2,3-pentanedione-5-phosphate (P-DPD, a C5-phosphorylated
derivative of the open AI-2 form) to 3,4,4-trihydroxy-2-pentanone-5-phosphate, namely, an
inactive AI-2 derivative [70].

3.2. Inactivation of Signaling Receptors

In the last ten years, a few QS inhibitors competing with autoinducers for binding to
their receptors have been discovered by computational docking studies as well as high-
throughput screening (HTS) of small-molecule libraries, mainly in P. aeruginosa.

Flavonoids such as naringenin were demonstrated to directly bind the receptor LasR,
thus preventing LasR/RhlR DNA binding, reducing biofilm formation, and repressing
many other QS-related effects [83,84]. Similar QQ mechanisms were identified for many
other natural compounds, including ortho-vanillin, embelin, and piperine, as well as for
the antidiabetic drugs dipeptidase inhibitor-4 (DPI-4) sitagliptin and omarigliptin [85–88].
In addition, in vitro and molecular docking assays demonstrated that subinhibitory con-
centrations of several aminoglycoside drugs, including amikacin, gentamicin, kanamycin,
neomycin B, paromomycin, and netilmicin, display strong binding properties with the
LasR protein and, thus, exhibit antibiofilm action against P. aeruginosa [89]. More recently,
Manson and coll., by screening a 25,000-compound library, discovered eight new robust
and effective antagonists of LasR [90].

Numerous structural analogues of AHL were identified as antagonists of QS receptors
to compete or interfere with the signal of autoinducers. In this context, several data
demonstrated that the length of the acyl chain, as well as the introduction of an unsaturated
bond close to the amide linkage of AHL, has a significant impact on its binding activity,
so that AHL analogues with a long acyl side chain represent efficient inhibitors [91,92].
In addition, many natural compounds, including catechin, nakinadine B, flavonoids, and
furanones, as well as many synthetic AHL analogues, were identified to exert a competitive
inhibition on autoinducer receptors in several bacteria [84,93–97]. What is more, by using a
multivalent scaffold approach, a chemical antagonist probe for Lsr-type AI-2 receptors in
Salmonella typhimurium and an imaging agent for bacterial species utilizing Lsr-type AI-2
receptors were identified [98]. The antagonistic effect of several AI-2 synthetic analogues
was recognized in Vibrio harveyi [99].

3.3. Inhibition of Signaling Cascade

The best-characterized mechanism of inhibition of the QS signaling cascades involves
the use of targets blocking the downstream response regulator AgrA in S. aureus. Many
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compounds, such as Azan-7, bumetanide, savrin, and staquorsin, have been discovered
to strongly reduce the AgrA-DNA complex formation at the P3 promoter region involved
in the regulation of RNAIII transcription, thus preventing virulence gene upregulation
and biofilm formation [100–102]. A few synthetic molecules have been discovered to act as
antagonists of LuxR-type proteins, such as many autoinducer analogs. The TraR regulator
response of Agrobacterium tumefaciens was demonstrated to be antagonized by analogs of
the autoinducer 3-oxo-octanoyl-homoserine lactone [103]. Virstatin, a small molecule that
prevents the expression of cholerae virulence factors, is able to repress the expression of
AnoR that is a positive regulator of the LuxI-like synthase AnoI in Acinetobacter nosocomialis,
leading to decreased synthesis of N-(3-hydroxy-dodecanoyl)-L-homoserine lactone (OH-
dDHL). Low levels of this compound affect the signaling cascade and reduce biofilm
formation and motility [104]. What is more, PAβN, an efflux pump inhibitor, reduces
the extracellular accumulation of QS signaling molecules such as N-3-oxo-dodecanoyl-l-
homoserine lactone and N-butyryl-l-homoserine lactone and significantly decreases the
relative expression of the QS cascade (pqsA, pqsR, lasI, lasR, rhlI, and rhlR) and QS-regulated
type II secretory genes lasB (elastase) and toxA (exotoxin A) in P. aeruginosa clinical isolates,
thus inducing a reduction in bacterial virulence [105]. In E. coli and Salmonella, inhibitors of
the transcription of the SdiA regulator protein, such as extracts of Melia dubia seeds and
fructose-furoic acid, attenuate the expression of virulence factors by blocking the binding of
AHLs to SdiA [106]. A phosphate ester derivative of chrysin exhibits higher anti-virulence
activity by acting as a potent QS inhibitor of P. aeruginosa. It binds to the QS regulator LasR,
thus abrogating its DNA-binding capability [107].

In Figure 1, the three different anti-QS approaches described above are schematized.
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4. Quorum Quenching Compounds

Regarding their origin, QSIs can be distinguished into compounds of natural or
synthetic provenance. Many QQ agents identified to date were isolated from various
natural sources, such as plants, marine organisms, and living organisms.

4.1. Plant-Derived Anti-Biofilm Compounds

Plants have been known for centuries to be sources of a plethora of bioactive com-
pounds with antioxidant, anticarcinogenic, antiallergenic, anti-inflammatory, antimuta-
genic, and antimicrobial activities, and it is no coincidence that phytochemicals represent
the basis of traditional medicinal practices [108–110]. As part of the characterization of the
antimicrobial properties of these compounds, referred to as phytochemicals, numerous
studies have highlighted how the majority exert their action by significantly inhibiting
the process of bacterial biofilm formation and the QS signaling system. Among these,
we mention alkaloids, lectins, polyacetylenes, polyphenols, and terpenoids, of which a
summary of the main compounds is shown in Table 2.

Table 2. Quorum Quenching natural compounds and their relative molecular effects on biofilm.

Phytochemical Class Compounds Natural Source Molecular Effect Reference

Alkaloids

Berberine Coptis, Hydrastis and
Berberis genus

Downregulation of QS-related
genes. [111]

Chelerythrine Chelidonium majus L. Disruption of membrane integrity,
inhibition of biofilm components. [112]

Furocoumarins Grapefruits Inhibition of QS signalling; Biofilm
dispersion. [113,114]

Norbgugaine Arisarum vulgare Inhibition of cell motility and of
adhesion. [115]

Anthraquinones
Emodin

Rheum palmatum L.

Suppression growth, hyphal
development, and biofilm of Candida
albicans by targeting cellular kinase

signalling.

[116]

Polygonum cuspidatum,
Rheum palmatum

Downregulation of biofilm-forming
related genes in S. aureus. [117]

Glycosides

β-sitosterol glucoside;
Isolimonic acid;

Ichangin
Citrus species

Inhibition of the biofilm and motility
through the repression of flagellar
master operon flhDC Interferece

with cell–cell signalling and biofilm
formation by the modulation of

luxO expression.

[118,119]

Ellagic acid Rubus ulmifolius Inhibition of the biofilm and
increase antibiotic susceptibility. [120]

Lectins

AGL Amaranthus gangeticus Inhibition of biofilm formation. [121]

CasuL Calliandra surinamensi Inhibition of biofilm formation. [122]

ConA Canavalia ensiformis Reduction in bacterial adhesion. [123]

ConBol Canavalia boliviana Reduction in bacterial adhesion. [124]

ConM Canavalia maritima Reduction in bacterial adhesion. [124]

PgTeL Punica granatum Reduction in bacterial adhesion. [125]

Polyacetylenes Glicosides (PAGs) Launaea capitata [126]
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Table 2. Cont.

Phytochemical Class Compounds Natural Source Molecular Effect Reference

Polyphenols

Casbane diterpene Croton nepetaefolius Inhibition of biofilm and reduction
of bacterial adhesion. [127]

7-epiclusianone Rheedia brasiliensis Inhibition of biofilm and reduction
of bacterial adhesion. [128]

Flavonoids (baicalin,
catechin, curcumin,

kaempherol, luteolin,
proaminophyllin,
quercetin, vitexin)

Scutellaria baicalensis
and Vitex species

Decrease in the QS signaling
molecules 3-oxo-C12-HSL and

C4-HSL; Attenuation of LasA, LasB,
and LuxR.

[129–131]

Methyl-gallate

Suppression of the synthesis of the
extracellular polymeric matrix,
inhibition of QS signaling, and
alteration of the microbial cell

membrane.

[132]

Phloretin Apple, pear and
strawberry fruits

Downregulation of virulence genes
essential for surface attachment,

biofilm formation, and QS.
[133]

Terpenoids

Carvacrol Organum vulgare Reduction in QS signalling. [134]

Ursolic acid Many medical plants Inhibition of biofilm formation and
disruption of cell membrane. [135]

4-epi-primaric acid Aralia cachemirica L. Inhibition of biofilm formation and
disruption of cell membrane. [136]

In recent years, special attention has been given to Essential Oils (EOs), volatile
secondary metabolites of aromatic plants and spices that give them their characteristic and
distinctive smell or taste, that exhibit recognized antimicrobial properties. In this frame,
several studies have revealed how EOs can inhibit biofilm formation through different
mechanisms. Calamintha nepeta (L.) Savi ssp. nepeta, Clinopodium nepeta L., Cinnamomum
verum, Cinnamomum zeylanicum, Citrus bergamia, Citrus limon, Citrus reticulata, Eugenia
caryophyllata, Foeniculum vulgare subsp. piperitum, Laurus nobilis L., Lippia alba, Myrtus
communis L., Origanum vulgare spp., viridulum Ocimum basilicum, Prangos trifida, Petroselinum
crispum, Salvia officinalis L., Salvia Rosmarinus, Satureja hortensis, Thymus daenensis, and
Thymus vulgaris are just a few oils whose anti-biofilm properties have been demonstrated
in both Gram-negative and Gram-positive bacteria as well as in multidrug-resistant clinical
strains [137–143].

The biological activity of each EO has been mostly attributed to the hydrophobic nature
of oils as well as to the action of their principal components, which are represented mainly
by terpenes and terpenoids as primary components, and polyphenols [144]. It has been
demonstrated that most of these compounds interact with the lipid bilayer and accumulate
in the cell membrane, leading to a progressive loss of intracellular molecules such as
nucleic acids and proteins [145,146]. Recent reports have also highlighted that EOs induce
a profound altering of the global methylation levels of adenine and cytosine residues
located in the genomes of both pathogenic and non-pathogenic bacterial strains, thus
hypothesizing that they induce a massive epigenetic remodeling that, in turn, profoundly
changes the expression of genes involved in cooperative behaviors, cell-to-cell adhesion
and communication, and virulence and hinders the strategies adopted for the survival of
the bacterial community [147].

4.2. Marine-Derived Anti-Biofilm Compounds

Also, the marine environment, with algae, invertebrates, sponges, and corals, rep-
resents a rich source of natural bioactive molecules; thus, in the last few years, their
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antibiofilm activity has been progressively identified. The inhibitory effects on biofilm
formation exerted by extracts or derivatives from seaweeds and microalgae were recently
reviewed by Behzadnia [148]. As an example, extracts from Westiellopsis prolifica inhibit
biofilm formation and prevent cell adhesion against Gram-positive (S. aureus, Bacillus
subtilis, and Streptococcus spp.) and Gram-negative bacteria (Shigella sp., Proteus sp., and
P. aeruginosa), as well as fungi (Aspergills niger and C. albicans) [149]. Crude extracts from
Arthrospira platensis (cyanobacteria) and Polysiphonia scopulorum (Rhodophyta) show strong
antimicrobial and antibiofilm activity and are responsible for a significant downregulation
of genes that play pivotal roles in surface attachment, biofilm formation, and the overall
stability of the biofilm architecture in P. aeruginosa [150]. Similarly, Chlamydomonas extract
inhibits the QS pathway, thus affecting P. aeruginosa pathogenicity and biofilm morphology
and thickness [146]. Extracts from Cladostephus spongiosus (Phaeophyta) inhibit hyphal
growth and biofilm formation via the downregulation of the expression of hyphal-specific
genes and virulence factors in Candida sp. [151]. In addition, algal bioactive compounds
have been progressively identified as anti-biofilm agents by mainly interfering with the
expression of genes involved in QS signaling. Among these, we may mention algal polysac-
charides, such as alginate, laminaran, and fucoidan, algal carotenoids, including zeaxanthin
and lutein, algal lipids, of which α-linolenic acid, monogalactosylmonoacylglycerol, palmi-
toleic acid, spirulina, sulfoquinovosyldiacylglycerol, and sulfoquinovosylmonoacylglycerol
are just some examples, as well as algal phlorotannins, that were found to reduce cell
proliferation, motility, and adhesion and interfere with the synthesis of exopolysaccarides
and virulence factors [152–160].

Furthermore, a few compounds from marine sponges were proven to have antibiofilm
activity. These include the bromoageliferin from Agelas spp., the darwinolide from Dendrilla
membranosa, the diterpene alkaloid(-)-ageloxime D from Agelas nakamurai, the tryptamine
derivative bufotenine from Paramuricea clavate, and Synoxazolidinonones from Synoicum
pulonaria [161]. QS inhibition associated with biofilm disruption was observed in Vibrio spp.
treated with a marine actinomyces extract [162].

4.3. Microbial-Derived Anti-Biofilm Compounds

Next to the previously described enzymes involved in the inactivation or degrada-
tion of QS autoinducers, namely lactonases, acylases, and oxidoreductases, and to the
well-characterized antibiotics obtained from microorganisms, such as benzylpenicillin,
cephalosporins, and gentamicin, many secondary microbial metabolites have been pro-
gressively identified to exert QQ activity [163]. Walkmycin C, a histidine kinase (HK)
inhibitor produced by Streptomyces sp., displays anti-biofilm activity against Streptococcus
mutans [164]. In addition, alnumycin D, granaticin B, kalafungin, medermycin, collismycin
C, napyradiomycin, hygrocin C, 8-O-metyltetrangomycin, panglimycin D, and streptoru-
bin, isolated from Streptomyces sp. exhibit promising antibiofilm activities against S. aureus
and methicillin-resistant S. aureus (MRSA) [165–169].

Several microbial-produced diffusible-signal factors (DSF), which are cis-2-unsaturated
fatty acids identified in a range of bacterial pathogens, including Xanthomonas, Enterobacter,
Thiobacillus, Leptospirillum, Stenotrophomonas, Burkholderia, Achromobacter, Yersinia, Methy-
lobacillus, Pantoea, and Cronobacter, are able to disperse biofilm formation in a range of
Gram-negative and Gram-positive bacteria and modulate virulence gene expression, re-
verse persistence, increase microbial metabolic activity, and significantly enhance the an-
tibacterial activity of conventional antimicrobial agents [170–173]. Carolacton, a macrolide
keto-carboxylic acid produced by the myxobacterium Sorangium cellulosum, by interfering
with PknB-mediated signaling in growing cells, significantly inhibits S. mutans biofilm for-
mation [174]. Similarly, other secondary metabolite compounds, including the skyllamycin
family produced by Streptomyces sp., phenazines from both Gram-positive and Gram-
negative bacteria, and promysalin isolated by Pseudomonas putida, were demonstrated to
exert an antibiofilm effect [175].
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Biosurfactants (BSs) are amphipathic bioactive compounds that are produced mostly
by microorganisms on their cell surface or secreted extracellularly, and they are classified,
according to the chemical structure of the hydrophilic head group, in glycolipids, fatty
acids, lipopeptides, and polymers. They are powerful anti-biofilm agents that can act as
biocides as well as biodispersants up to 95.9% [176,177].

Rhamnolipids, glycolipids, surfactins, and lipopepdide biosurfactants exhibit an-
timicrobial, anti-fungal, and anti-biofilm activity through different mechanisms of action.
In vitro and ex vivo evidence reports that a biosurfactant from the entomopathogenic fun-
gus Beauveria bassiana alters cell permeability and disrupts the cell membrane, effectively
eradicating the biofilm of Microsporum canis [178]. Some BSs, including surfactin, rham-
nolipid, and lipopeptide pontifactin, alter the hydrophobicity of the cell surface, interfere
with cell adhesion to other microorganisms and/or surfaces, and affect the integrity of
cellular membranes, thereby dispersing the biofilm and solubilizing the component of
the matrix [179–181]. Lastly, BSs may indirectly inhibit the biofilm by interfering with
QS signals. In this context, Yan and coll. demonstrated that BSs isolated from lactic acid
bacteria, including Pediococcus acidilactici and Lactobacillus plantarum, affect the expression of
genes involved in biofilm formation (cidA, icaA, dltB, agrA, sortaseA, and sarA) and interfere
with the release of AI-2 signaling factor in S. aureus [182].

4.4. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are a class of agents naturally occurring in animals,
plants, and microbes, exhibiting antimicrobial, anti-attachment, and antibiofilm properties
against both Gram-positive and Gram-negative multidrug-resistant pathogens and fungi as
well [183,184]. Most AMPs are cationic, which allows their interaction with the negatively
charged bacterial membranes, which permealize, thus leading to cell death [185,186].

Evidence has reported that AMPs affect biofilm formation or degradation at different
stages and through the following mechanisms of action:

(i) Inhibition of bacterial attachments to surfaces: AMPs can interfere in the early stages
of biofilm formation to prevent the initial adhesion of bacteria to surfaces. Arslan
and coll. reported that lactoferrin suppresses the initial attachment of Streptococcus
gordonii coaggregates [187]. By downregulating genes encoding ABC transporters
involved in cell-to-surface and cell-to-cell interactions, the peptide Nal-P-113 can
inhibit Porphyromonas gingivalis biofilm formation [188].

(ii) Disruption of the membrane potential of biofilm-embedded cells: Different kinds of
bacteriocins, including nisin A and, to a lesser extent, lacticin Q, show antibiofilm
activity on clinical isolates of methicillin-resistant S. aureus (MRSA), altering the
membrane potential [189].

(iii) Permeabilization of cell membrane: Esculentins Esc (1–21) and (CSA)-13 permeabilize
the cytoplasmic membrane of P. aeruginosa in biofilms [190,191].

(iv) Interruption of QS signaling and gene regulation: In P. aeruginosa, cathelicidic LL-37
and indolicidin prevent biofilm formation via the downregulation of the transcription
of the Las and Rhl systems [192]. Additionally, peptide 1037 directly inhibits biofilms
by reducing swimming and swarming motilities, stimulating twitching motility, and
suppressing the expression of a variety of genes involved in biofilm formation [193].
The human β-defensin 3 (hBD-3) reduces the synthesis of polysaccharide intercellular
adhesin (PIA) by downregulating the expression of the icaA, icaD, and icaR genes in S.
epidermidis [194].

(v) Degradation of the biofilm matrix: Peptide PI decrease S. mutans biofilm biomass by
degrading the exopolysaccharide matrix [195]. In addition, an AMP complex pro-
duced by the maggots of blowfly Calliphora vicina effectively counteracts the formation
of E. coli, S. aureus, and A. baumannii biofilms by destroying the biofilm matrix [196].
Similarly, the human antimicrobial peptide hepcidin 20 reduces the mass of the extra-
cellular matrix and alters the architecture of the biofilm in S. epidermidis [197].
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Lastly, bacteriocins are a group of antimicrobial peptides produced by bacteria that
have the potential to disrupt biofilm either by themselves or in combination with other
drugs [198]. Evidence has reported that sonorensin, a bacteriocin isolated from Bacillus
sonorensis, inhibits the biofilm growth of S. aureus by increasing membrane permeabil-
ity [199]. The bacteriocin LFX01A from Lactiplantibacillus plantarum has antibiofilm activity
against Shigella flexneri [200]. Bacteriocins produced by Pediococcus acidilactici exhibit an-
tibiofilm activity through a decrease in extracellular polymeric substances (EPSs) and a
reduction in cell adhesion [201]. Bacteriocin from Lactobacillus plantarum was effective in
counteracting biofilm formation on catheters induced by bacteria such as P. aeruginosa and
S. aureus [202].

4.5. Synthetic Compounds

A plethora of artificially designed inhibitory molecules are being synthesized to target
QS and biofilm processes in bacteria. These molecules, deeply detailed by Vashistha and
coll., primarily include analogues of autoinducers of QS that competitively bind the AHL
receptors, thus inhibiting QS and biofilm formation [203]. Next to these analogues, over
the past 15 years, several studies have highlighted the promising potential of synthetic
nanostructured materials for counteracting bacterial growth. Nanoparticles (NPs) such
as gold (Au), silver (Ag), copper (Cu), palladium (Pd), platinum (Pt), or zinc oxide (ZnO)
have been proposed as novel potential means of fighting bacteria thanks to their ability
to induce death or limit the growth of microorganisms depending on their particular
physicochemical parameters, namely the shape, size, composition, and surface function-
alization [204–207]. Their high surface area-to-volume ratio, high reactivity, and stability,
combined with their unique physicochemical properties, allow them to interact with mi-
crobial membranes and exhibit antimicrobial effects at low concentrations by inducing
oxidative stress and disrupting membrane integrity and bacterial biomolecules [206,208].
These same parameters were also found to be fundamental in conferring antibiofilm prop-
erties to NPs. More particularly, the interaction between NPs and bacteria embedded
in a biofilm is modulated by the physicochemical properties of the NPs, such as their
size, charge, shape, and hydrophobicity and the EPS matrix [209]. The smaller the size
of the NPs, the greater their ability to penetrate the water-filled channels of the biofilm
and exert antibiofilm and antibacterial effects [210–212]. Likewise, shapes that allow for a
high surface area-to-volume ratio give NPs greater antibacterial and anti-biofilm efficacy,
with rod-like NPs exhibiting more effectiveness than spherical particles in their inhibitory
action [211]. In addition, the hydrophobicity of the NP surface determines its efficacy in
penetrating into biofilm. Li and coll. demonstrated that NPs coated with DSPE-PEG2000
increase their hydrophilicity, improve their penetration through mucus, and effectively
eradicate Helicobacter pylori biofilm [213]. It has also been reported that cationic particles
penetrate biofilms completely, while neutral or anionic ones are unable to do so, since
the EPS substances as well as the bacterial cell wall have an overall negative charge [214].
On the other hand, the viscosity and compaction of the EPS matrix, cell density, and the
characteristics of the water spaces (pores) within the EPS matrix influence the speed and
penetration of NPs within a biofilm [215]. A summary of the different types of nanocompos-
ites, their characteristics, and their antibiofilm activities has been recently published [216].
NPs can exert their antibiofilm activity via a multitude of mechanisms [217,218]. The
antibacterial and antibiofilm properties of silver nanoparticles (AgNPs) have been investi-
gated in several studies. Evidence demonstrates that AgNPs fuse with the cell membrane,
altering its charge and affecting cell permeability, thus ultimately leading to cell lysis [219].
These particles are also able to downregulate the production of exopolysaccharide and
alginate as well as interfere with the QS system [220]. The antibiofilm effect brought out by
gold nanoparticles (AuNPs), which is enhanced by the intrinsic photothermal properties of
this metal, is primarily amenable to the reduction in exopolysaccharide production, the
inhibition of swimming and swarming motility, and the disruption of the cell membrane
followed by a metabolic deterioration [218,221,222]. Zinc nanoparticles (ZnNPs) induce
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cell depolarization, increase permeability, increase oxidative stress, and alter the expression
of QS genes [223]. Similarly, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have
been shown to reduce biofilm formation in S. mutans with different effectiveness depending
on their surface charge [224]. Being magnetic, the presence of an external magnetic field
induces these NPs to penetrate the full depth of the biofilm, thus killing bacterial cells deep
inside biofilms due to vibration damage, local hyperthermia, and ROS generation [225,226].

If nanomaterials themselves act by inhibiting biofilms quite effectively through the
above-mentioned mechanisms, their action is even more enhanced when they are con-
jugated together to form bimetallic nanoparticles (BMNPs) or coated with QS inhibitors.
As an example, studies carried out on B. subtilis, Proteus mirabilis, and S. mutans revealed
that the antibiofilm effect of mixed ZnO:MgO NPs and Zn:CuO NPs is more prominent
compared to that shown by the individual NPs [227,228]. Ho and coll. modified poly-
acrylamide magnetic beads with the funarone-like analogue Dihydropyrrolidone (DHP),
a molecule with proven QQ activity, thus revealing the effectiveness of the substrate
in reducing the growth of S. aureus in vitro and in subcutaneous infection models [229].
Similarly, nanocarriers of many other QQ compounds, including flavonoids, AMPs, and
autoinducer-degrading enzymes, gave encouraging results in promoting the dispersion
of biofilms. NPCs loaded with a combination of tt-farnesol and compound 1771, with or
without myricetin, fully prevent S. mutans and C. albicans dual-species biofilm formation by
impeding biomass accumulation, bacterial growth, and exopolysaccharide matrix deposi-
tion [230]. AuNPs coated with the lactonase AiiA appeared to be effective in degrading
K-hexanoyl-L-homoserine lactone, suppressing EPS production, and biofilm formation in
multidrug-resistant Proteus species [231].

Lastly, lipid-coated hybrid nanoparticles (LCHNPs) were investigated for their ca-
pability of delivering antibiotics into biofilms. In vitro experiments demonstrated that
LCHNPs loaded with vancomycin eradicate up to 99.99% of S. aureus biofilm, an effect
that is not observed following treatment with vancomycin alone [232]. NPs encapsulated
with ciprofloxacin and polymyxin B show complete inhibition against E. coli and S. aureus
growth and P. aeruginosa biofilm [233,234]. Tobramycin and an alkylquinolone QS inhibitor
encapsulated in squalenyl hydrogen sulfate nanoparticles (SqNPs) allow for the complete
eradication of biofilm at a 16-fold lower concentration than tobramycin alone [235]. Hybrid
nanospheres containing gentamicin and QQ acylase exhibit a significant inhibitory effect
on the formation of P. aeruginosa biofilm [236].

5. QQ Applications

In concert with the progress of knowledge regarding the molecular basis of the QQ
process, innovative applications of QS inhibitors are providing encouraging results in miti-
gating the negative impact that microorganisms have in different fields such as agriculture,
aquaculture, waste treatment, and human health.

Bacterial soft rot is a most pervasive and economically pernicious disease that affects a
wide range of agricultural and horticultural crops and is caused by multiple genera of Gram-
positive and Gram-negative phytopathogens [237]. In exploring pesticide-substitutive and
environmentally friendly strategies that may finally allow for effective disease management,
a QQ-based approach, mainly based on the identification of AHL-degrading strains, is gain-
ing considerable attention. The Pseudomonas segetis strain P6 isolated from the halophyte
plant Salicornia europaea displays biocontrol ability against the phytopathogens Dickeya
solani, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum, and Pseudomonas
syringae infecting tomato and carrot plants by degrading AHL [238]. Bacillus thuringiensis
strains possess the AHL-lactonase AiiA, which suppresses the QS-dependent virulence
of the plant pathogen E. carotovora, thereby reducing its pathogenicity and the incidence
of the symptom development of potato soft rot [239]. Zang and coll. identified a highly
efficient AHL-degrading Pseudomonas nitroreducens strain W-7 that is capable of degrad-
ing a wide range of AHLs, including N-(3-oxohexanoyl)-l-homoserine lactone (OHHL),
N-(3-oxooctanoyl)-l-homoserine lactone (OOHL), and N-hexanoyl-l-homoserine lactone
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(HHL). It follows that this strain is a useful biocontrol agent against various bacterial
phytopathogens [240]. Bacterial strains capable of degrading the Diffusible Signal Factor
(DSF) involved in the regulation of pathogenic virulence have also been identified. Among
these, we mention Acinetobacter lactucae strain QL-1, Burkholderia anthina strain HN-8, and
Burkholderia sp. F25, characterized for their degradation ability and potential biocontrol of
black rot disease caused by Xanthomonas campestris [241–243]. In addition to this biocontrol
approach, transgenic plants modified with QQ lactonase have also been developed to pre-
vent bacterial infection. Dong and coll. first demonstrated that tobacco and potato plants
expressing aiiA lactonase from Bacillus sp. quench pathogen QS signaling and show signifi-
cantly enhanced resistance to E. carotovora infection [71]. Nicotiana tabacum lines expressing
the lactonase AttM efficiently quench P. carotovorum communication in vivo [244].

Stress conditions (due to overcrowding) and water quality in aquaculture make fish
particularly susceptible to bacterial infections, mainly from Vibrio, Pseudomonas, Edward-
siella, Flavobacterium, and Aeromonas. In the last few years, non-conventional methods
for controlling bacterial diseases and improving the general health conditions of cultured
species have been adopted to attenuate the virulence of fish pathogens. Lactonases purified
from Bacillus sp. can attenuate A. hydrophila infections in zebrafish [245]. The AiiA lactonase
isolated from Bacillus licheniformis DAHB1 inhibits in vitro biofilm formation in Vibrio and
reduces its colonization and the mortality of shrimps in aquaculture [246]. Finally, Bacillus
sp. QSI-1, B. licheniformis T-1, B. thuringensis QQ1, B. cereus QQ2, and Bacillus velezensis
D-18 significantly reduce the pathogenicity of A. hydrophila and biofilm formation in Vibrio
sp. by downregulating the production of the respective virulence factors, thereby mak-
ing them safe and effective for protecting hosts against pathogenic bacterial infections in
aquaculture [247–250].

Membrane bioreactors (MBRs) represent the technology of choice to treat both in-
dustrial and municipal wastewaters. However, the accumulation of microbial cells and
extracellular polymeric substances, namely, biofouling, represents the critical point that
negatively impacts the filtration performance of the membranes. Therefore, the current
non-chemical strategies for reducing membrane biofouling consist of the immobilization of
QQ bacteria, QQ enzymes, or QQ natural compounds such as curcumin, flavonoids, and
funarones on different surfaces to significantly inhibit biofilm formation [251–253].

Biofilm formation by pathogenic bacteria on medical devices and implants generally
evolves into persistent and often recurrent infections that are often refractory to conven-
tional antibiotic treatments and, therefore, challenging to treat. As elaborated upon in the
previous paragraph, nanomaterials per se or in combination with QS inhibitors represent
an innovative and effective solution to prevent, delay, and eradicate biofilm formation on
surfaces or for enhancing drug targeting.

6. Conclusions

Currently, novel effective therapeutical approaches are being feverishly searched for to
deal with the emergence and spread of antibiotic-resistant pathogens. In this context, a bet-
ter characterization of the molecular mechanisms underlying QS and its inhibition, as well
as the discovery of new compounds with quenching activity, turns out to be fundamental for
the development of innovative and antibiotic-free multifaceted biocontainment approaches
in different fields such as the clinical, food, and environmental agriculture fields.
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