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Simple Summary: Amyotrophic lateral sclerosis (ALS) is the most common form of Motor Neuron
Disease and is traditionally associated with motor cortex, brainstem and spinal cord degeneration.
Neuropsychological deficits are also increasingly recognized in ALS and have considerable clinical
ramifications, but existing studies of cognitive impairment in ALS have primarily focused on cortical
frontotemporal disease burden. The aim of this study is the comprehensive assessment of the grey
and white matter components of limbic networks in a large cohort of patients with ALS, stratified
for the C9orf72 genotype. Our MRI analyses reveal that the cortical, subcortical and white matter
components of limbic circuits are not only affected in C9orf72-positive patients, but also in those
who test negative for this genetic variant. Our radiological findings are consistent with previous
neuropsychological observations and highlight the importance of comprehensive neuropsychological
testing in ALS, irrespective of the underlying genotype. Cognitive impairment in ALS has widespread
practical implications, including compliance with assistive devices, participation in clinical trials,
and it has been associated with increased caregiver burden and is widely regarded as an adverse
prognostic indicator. Our data provide radiological evidence of widespread limbic degeneration in
ALS, which is particularly severe in C9orf72 mutation carriers.

Abstract: Background: While frontotemporal involvement is increasingly recognized in Amyotrophic
lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite
growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition.
Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and
111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A
deep-learning-based segmentation approach was implemented to segment the nucleus accumbens,
hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical
and white matter components of the Papez circuit were also systematically evaluated. Results:
Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus
accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reduc-
tions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left
entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix,
cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was
more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial
temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological
findings were consistent with neuropsychological observations and highlighted the importance of
comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype.
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1. Introduction

Amyotrophic lateral sclerosis is primarily associated with relentless motor neuron de-
generation manifesting in progressive motor disability, bulbar dysfunction and respiratory
insufficiency [1]. Accordingly, neuroimaging studies have traditionally primarily focused
on the motor cortex, corticospinal tracts, brainstem and spinal cord [2–5]. Clinical case se-
ries, however, have long highlighted coexisting frontotemporal, extrapyramidal subcortical,
sensory and cerebellar dysfunction [6–9]. The substrate of extra-motor manifestations have
been characterized by nuanced post mortem studies and have also been evaluated in vivo
by comprehensive neuroimaging studies [10–13]. While neuroimaging studies focusing
on extra-motor involvement in ALS have consistently captured hippocampal [14], amyg-
dalar [15], dorsolateral frontal lobe [8], orbitofrontal [16], temporal lobe [2], insular [17] and
Broca’s area involvement [18], fornix, limbic nuclei and the integrity of the Papez circuit
have been characterized much less well [19–22]. Subcortical grey matter studies in amy-
otrophic lateral sclerosis invariably detect volume reductions, but subcortical structures are
typically evaluated as a whole, i.e., the atrophy of the entire thalamus or entire amygdala,
as opposed to the evaluation of specific nuclei. This is important as these nuclei mediate
specific cortico–basal and cortico–cortical circuits with distinct neuropsychological, motor
and sensory functions [23–25]. Subsequent to the incremental characterization of both
motor system and frontotemporal pathology in ALS, there have been emerging reports of
selective cerebellar involvement in ALS [26–30]. Beyond gait impairment and changes in
dexterity, cerebellar dysfunction in ALS may also contribute to dysarthria, dysphagia and
abnormal respiratory patterns, and are likely to have specific cognitive and behavioural
sequelae also.

Physiologically, the limbic system and the Papez circuit (Figure 1) mediate a number
of crucial functions such as motivation, emotional regulation, information registration and
spatial memory, etc. [31], therefore the dysfunction of these networks in ALS has important
practical ramifications. While clinical trials continue to focus solely on motor function,
mobility, bulbar function, respiratory measures and composite functional rating scale
scores as their main monitoring and outcome measures, the practical impact of cognitive
and behavioural impairment should not be underestimated [32,33]. Neuropsychological
deficits in ALS are thought to have survival ramifications, impact on caregiver burden,
affect compliance with assistive devices, end-of-life decisions, adherence to therapy and
participation in clinical trials [34,35].

Cognitive profiles in ALS have been traditionally primarily associated with executive
dysfunction, verbal fluency deficits and behavioural impairment, but memory impairment,
language deficits and apathy are increasingly recognized facets of neurocognitive change
in ALS [14,36–43]. More recently, a multitude of studies have highlighted difficulties in
social cognition and theory of mind deficits, which again may impact on clinical care.
Pursuing direct correlations between focal imaging measures and functional performance
has long been regarded as contentious, but more recently the altering and buffering effects
of education and cognitive reserve are also recognized as important modifiers of clinical
performance [44–47].

In light of the clinical relevance of limbic network dysfunction and the relative paucity
of imaging studies specifically focusing on these structures, we conducted a prospective,
multimodal imaging study of limbic disease burden in ALS in a large cohort of patients
with ALS, stratified for the C9orf72 hexanucleotide repeat expansions. Our main objectives
were the comprehensive assessment of both the white and grey matter components of
these circuits, and to assess their degeneration in sporadic patients with ALS and those
carrying the C9orf72 repeat expansion. Based on clinical observations, we hypothesized
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that those carrying the repeat expansion would exhibit a more marked degeneration of
these structures, but we also hypothesized that C9orf72-negative individuals with ALS
would also suffer from limbic network dysfunction.
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2. Materials and Methods
2.1. Ethics Approval

This research project was approved by the Beaumont Ethics Medical Research Commit-
tee, Beaumont Hospital, Dublin (REC reference: 08/90), and all participants gave informed
consent to participate.

2.2. Participants

A prospective multimodal neuroimaging study was conducted with 315 participants;
204 individuals with ALS and 111 healthy controls. Patients with ALS were diagnosed
according to the revised El Escorial criteria and had “probable” or “definite” ALS. Healthy
controls were unrelated to the patients and had no known first degree relatives with neu-
rodegenerative conditions. Exclusion criteria prior to imaging for both patients and healthy
controls (HC) included prior brain surgery, known cerebral infarcts or haemorrhages,
traumatic brain injuries, known hydrocephalus or brain tumours, comorbid psychiatric
conditions, multiple sclerosis, or systemic conditions such as malignancies, vasculitis, or
HIV. Potential participants were also screened for suitability for MRI scanning, therefore
individuals with pacemakers, aneurysm clips, orbital metallic fragments, or severe self-
declared claustrophobia were not enrolled. A smoking history, alcohol consumption, a
detailed family history, and medical and surgical history were taken from each potential
participant prior to enrolment in the study. In this particular study, only ALS patients
with comprehensive genetic screening were included (see details below) and patients with
neuroimaging data but no genetic screening were excluded. All patients and controls under-
went neuroimaging with the same MRI protocol using uniform scanner settings (see details
below) on the same scanner. Only participants who had a full data set including both 3D T1-
weighted images and diffusion tensor imaging (DTI) data were included, and participants
with incomplete data, i.e., missing T1 or DTI, were excluded. Patients and controls with
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incidental cerebral findings such as meningioma, hydrocephalus, demyelination, arachnoid
cysts, or prior infarcts were also excluded. In patients who had multiple follow-up imaging,
their first data set was included. Family history, handedness, age, sex and education were
systemically recorded from all study participants. The recorded demographic data were
subsequently used as covariates in statistical models (see details below).

2.3. Clinical Assessments

Site of onset (spinal/bulbar), revised ALS functional rating scale (ALSFRS-r) scores [48]
and symptom duration were recorded in each individual with ALS. A total of 159 out of
204 patients had a brief screening cognitive assessment with the Edinburgh Cognitive
and Behavioural ALS Screen (ECAS) (REF) administered within one week of their MRI
scan. The ECAS is a validated neuropsychological screening instrument that assesses
the language, verbal fluency, executive, memory and visuospatial domains [49]. It has
been comprehensively validated worldwide, including by the Irish population, and local
normative values have been generated [50]. A subset of patients also took the Penn
UMN scale [51], HADS [52] and Emotional Lability Questionnaire (ELQ) [53], and had
a comprehensive sensory [25] and cerebellar assessment [27], but these data were not
specifically explored in this particular study.

2.4. Genetics

Each patient with ALS was screened for both a range of ALS-associated genetic
variants and for hexanucleotide repeat expansions in C9orf72. Repeat-primed polymerase
chain reaction (PCR) was used to screen for intronic GGGGCC repeat expansion in C9orf72,
as described previously [54]. GeneMapper version 4.0 was used to visualise capillary
electrophoresis outcomes, and 30 or more repeats were considered C9orf72-positive. All
participating patients were also screened for a panel of protein-altering, exonic, or splice-site
variants in 32 genes linked to ALS in the ALS online database (ALSod) [55], including ALS2,
ANG, ATXN2, CHCHD10, CHMP2B, DAO, DCTN1, ELP3, ERBB4, FIG4, FUS, HNRNPA1,
MATR3, NEFH, NEK1, OPTN, PFN1, PRPH, SARM1, SETX, SIGMAR1, SOD1, SPAST,
SPG11, SQSTM1, TAF15, TARDBP, TBK1, UNC13A, UBQLN2, VAPB and VCP. Either whole-
genome sequence data [56] or targeted DNA sequence data [55] were utilised. Following
quality control, sequence data were aligned to the GRCh37 reference genome, and variants
were annotated and analysed using cutadapt V.1.9.1, SAMtools V1.7, Picard V.2.15.0 (http:
//broadinstitute.github.io/picard/ accessed on 5 July 2024), Plink V.1.9, R V.3.2.3 (http:
//www.r-project.org/ accessed on 5 July 2024), SnpEff V.4.3 and Gemini V.0.20.1.

2.5. Neuroimaging
2.5.1. Data Acquisition

MRI data of all participants were acquired on the same 3 Tesla Philips Achieva plat-
form. Patients were screened for incidental neurovascular or neuroinflammatory findings
by fluid-attenuated inversion recovery (FLAIR) imaging. FLAIR images were recorded
axially, implementing an Inversion Recovery Turbo Spin Echo (IR-TSE) sequence with the
following settings: TR/TE = 11,000/125 ms, TI = 2800 ms, FOV = 230 × 183 × 150 mm,
spatial resolution = 0.65 × 0.87 × 4 mm. Two main raw input data sets were analysed quan-
titatively in this study: 3D structural T1-weighted (T1w) images and diffusion-weighted
images (DWI). T1-weighted data were acquired with a 3D Inversion Recovery-prepared
Spoiled Gradient Recalled echo (IR-SPGR) sequence with a 1mm isotropic voxel resolution
(VR), a field-of-view (FOV) of 256 × 256 × 160 mm, 160 sagittal slices with no interslice gap,
flip angle (FA) = 8◦, SENSE factor = 1.5, TR/TE = 8.5/3.9 ms and TI =1060 ms. DTI data
were acquired with a spin-echo echo planar imaging (SE-EPI) pulse-sequence implementing
a 32-direction Stejskal-Tanner diffusion encoding scheme; FOV = 245 × 245 × 150 mm,
60 axial slices with no interslice gaps, FA = 90◦, VR = 2.5 mm isotropic, SENSE factor = 2.5,
TR/TE = 7639/59 ms, dynamic stabilisation and spectral presaturation with inversion
recovery (SPIR) fat suppression.

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://www.r-project.org/
http://www.r-project.org/
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2.5.2. Data Analysis: Segmentation and Volumetric Analysis

Total intracranial volumes (TIV) were estimated in FreeSurfer, implementing Buckner
et al.’s approach [57]. The volumes of the left and right amygdala were retrieved from the
basic pre-processing output of FreeSurfer. The subcortical limbic segmentation toolbox [58]
was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary
body, basal forebrain and septal nucleus in both hemispheres separately (Figure 2). The
toolbox relies on a U-Net deep-learning architecture with spatial, intensity, contrast and
noise augmentation trained on 39 manually labelled data sets and extensively validated
with excellent true positive rates, false discovery rates and manual–automatic volume
correlations [58]. The pipeline was implemented with single T1-weighted inputs, and seg-
mentation accuracy was individually verified in all subjects, in both patients and controls,
using “freeview”. The thalamus was segmented into 25 sub-regions by a Bayesian inference
pipeline implementing a probabilistic atlas developed using histological data [59], and
the volumes of the left and right anterior thalamic nuclei were retrieved. The hippocam-
pus was parcellated into cytologically-defined subfields implementing the hippocampal
segmentation stream [60] of FreeSurfer to generate volumetric estimates for the left and
right subiculum.
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Figure 2. Deep-learning based subcortical segmentation of limbic structures, Lt: Left, Rt: Right.

2.5.3. Data Analysis: Cortical Thickness Analysis

The pre-processing and anatomical reconstruction pipeline of the FreeSurfer image
analysis suite [61] was utilised with the following standard steps: non-parametric non-
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uniform intensity normalisation, affine registration to the MNI305 atlas, intensity normali-
sation, skull striping, automatic subcortical segmentation, linear volumetric registration,
neck removal, tessellation of the grey matter–white matter boundary, surface smoothing,
inflation to minimise metric distortion and automated topology correction [62]. Eight
processing cores were utilised in parallel, given the considerable computational demands
and time of the recon-all pipeline. The cortical labels of the Desikan–Killiany atlas [63] were
used to estimate average cortical thickness values from the entorhinal, parahippocampal,
caudal anterior cingulate, posterior cingulate and rostral anterior cingulate gyri separately
in the left and right hemispheres.

2.5.4. Data Analysis: DTI Analysis

Input raw diffusion tensor imaging data were pre-processed using tools of the FMRIB’s
software library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/ accessed on 5 July 2024).
DTI data were eddy current-corrected, skull stripped, and a tensor model was fitted to
create fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) mpas.
FSL’s tract-based statistics (TBSS) module was then utilised for non-linear registration,
skeletonisation and the creation of a mean FA mask. Each participant’s individual FA, AD
and RD images were then merged into 4-dimentional (4D) AD, FA and RD image files.
Diffusivity metrics were retrieved from the four (AD, FA, RD) concatenated diffusivity
files using the FMRIB fornix label [64] and the cingulum labels of the ICBM-DTI-81 white-
matter atlas [65] in the two hemispheres separately (Figure 3). The Fornix_FMRIB_FA1mm
template [64] is derived from probabilistic tractography pathways of the fornix in 49 adults
registered to FMRIB58_FA standard-space and averaged [64].
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2.6. Statistical Analysis

Normality assumptions on MRI-dependent variables were verified before parametric
statistics were implemented. Differences in age, education and sex distribution across
HC and ALS subgroups were examined with one-way analysis of variance and χ2-test,
respectively. To test the effect of group on subcortical volumes, cortical thickness and WM
integrity indices, multivariate analyses of covariance (MANCOVAs) were conducted using
the MRI metrics as dependent variables, group membership (HC, ALS-neg, ALS-pos) as an
independent factor, and age, sex, handedness and TIV (only for the volumetric analysis) as
covariates. In case of a significant multivariate omnibus test, post-hoc comparisons were
conducted. Post-hoc contrasts were considered significant at p < 0.05, following Bonferroni
corrections for multiple comparisons to reduce Type I error. To examine the contribution of
neuroimaging metrics on core limbic system cognitive function, i.e., memory, we conducted
regression analysis, including ECAS-total memory score as a dependent variable, and age,
sex, education and neuroimaging metrics as independent (confounding or predictor) vari-
ables. To avoid clinically irrelevant neuroimaging contributions to memory performance,
only neuroimaging metrics with a significant main effect on previous MANCOVAs were
entered as predictors. Statistical analyses were conducted using IBM SPSS v. 29.

3. Results
3.1. Demographic and Clinical Profile of Study Participants

The three groups were matched for age and education, but not for sex and handedness.
The two patient groups were matched for site onset, symptom duration and functional
disability (Table 1). Regarding cognitive status, the two patient groups differed in ECAS-
Memory, with C9+ALS showing worse performance compared to C9-ALS (p = 0.047). Apart
from the C9orf72 repeat expansion, no patient carried a pathogenic or likely pathogenic
variant in any of the 32 genes that were analyzed.

Table 1. The demographic and clinical profile of study participants.

Study Groups C9-ALS
(n = 182)

C9+ALS
(n = 22)

HC
(n = 111) p-Value

Age (years) 61.57 ± 12.28 58.00 ± 8.98 59.55 ± 10.81 0.195
Sex (M/F) 120/62 14/8 54/57 0.013
Education (years) 13.76 ± 3.33 13.95 ± 3.35 13.03 ± 3.60 0.170
Handedness (R/L) 174/8 19/3 98/13 0.040
Site onset (S/B) 160/22 20/2 n/a 0.680
Symptom duration (months) 17.12 ± 5.78 16.18 ± 6.13 n/a 0.239
ALSFRS-R 38.72 ± 5.67 37.91 ± 6.85 n/a 0.268
ECAS-Total Score 104.67 ± 15.36 100.27 ± 19.18 n/a 0.263
ECAS-ALS Specific score 76.99 ± 12.51 75.47 ± 15.77 n/a 0.665
ECAS-ALS Non-specific score 27.68 ± 5.46 24.80 ± 5.54 n/a 0.040
ECAS-Language 24.24 ± 3.94 25.27 ± 3.10 n/a 0.306
ECAS-Verbal Fluency 16.66 ± 5.04 17.13 ± 5.74 n/a 0.734
ECAS-Executive Functions 36.10 ± 7.26 33.07 ± 8.67 n/a 0.126
ECAS-Memory 16.24 ± 4.42 13.93 ± 5.32 n/a 0.047
ECAS-Visuospatial Functions 11.44 ± 2.66 10.87 ± 1.06 n/a 0.396

3.2. Volumetric Analysis

A significant main effect of group was detected in volumetric analysis (Pillai’s Trace =
0.180; F = 1.819; p = 004). Limbic structures’ segmentation revealed study group-specific
volumetric profiles (Figure 4).
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Figure 4. The limbic volumetric profiles of the study groups. Estimated marginal means (EMM)
were calculated, with age, sex, handedness and TIV as covariates. Each measure is shown with error
bars representing the standard error (SE). Horizontal arrows indicate statistically significant group
differences with the following significance thresholds * p < 0.05, ** p <= 0.005, *** p <= 0.001.

Significant atrophy was identified in bilateral amygdala (L and R: C9+ALS < HC, C9-
ALS > C9+ALS; R: C9-ALS < HC), basal forebrain (L and R: C9-ALS < HC; R: C9+ALS < HC),
hypothalamus (L and R: C9+ALS < HC; C9-ALS > C9+ALS), nucleus accumbens (L and R:
C9+ALS < HC; C9-ALS > C9+ALS), and subiculum (L: C9-ALS < HC, C9+ALS < HC; R:
C9-ALS < HC) (Table 2).
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Table 2. Volumes of limbic structures (mm3) in healthy controls (HC), C9orf72-negative patients with
ALS (C9-ALS) and C9orf72-positive patients with ALS (C9+ALS). Estimated marginal means (EMM)
and standard errors (SE) were adjusted for age, sex, handedness and total intracranial volume (TIV).
Significant intergroup differences at p < 0.05 after Bonferroni correction for multiple comparisons are
highlighted in bold print.

Limbic
Structure Study Group

Descriptive Values Statistics

EMM Standard
Error

Univariate F,
p-Value

C9-ALS vs.
HC

C9+ALS vs.
HC C9- vs. C9+

Amygdala L
C9-ALS 1508.243 18.000

F = 8.570; p < 0.001 0.070 <0.001 0.012C9+ALS 1349.043 51.753
HC 1575.883 23.153

Basal
Forebrain L

C9-ALS 306.179 2.901
F = 4.219; p = 0.016 0.049 0.067 0.866C9+ALS 296.769 8.342

HC 317.749 3.732

Fornix L
C9-ALS 514.843 4.373

F = 2.326; p = 0.099 0.795 0.108 0.353C9+ALS 493.907 12.573
HC 522.893 5.625

Hypothalamus
L

C9-ALS 463.698 3.482
F = 6.096; p = 0.003 1.000 0.002 0.003C9+ALS 428.811 10.011

HC 466.398 4.479

Mammillary
Body L

C9-ALS 52.900 0.572
F = 0.028; p = 0.973 1.000 1.000 1.000C9+ALS 52.761 1.645

HC 52.680 0.736

Nucleus
Accumbens L

C9-ALS 394.490 5.605
F = 7.448; p < 0.001 0.174 <0.001 0.013C9+ALS 345.218 16.116

HC 412.086 7.210

Septal
Nucleus L

C9-ALS 121.623 1.012
F = 0.017; p = 0.983 1.000 1.000 1.000C9+ALS 121.550 2.909

HC 121.320 1.301

Subiculum L
C9-ALS 423.627 4.267

F = 6.982; p = 0.001 0.016 0.004 0.213C9+ALS 400.029 12.268
HC 443.416 5.489

Amygdala R
C9-ALS 1737.101 19.945

F = 7.805; p < 0.001 0.047 <0.001 0.035C9+ALS 1582.775 57.346
HC 1816.935 26.655

Basal
Forebrain R

C9-ALS 324.076 3.131
F = 10.822; p < 0.001 <0.001 0.001 0.392C9+ALS 309.597 9.003

HC 344.626 4.028

Fornix R
C9-ALS 520.230 4.416

F = 2.493; p = 0.084 0.713 0.092 0.331C9+ALS 498.640 12.698
HC 528.845 5.681

Hypothalamus
R

C9-ALS 466.699 3.323
F = 5.742; p = 0.004 1.000 0.003 0.006C9+ALS 435.261 9.554

HC 470.453 4.274

Mammillary
Body R

C9-ALS 55.373 0.570
F = 0.532; p = 0.588 1.000 1.000 1.000C9+ALS 56.408 1.638

HC 54.718 0.733

Nucleus
Accumbens R

C9-ALS 388.658 5.257
F = 8.121; p < 0.001 0.370 <0.001 0.003C9+ALS 335.512 15.116

HC 402.058 6.762

Septal
Nucleus R

C9-ALS 116.517 0.987
F = 0.134; p = 0.875 1.000 1.000 1.000C9+ALS 117.504 2.839

HC 117.266 1.270

Subiculum R
C9-ALS 415.900 3.907

F = 4.151; p = 0.017 0.036 0.104 1.000C9+ALS 406.041 11.234
HC 432.160 5.026
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3.3. Cortical Thickness Analysis

A significant main effect of group was identified in cortical thickness analyses (Pillai’s
Trace = 0.159; F = 2.596; p < 0.001). Cortical thickness analyses revealed considerable cortical
changes in both ALS groups (Figure 5).
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Significant differences were noted in ACC (caudate R: C9-ALS < HC; rostral L: C9-ALS
< HC, C9+ALS < HC, C9-ALS > C9+ALS), PCC (L and R: C9+ALS < HC; C9-ALS > C9+ALS)
and entorhinal cortex (L: C9-ALS < HC; C9+ALS < HC; R: C9-ALS < HC) (Table 3).

Table 3. Cortical thickness (mm) profiles in healthy controls (HC), C9orf72-negative patients with ALS
(C9-ALS) and C9orf72-positive patients with ALS (C9+ALS). Estimated marginal means (EMM) and
standard errors (SE) were adjusted for age, sex and handedness. Significant intergroup differences at
p < 0.05 after Bonferroni correction for multiple comparisons are highlighted in bold print.

Limbic Structure Study Group

Descriptive Values Statistics

EMM Standard
Error

Univariate F,
p-Value

C9-ALS vs.
HC

C9+ALS vs.
HC C9- vs. C9+

ACC-caudal L
C9-ALS 2.589 0.017

F = 2.491; p = 0.084 0.915 0.084 0.263C9+ALS 2.498 0.050
HC 2.619 0.022

ACC-rostral L
C9-ALS 2.657 0.015

F = 10.563; p < 0.001 0.010 <0.001 0.016C9+ALS 2.530 0.043
HC 2.730 0.019

Entorhinal
cortex L

C9-ALS 3.255 0.028
F = 6.227; p = 0.002 0.006 0.035 1.000C9+ALS 3.178 0.079

HC 3.398 0.035

Parahippocampal
gyrus L

C9-ALS 2.749 0.021
F = 2.152; p = 0.118 0.121 1.000 1.000C9+ALS 2.763 0.061

HC 2.822 0.027

PCC L
C9-ALS 2.447 0.012

F = 6.718; p = 0.001 0.376 <0.001 0.011C9+ALS 2.343 0.034
HC 2.477 0.015

ACC-caudal R
C9-ALS 2.436 0.016

F = 7.523; p < 0.001 <0.001 0.076 1.000C9+ALS 2.422 0.016
HC 2.534 0.021

ACC-rostral R
C9-ALS 2.777 0.015

F = 2.804; p = 0.062 0.073 0.500 1.000C9+ALS 2.768 0.015
HC 2.833 0.019

Entorhinal
cortex R

C9-ALS 3.319 0.028
F = 3.881; p = 0.022 0.022 0.380 1.000C9+ALS 3.309 0.079

HC 3.442 0.036

Parahippocampal
gyrus R

C9-ALS 2.734 0.017
F = 0.963; p = 0.383 1.000 0.569 1.000C9+ALS 2.687 0.049

HC 2.758 0.022

PCC R
C9-ALS 2.418 0.013

F = 8.700; p < 0.001 0.217 <0.001 0.003C9+ALS 2.291 0.037
HC 2.456 0.016

3.4. DTI Analysis

A significant main effect of group was also captured in DTI analyses (Pillai’s Trace = 0.223;
F = 4.219; p < 0.001). DTI analyses revealed symmetrical involvement in limbic white matter
tracts (Figure 6).
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Figure 6. The limbic diffusivity profiles study group. Estimated marginal means (EMM) were calcu-
lated with age, sex and handedness as covariates. Each measure is shown with error bars representing
the standard error (SE). Horizontal arrows indicate statistically significant group differences with the
following significance thresholds * p < 0.05, *** p <= 0.001.

Significant inter-group differences were detected in cingulum FA (L and R: C9+ALS <
HC; C9-ALS > C9+ALS), AD (L: C9-ALS > HC) and RD (L and R: C9+ALS > HC; C9-ALS
< C9+ALS; R: C9-ALS > HC), as well as in all DTI metrics of fornix (FA: C9-ALS < HC,
C9+ALS < HC, C9-ALS > C9+ALS; AD and RD: C9-ALS > HC, C9+ALS > HC, C9-ALS <
C9+ALS) (Table 4).
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Table 4. White matter diffusivity profiles in healthy controls (HC), C9orf72-negative patients with
ALS (C9-ALS) and C9orf72-positive patients with ALS (C9+ALS). Estimated marginal means (EMM)
and standard errors are adjusted for age, sex and handedness. Significant intergroup differences at
p < 0.05 after Bonferroni correction for multiple comparisons are highlighted in bold print.

Limbic Structure Study Group

Descriptive Values Statistics

EMM Standard
Error

Univariate F,
p-Value

C9-ALS vs.
HC

C9+ALS vs.
HC C9- vs. C9+

Cingulum-FA L
C9-ALS 0.505 0.004

F = 8.079; p < 0.001 1.000 <0.001 <0.001C9+ALS 0.461 0.011
HC 0.510 0.005

Cingulum-AD L
(×10−3)

C9-ALS 1.259 0.006
F = 4.720; p = 0.010 0.012 0.180 1.000C9+ALS 1.265 0.017

HC 1.231 0.008

Cingulum-RD L
(×10−3)

C9-ALS 0.550 0.006
F = 10.938; p < 0.001 0.213 <0.001 <0.001C9+ALS 0.614 0.016

HC 0.533 0.007

Cingulum-FA R
C9-ALS 0.445 0.004

F = 10.733; p < 0.001 0.098 <0.001 0.001C9+ALS 0.404 0.011
HC 0.458 0.005

Cingulum-AD R
(×10−3)

C9-ALS 1.202 0.006
F = 3.331; p = 0.037 0.177 0.073 0.581C9+ALS 1.226 0.018

HC 1.183 0.008

Cingulum-RD R
(×10−3)

C9-ALS 0.592 0.006
F = 13.204; p < 0.001 0.029 <0.001 <0.001C9+ALS 0.658 0.016

HC 0.567 0.007

Fornix-FA
C9-ALS 0.275 0.002

F = 20.430; p < 0.001 0.013 <0.001 <0.001C9+ALS 0.239 0.007
HC 0.286 0.003

Fornix-AD
(×10−3)

C9-ALS 1.869 0.018
F = 26.935; p < 0.001 <0.001 <0.001 <0.001C9+ALS 2.141 0.053

HC 1.737 0.024

Fornix-RD
(×10−3)

C9-ALS 1.243 0.016
F = 28.212; p < 0.001 <0.001 <0.001 <0.001C9+ALS 1.500 0.016

HC 1.131 0.021

3.5. Regression Analysis Models

Within the C9-ALS group, the overall model reached significance, F = 13.822; p < 0.001;
adjusted R2 = 0.124. Volume of the left hypothalamus (b = 0.019; p ≤ 0.001) and cortical
thickness of the left entorhinal gyrus (b = 1.526; p = 0.020) emerged as significant predictors,
i.e., higher left hypothalamic volume and higher left entorhinal cortical thickness predicted
superior memory performance of C9-ALS patients. Within the C9+ALS group, the overall
final model reached significance, F = 9.199; p = 0.007; adjusted R2 = 0.281. Volume of the left
nucleus accumbens (b = 0.036; p = 0.007) emerged as a significant predictor of the model;
the higher the left nucleus accumbens volume, the better the ECAS memory performance
of C9+ALS patients.

4. Discussion

Our data demonstrated that hexanucleotide repeat C9orf72 expansion carriers ex-
hibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, but C9orf72-
negative patients also showed bilateral basal forebrain volume reductions compared to
controls. With respect to Papez circuit degeneration, both patient groups showed left rostral
anterior cingulate atrophy, left entorhinal cortex thinning, and cingulum and fornix diffu-
sivity alterations compared to controls, irrespective of the genotype. Fornix and cingulum
diffusivity changes, bilateral posterior–cingulate–context–thinning, left rostral anterior–
cingulate–thickness–loss, nucleus accumbens, amygdala andhypothalamus degeneration
were more marked in hexanucleotide repeat carriers than in C9orf72-negative ALS patients.
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The main finding of this study was the demonstration that limbic network degeneration is
not unique to the C9orf72 genotype, albeit disease burden was more marked in that group.
Our multimodal data set of volumetric, cortical thickness and diffusivity variables also
confirmed that interconnected grey and white matter components of entire networks were
affected instead of selective focal pathological findings. This resonates with the recent shift
from attributing clinical deficits to the degeneration of single structures, and highlights that
clinical disability, be it motor, sensory, or neuropsychological is likely to be driven by the
dysfunction of entire circuits with a multitude of grey and white matter components. This
signals that care must be taken with direct correlations between clinical metrics and the
integrity indices of single structures [66]. The underpinnings of domain-specific disability
in ALS are best explored by connectomic approaches, network integrity assessments or, as
alternatively demonstrated here, by comprehensively evaluating the integrity of cortical,
subcortical and white matter components of specific networks.

4.1. Limbic system in Motor Neuron Disease

Both memory impairment and deficits in social cognition have a robust literature
in ALS [36,67–75]. Limbic network dysfunction is relatively well recognized on clinical
grounds, but there is a paucity of imaging studies specifically investigating limbic structures
and the integrity of the Papez circuit [21,22,76]. There is a robust post-mortem literature
describing limbic, mesial temporal and subcortical degeneration in ALS and in those with
C9orf72 expansion carriers [22,77,78]. Limbic network impairment has also been consis-
tently detected in vivo using functional and structural imaging methods [79–82]. Some
studies have previously specifically examined Papez circuit impairment in ALS, linking
degenerative change to clinical performance [19–21], but genotype correlates have not been
systematically assessed. There is also recognition that limbic regions may be affected in
other non-ALS MNDs. While classically regarded as a “restricted” phenotype, with pathol-
ogy relatively confined to motor regions [83], primary lateral sclerosis (PLS) is increasingly
considered as a multi-system disease [84,85]. Subcortical grey matter degeneration has been
recently described in PLS [86], which is consistent with recent reports describing neuropsy-
chological deficits in PLS [87–90]. To a lesser extent, neuropsychological deficits have also
been described in other MND phenotypes, such as spinal–bulbar muscular atrophy (SBMA)
and progressive muscular atrophy (PMA) [91–93]. Interestingly, despite reports of cognitive
deficits in poliomyelitis survivors [94,95], no widespread frontotemporal or subcortical
change can be detected in polio survivors using multimodal imaging techniques [96].

4.2. Clinical Correlates of Hexanucleotide Carrier Status

The C9orf72 repeat expansion is located within intron 1 of C9orf72 at genomic position
chr9:27,573,529-27,573,546 (GRCh38 coordinates), pointing to the three repeats that are
found in the reference genome; the most common allele is, in fact, two repeats. Hexanu-
cleotide repeat expansion means that the sequence GGGGCC in the C9orf72 transcript,
which is normally repeated two or three times (i.e., . . .GGGGCCGGGGCC. . .) is instead
repeated hundreds of times. This expansion has no “function”, it is an error made during
DNA replication. Its consequence in the cell is the formation of hairpins and G quadruplexes
within the RNA transcript, which can cause aggregation of RNA and the sequestration
of RNA binding proteins, as well as the formation of apparently toxic dipeptide repeats
via repeat-associated non-AUG translation. The main clinical effect centers principally
on neurodegeneration, manifesting in ALS and/or FTD. The identified anatomical pat-
terns and limbic vulnerability in C9orf72 carriers may be a consequence of the differential
expression of C9orf72 found in the neuronal subtypes of the limbic system, but future
experiments using single-cell RNAseq in postmortem tissue are required to shed light
on this. Soon after the discovery of hexanucleotide repeat expansions in ALS [97,98], a
number of large clinical studies were published, describing marked cognitive and be-
havioural change in expansion carriers [77,78,99–101]. Subsequent imaging studies have
also revealed considerable frontotemporal and subcortical degeneration in association
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with hexanucleotide carrier status [102–106], raising the question of whether this genotype
accounts for most of the comorbid FTD cases we observe clinically. C9orf72 carrier status
does not explain all the comorbid FTD cases in ALS as severe subcortical and frontotem-
poral involvement may also be observed in sporadic and C9orf72 negative cases [107].
In the past five years, family members of C9orf72 ALS probands have increasingly been
invited to participate in asymptomatic clinical and imaging studies as this genotype offers
unrivalled opportunities to uncover the presymptomatic phase of ALS and FTD, and map
propagation patterns in vivo. Presymptomatic imaging studies have consistently described
subcortical, thalamic and white matter degeneration before symptom onset [103,108–110],
but no validated indicators have yet been developed to predict estimated age of onset
or the predominant clinical phenotype, i.e., will the hexanucleotide carrier develop ALS
or FTD [103]. While different terminology is often used in Europe and North America
(pre- versus a-symptomatic), there is an increasing consensus in splitting the presymp-
tomatic phase of ALS into (1) premanifest and (2) prodromal phases [111,112]. This has
gained practical relevance with the advent of promising antisense oligonucleotide (ASO)
therapies [113,114] and opens a window of opportunity to intervene before irreversible
degeneration ensues. The vast majority of presymptomatic studies in ALS were conducted
in asymptomatic C9orf72 carriers, but pioneering studies of asymptomatic SOD1 have also
been published [115]. Many of these studies have confirmed extensive degenerative change
many years before projected symptom onset, offering unique insights into the long and
relatively arcane phase of disease biology preceding symptom onset. Some studies detected
changes in very young individuals [108,116] several decades before typical symptom onset,
and have suggested the reconsideration of these processes as developmental rather than
neurodegenerative in nature [116,117]. The considerable disease burden detected long
before symptom onset, during a phase of relatively preserved motor and cognitive function,
raises questions about the inherent redundancy and resilience of key cerebral networks or
potential adaptive processes to withstand these changes and continue to function [118,119].
While presymptomatic imaging and clinical studies of C9orf72 provided invaluable insights
into the patterns, timeline and dynamics of progressive degeneration, extreme care is
needed not to extrapolate these changes observed in C9orf72 to the presymptomatic phase
of sporadic ALS or other genetic variants.

4.3. Methodological Considerations

Our study reveals a relative symmetry of limbic involvement with bilateral basal
forebrain, subiculum and enthorinal cortex involvement in sporadic patients without
C9orf72 hexanucleotide repeats. Hexanucleotide repeat expansion carriers revealed a
slightly different pattern of vulnerability, but also bilateral amygdala, hypothalamus,
nucleus accumbens and posterior cingulate cortex and cingulum fiber involvement. The
striking symmetry of these patterns suggests that, irrespective of site of onset, site of
symptom onset and handedness, these structures exhibit a core vulnerability in ALS with
bilateral degeneration. From a methods perspective, it is interesting that while fornix
changes are readily captured by FA, AD and RD profiles, changes in the left cingulum
in C9orf72-negative patients are only detected by AD, and not by FA and RD. Similarly,
white matter integrity change in the right cingulum of C9orf72 patients is detected by RD
but not by FA. This highlights the relative drawbacks of only evaluating FA profiles in
ALS, and the benefit of assessing multiple diffusivity metrics. Often, only FA is assessed
as a composite marker of white matter integrity in imaging studies, but ALS studies
have consistently demonstrated the importance of assessing RD and AD. RD has been
traditionally considered a proxy of myelin integrity, and AD is sometimes thought of as
an “axonal” marker [120,121], but the practical relevance of examining several diffusivity
metrics in ALS lies in their different sensitivity in detecting, tracking and discriminating
white matter profiles in various monitoring and diagnostic applications [122–125]. The
presented analyses rely on routinely acquired T1-weighted raw data and a short-acquisition
diffusion protocol. T1-weighted imaging is part of any clinical protocol, and is typically
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only visually inspected in the clinical setting. However, as demonstrated above, if data
are acquired in 3D without slice gaps, T1w data can be comprehensively interrogated in
a multitude of quantitative analysis streams such as subcortical structure segmentations,
cortical thickness, cortical volume and cerebellar analyses (MT In Press). DTI can be readily
interpreted in a variety of voxel-wise and tractographic approaches to assess white matter
integrity. Novel Gaussian and non-Gaussian white matter techniques such as High Angular
Resolution Diffusion Imaging (HARDI), neurite orientation dispersion and density imaging
(NODDI) are thought to be particularly sensitive in detecting white matter changes, both
in the presymptomatic and symptomatic patients [109,126,127]. While seldom used in
clinical ALS care, magnetic resonance spectroscopy (MRS) has emerged as a powerful tool
to detect both motor and extra-motor metabolic changes in ALS [128–131]. ALS also has a
robust functional MRI (fMRI) literature [132,133], but the potential confounding effects of
medications, hypoxia and underlying cerebrovascular changes are seldom acknowledged or
discussed. More recently, several research groups implemented quantitative susceptibility
(QSM) approaches to characterize both cortical and subcortical changes.

4.4. Clinical Relevance

Limbic network dysfunction and, more broadly, cognitive dysfunction, have very
significant clinical ramifications as they not only impact on the management of the patient,
but additional resources may need to be put in place for the optimal care of the patients,
which may translate into additional caregiver burden and impact negatively on clinical
trial participation. Large neuropsychology studies in ALS using comprehensive batteries
of cognitive and behavioural tests have consistently highlighted executive and behavioural
deficits in association with C9orf72 status, as well as lower age of symptom onset [54].
While this present study is primarily a neuroimaging study and only cognitive screening
tests were evaluated, poorer memory performance was detected in hexanucleotide repeat
expansion carriers, contributing to a lower overall “ALS non-specific” score (Table 1). ECAS
is primarily a screening tool, which evaluates both “ALS-specific” (language, verbal fluency,
executive) and “ALS non-specific” (memory, visuospatial) domains [49]. Our regression
models identified left entorhinal gyrus cortical thickness as a significant predictor (b = 1.526;
p = 0.020) of memory performance in our larger (n=182) C9- cohort. The physiological role of
the entorhinal cortex as network hub for memory processes is well established, and our data
links cortical thickness alterations in this region to memory performance in ALS. Cognitive
impairment affects compliance with assistive devices [34] in multiple ways; tolerating
or synchronizing with non-invasive ventilation, learning and implementing secretion
clearance techniques such as breath stacking or cough assist machines, driving motorized
wheelchairs, maintaining feeding tube hygiene, using electronic devices with predictive
texting and capitalizing on speech banking [34]. Cognitive deficits are also thought to affect
engagement with multidisciplinary interventions, fall prevention, adherence to medications
and hamper both advance care planning and rehabilitation efforts. Neuropsychological
deficits in ALS have been consistently linked to increased caregiver burden, and are also
recognized as a negative prognostic indicator with a faster rate of decline and adverse
survival ramifications [35]. Behavioural impairment, especially early in the course of
the disease, may be mistaken for psychiatric conditions. Apathy, which is increasingly
recognized as a relatively common sequela of ALS, may impact on clinic attendance
and motivation to participate in research and clinical trials [134,135]. Apathy has been
previously linked to nucleus accumbens degeneration in ALS, and it not only impacts on
daily activities but may also impact on research participation. It is likely that patients with
significant cognitive deficits, and apathy in particular, are underrepresented in academic
research studies. This may be particularly true for non-therapeutic (non-pharmacological)
biomarker studies [136], such as neuroimaging studies where attendance at a dedicated
imaging center may be particularly taxing. As demonstrated by the above examples,
cognitive and behavioural deficits in ALS have a number of grave practical ramifications
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for the management of ALS, making the study of the underlying processes a worthy and
clinically relevant pursuit.

4.5. Diagnostic and Monitoring Applications

Neuroimaging in ALS has gained considerable momentum in recent years and departed
from focal structural analyses to comprehensively evaluate connectivity, and metabolic and
functional alterations in specific phenotypes and genotypes. Large descriptive studies relying
on group comparisons have been gradually superseded by studies interpreting single data
sets from individual patients using either large normative data sets [137,138] or machine
learning algorithms [139–141]. A key step in the development of effect machine learning
algorithm is the selection of discriminating features. While motor regions and motor
tracts seem obvious features, recent studies have demonstrated the diagnostic utility of
evaluating subcortical and extra-motor radiology metrics as well [123,142]. The radiological
heterogeneity of ALS was initially explored by studies stratifying their patients based on
clinical criteria such as disease-onset, comorbid dementia or genotype status [17], and recent
studies have explored naturally occurring clusters without imposing clinical categorization
on the data [143–145]. These studies have consistently identified homogenous sub-cohorts
of patients with more extensive frontotemporal change [144,145] without using accessory
clinical or neuropsychological information. The characterization of limbic pathology and
the genotype-dependent involvement of these structures would therefore indicate that the
quantitative assessment of these structures may have a role in future ML applications. MRI-
derived integrity metrics have also been extensively evaluated in large multi-timepoint
longitudinal studies to assess rate of decline, progression rates and propagation patterns.
Some metrics have proved particularly sensitive in detecting subtle changes over relatively
short follow-up intervals, suggesting a putative monitoring role or as potential outcome
measures in clinical trials [146–149].

4.6. Study Limitations

This study is not without limitations. Despite our efforts to interrogate a multipara-
metric data set with complementary volumetric, cortical thickness and diffusivity metrics,
we have not evaluated functional MRI data in this study. While our analyses compellingly
demonstrate considerable limbic system pathology in both patient cohort, we have no
supporting post-mortem data to examine the neuropathological and proteinopathic un-
derpinnings of these radiological changes. It would be of particular interest to assess the
pTDP-43 burden in these nuclei. Similarly, we describe white matter changes in both the
cingulum and fornix, based on diffusion data, but it would be of considerable interest to
assess axonal, myelin-related changes histopathologically. One of the biggest shortcomings
of this study stems from its cross-sectional design, which precludes the characterization of
the timeline of limbic changes. As both patient cohorts have a considerable symptom dura-
tion (Table 1), the question remains whether the notably symmetric bilateral involvement
is a reflection of long symptom duration or an aspect of the fundamental vulnerability of
limbic structures in ALS. Ultimately, only longitudinal and presymptomatic studies can
characterize the exact chronology of limbic and motor changes, i.e., which one develops
first. Recent presymptomatic studies seem to detect thalamic and subcortical pathology
before motor changes become detectable [110], but pathological staging systems suggest
otherwise [150]. Finally, while standard clinical questionnaires, rating scales and cognitive
screening tests have been administered, more detailed neuropsychological testing would
have been desirable and would have provided additional opportunities to map cognitive
deficits to radiological changes. Notwithstanding these limitations, our study demonstrates
bilateral limbic system pathology in both sporadic patients with ALS and in hexanucleotide
repeat expansion carriers.
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5. Conclusions

We demonstrated considerable limbic system and Papez circuit degeneration in both
hexanucleotide repeat expansion carriers and patients who tested negative for C9orf72.
Our results highlight that mesial temporal and parasagittal subcortical degeneration is
not unique to C9orf72 carriers. Our radiological findings are consistent with previous
neuropsychological observations and highlight the importance of comprehensive cognitive
testing in ALS, irrespective of the underlying genotype. Cognitive impairment in ALS
has widespread practical implications, including compliance with assistive devices and
participation in clinical trials, has been associated with increased caregiver burden and is
widely regarded as an adverse prognostic indicator.
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Glossary

AAL: Automated Anatomical Labeling (AAL) atlas, AD: axial diffusivity, ALS: amyotrophic
lateral sclerosis, ALSod: ALS online database, ANOVA: analysis of variance (ANOVA), ASO: anti-
sense oligonucleotide, BOLD: blood-oxygen-level-dependent (BOLD) signal, C9+: ALS patients with
GGGGCC hexanucleotide repeat expansion in C9orf72, C9-: ALS patients without GGGGCC hexanu-
cleotide repeat expansion in C9orf72, C9orf72: chromosome 9 open reading frame 72, CC: Corpus
callosum, CI: confidence interval, CT: cortical thickness, CSD: constrained spherical deconvolution,
CST: Corticospinal tract, DOFs: degrees of freedom, DTI—diffusion tensor imaging, DWI: diffusion-
weighted imaging, EMG: electromyography, EMM: estimated marginal mean, EPI: echo-planar
imaging, FA: fractional anisotropy, FC: functional connectivity, fMRI: functional MRI, FLAIR: fluid-
attenuated inversion recovery, fODF: fibre orientation distribution function, FOV: field of view,
FSL: FMRIB’s Software Library, FTD: frontotemporal dementia, FTLD: Frontotemporal lobar degen-
eration, FWE: familywise error, GM: gray matter, HARDI: High Angular Resolution Diffusion Imag-
ing, HC: healthy control, HD: Huntington’s disease, ICA-AROMA: Automatic Removal Of Motion
Artifacts, IR-SPGR: inversion recovery prepared spoiled gradient recalled echo, IQR: interquartile
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range, LAS: Local Adaptive Segmentation, LH: left hemisphere, Lt: Left, LMN: lower motor neuron,
M1: Primary motor cortex, MANCOVA: multivariate analyses of covariance, ML: machine-learning,
MND: Motor neuron disease, MNI: Montreal Neurological Institute, MNI152: Montreal Neurological
Institute 152 standard space, MRI: magnetic resonance imaging, MRS: MR spectroscopy, NISALS:
Neuroimaging Society in ALS, NIV: non-invasive ventilation, NODDI: neurite orientation dispersion
and density imaging, padj: adjusted p-value, PBA: Pseudobulbar affect, PCR: polymerase chain
reaction, PD: Parkinson’s disease, PMA: progressive muscular atrophy (PMA), PMC: primary motor
cortex, QC: quality control, RH: right hemisphere, Rt: right, RD: Radial diffusivity, ROI: region of
interest, rs-fMRI: resting-state functional MRI, SBMA: spinal-bulbar muscular atrophy, SC: structural
connectivity, SD: standard deviation, SE-EPI: spin echo planar imaging, SENSE: sensitivity Encoding,
SPIR: spectral presaturation with inversion recovery, T: Tesla, T1w: T1-weighted imaging, TCV:
total cerebellar volume, TDI: Track Density Imaging, TE: echo time, TI: inversion time, TIV: total
intracranial volume, Tukey HSD: Tukey’s Honest Significant Difference, TR: repetition time, UMN:
upper motor neuron, VR: voxel resolution, WM: white matter.
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