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Abstract
Background: We clinically and genetically evaluated a Taiwanese boy present-
ing with developmental delay, organomegaly, hypogammaglobulinemia and hy-
popigmentation without osteopetrosis. Whole-exome sequencing revealed a de 
novo gain-of-function variant, p.Tyr715Cys, in the C-terminal domain of ClC-7 
encoded by CLCN7.
Methods: Nicoli et al. (2019) assessed the functional impact of p.Tyr715Cys by 
heterologous expression in Xenopus oocytes and evaluating resulting currents.
Results: The variant led to increased outward currents, indicating it underlies 
the patient's phenotype of lysosomal hyperacidity, storage defects and vacuoliza-
tion. This demonstrates the crucial physiological role of ClC-7 antiporter activity 
in maintaining appropriate lysosomal pH.
Conclusion: Elucidating mechanisms by which CLCN7 variants lead to lysoso-
mal dysfunction will advance understanding of genotype–phenotype correlations. 
Identifying modifier genes and compensatory pathways may reveal therapeutic 
targets. Ongoing functional characterization of variants along with longitudinal 
clinical evaluations will continue advancing knowledge of ClC-7's critical roles 
and disease mechanisms resulting from its dysfunction. Expanded cohort studies 
are warranted to delineate the full spectrum of associated phenotypes.
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1   |   INTRODUCTION

Lysosomes are membrane-bound intracellular organ-
elles containing hydrolase enzymes that catalyze mac-
romolecule degradation and recycling of constituents in 
cells. Maintaining an acidic luminal pH is essential for 
optimal lysosomal function (Hamer et  al.,  2012). Active 
proton accumulation in lysosomes is primarily driven by 
the vacuolar-type H+-ATPase (V-ATPase) proton pump, 
but acidification also necessitates counterion movement 
to preserve electroneutrality (Mindell,  2012; Xiong & 
Zhu,  2016). Defects in ion channels or transporters reg-
ulating counterion flux can disrupt homeostasis and 
eventually lead to pathologies including neurodegenera-
tion and lysosomal storage diseases (Devuyst et al., 1999; 
Kasper et al., 2005; Mohammad-Panah et al., 2002; Poët 
et al., 2006; Stobrawa et al., 2001). Chloride is considered 
the primary counterion traversing the lysosomal mem-
brane (Graves et  al.,  2008) via the chloride/proton ex-
changer CLC-7, encoded by CLCN7. However, CLC-7's 
precise role in acidification remains contentious, with 
some studies supporting its involvement while others 
question it (Graves et al., 2008; Kasper et al., 2005; Kornak 
et al., 2001; Majumdar et al., 2011; Steinberg et al., 2010; 
Weinert et al., 2010).

Lange et  al.  (2006) demonstrated by immunofluores-
cence colocalization that CLCN7 and OSTM1 proteins are 
both localized to late endosomes, lysosomes, and specif-
ically the ruffled border of bone-resorbing osteoclasts in 
various mammalian tissues. Coimmunoprecipitation ex-
periments showed that CLCN7 and OSTM1 physically in-
teract and form a molecular complex, suggesting OSTM1 
functions as a β subunit of CLCN7 to regulate its localiza-
tion and activity. Additional experiments revealed CLCN7 
is required to transport OSTM1 to the lysosome, where the 
highly glycosylated luminal domain of OSTM1 undergoes 
proteolytic processing into its mature form. Gray-lethal 
mice, which lack the Ostm1 gene, exhibited greatly re-
duced Clcn7 protein levels but normal Clcn7 RNA levels 
in tissues, indicating the Clcn7-Ostm1 protein–protein in-
teraction is important for Clcn7 protein stability.

Quantification showed Clcn7 protein levels in Ostm1-
deficient tissues and cells, including osteoclasts, were less 
than 10% of normal levels, leading to the conclusion that 
Ostm1 mutations likely cause osteopetrosis primarily by 
impairing acidification of the osteoclast resorption lacuna 
which is dependent on Clcn7. The similar lysosomal stor-
age pathology and neurodegeneration seen in both gray-
lethal and Clcn7 knockout mice implies the Clcn7-Ostm1 

protein complex has a broader importance beyond bone 
homeostasis (Lange et al., 2006).

Graves et al.  (2008) directly measured and character-
ized an anion transport pathway in purified lysosomes, 
demonstrating it has the expected characteristics of a 
CLC-type Cl−/H+ antiporter. Additional experiments si-
lencing Clc7 gene expression showed this transporter 
constitutes the major route for chloride ion flux across 
the lysosomal membrane. Knockdown of Clc7 expression 
using short interfering RNA substantially ablated the ly-
sosomal Cl−/H+ antiport activity and strongly reduced the 
ability of lysosomes to acidify in vivo. Taken together, they 
concluded CLC7 functions as a Cl−/H+ antiporter that 
comprises the predominant Cl− permeability pathway in 
lysosomes and is vital for normal lysosomal acidification 
(Graves et al., 2008).

Patients with loss-of-function mutations in CLCN7 
can develop either autosomal dominant osteopetrosis 
type 2 (OPTA2; OMIM 166600) or autosomal recessive 
osteopetrosis type 4 (OPTB4; OMIM 611490), depend-
ing on the specific mutation and inheritance pattern 
(Jentsch, 2007; Jentsch et al., 2005). These disorders high-
light the importance of CLCN7 for normal bone homeo-
stasis and modeling. We present a case report of a child 
who harbors a confirmed pathogenic de novo variant in 
CLCN7 that manifested not with osteopetrosis but rather 
as a more complex pleiotropic syndrome comprising of 
cutaneous albinism, developmental delay, organomegaly, 
enteropathy, and hypogammaglobulinemia. The de novo 
missense variant c.2144A>G (p.Tyr715Cys) (GenBank: 
NM_001287.5) (ClinVar: RCV000412760.1) found in the 
proband was shown by functional studies to result in 
increased chloride flux mediated by ClC-7, reflecting a 
gain-of-function effect (Nicoli et  al.,  2019). Additional 
functional assays revealed this variant decreased lyso-
somal pH and induced enlarged cytoplasmic vacuoles in 
patient-derived fibroblasts. A mouse model engineered 
to carry a corresponding heterozygous variant likewise 
displayed hallmarks of lysosomal dysfunction including 
hypopigmentation, organomegaly, and lysosomal stor-
age, providing further evidence that the p.Tyr715Cys 
variant is pathogenic and disrupts normal CLCN7 func-
tion (Nicoli et al., 2019). Moreover, the increased cellular 
acidity and abnormal cellular phenotype observed in the 
proband's cells was able to be reversed in vitro upon treat-
ment with the lysosomotropic alkalinizing agent chloro-
quine, pharmacologically highlighting that ClC-7 plays 
an integral role in controlling lysosomal pH homeostasis 
(Nicoli et al., 2019).
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A recent study by Bose et al. (2023) investigated the ef-
fects of the gain-of-function CLCN7 variant p.Tyr715Cys 
on lysosomal acidification and function. They found that 
expression of this variant in HeLa cells led to enlarged cy-
toplasmic vacuoles derived from endo-lysosomes. These 
vacuoles exhibited defective proteolytic capacity, with re-
duced degradation of endocytosed proteins. Additionally, 
expression of the p.Tyr715Cys variant resulted in impaired 
autophagic clearance, with increases in the autophagy 
markers LC3-II and p62 indicating a buildup of autophagic 
material. Their results demonstrate that dysregulated lyso-
somal pH homeostasis due to enhanced ClC-7 antiporter 
activity can profoundly disrupt cellular processes.

2   |   MATERIALS AND METHODS

2.1  |  Patient

A 25-month-old Taiwanese male presented clinically with 
generalized hypopigmentation of the skin, hair, and ocu-
lar albinism that had been present since birth (Figure 1a). 

Additional medical history revealed failure to thrive, sig-
nificant developmental delays, and organomegaly upon 
physical exam. The patient exhibited protein-losing en-
teropathy that required placement of a percutaneous 
endoscopic gastrostomy tube to provide supplemental 
nutritional support. An abdominal ultrasound showed 
diffuse and homogeneous increased echogenicity 
throughout the liver parenchyma, indicating suspected 
inflammation and liver dysfunction (Figure  1b). Renal 
ultrasound revealed nephromegaly affecting both kid-
neys, with increased cortical echogenicity and poor cor-
ticomedullary differentiation (Figure 1c), suggestive of a 
renal tubulointerstitial process. Brain magnetic resonance 
imaging revealed a mild prominence of the cerebrospi-
nal fluid space in the left anterior, middle cranial fossa, 
possibly representing an arachnoid cyst or sequela of at-
rophy. Importantly, there were no radiographic signs of 
osteopetrosis or dysostosis multiplex that can be seen in 
patients with CLCN7-related osteopetrosis. However, the 
patient was found to have hypogammaglobulinemia with 
low serum IgG and IgM immunoglobulin levels, requiring 
intravenous immunoglobulin replacement treatment to 

F I G U R E  1   Clinical and radiological findings in the patient. (a) Patient showing hypopigmentation of the skin and hair. (a1) Birth 
(a2) 2-year-old (b) Abdominal ultrasonography demonstrating diffuse and homogeneous increased echogenicity of the liver. (c) Renal 
ultrasonography showing bilateral nephromegaly with increased echogenicity and poor corticomedullary differentiation.

(a)

(b) (c)

(a1) (a2)
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prevent infections. A standard peripheral blood smear test 
was performed by a clinical hematopathologist to further 
analyze the white blood cells and evaluate the hypogam-
maglobulinemia. Whole-exome sequencing was also con-
ducted on a research basis to determine the underlying 
genetic causes of the constellation of albinism, failure to 
thrive, global developmental delays, and hypogamma-
globulinemia in this proband.

2.2  |  Blood smear procedure

Peripheral blood smears are commonly performed as 
part of a routine complete blood count to visually inspect 
the morphology of red and white blood cells (Bain, 2006; 
Rodak,  2012). This study utilized standard blood smear 
preparation techniques as follows. A drop of whole blood 
was obtained by venipuncture and dispersed onto a glass 
microscope slide using a spreader slide held at an angled 
30–45° edge. The thin blood smear was allowed to air 
dry thoroughly (Bain, 2006). Blood smears were fixed for 
1–3 min in 100% methanol and then immersed in Wright-
Giemsa polychrome stain for 30–60 s before gently rinsing 
in buffered water (Bain, 2006; Rodak, 2012). The stained 
slides were allowed to fully air dry before cover slipping 
and microscopy.

Microscopic analysis was carried out by an experienced 
hematopathologist at 100x magnification under oil im-
mersion optics. The smears were evaluated for properties 
including red blood cell (RBC) morphology, white blood 
cell (WBC) differential counts, and platelet estimates 
(Bain,  2006; Rodak,  2012). Smears were also carefully 
assessed for abnormalities such as immature or mor-
phologically atypical blood cells, hematologic parasites, 
and leukemia/lymphoma malignancies (Rodak,  2012). 
Manual 100-cell WBC differentials were obtained by 
counting and categorizing leukocytes as neutrophils, lym-
phocytes, monocytes, eosinophils, or basophils based on 
nuclear morphologic features and cytoplasmic staining 
characteristics (Bain, 2006).

2.3  |  Whole-exome sequencing

Genomic DNA was extracted from a peripheral blood 
sample obtained from the proband. The proband's whole 
exome library was sequenced using an Illumina sequenc-
ing platform to generate 125 or 150 bp paired end reads 
(HiSeq4000 or NovaSeq6000). To assess the assembly 
quality, several metrics including sequencing depth, cov-
erage uniformity, mismatches, base quality distribution, 
and insertion/deletions (indels) were evaluated in the 
final genome assembly. Adaptor trimming, duplicate read 

removal, and alignment were carried out as described 
previously.

The GRCh38 primary assembly of the human reference 
genome was used for reading mapping and variant calling 
(Schneider et al., 2017). This reference contains all chro-
mosome sequences along with unlocalized and unplaced 
genomic scaffolds (Genome Reference Consortium, 
https://​www.​ncbi.​nlm.​nih.​gov/​datas​ets/​genome/​GCF_​
00000​1405.​40/​).

To ensure high quality final genome assembly, dupli-
cated reads were first removed as described above, and 
reads were realigned to the reference genome with the 
Burrows-Wheeler Aligner (BWA) (Li & Durbin,  2010). 
Variant calling performed using the Genome Analysis 
Toolkit (GATK) involved additional steps of indel re-
alignment, base quality score recalibration, and removal 
of remaining duplicates (Van der Auwera et  al.,  2013). 
The final consensus genome representing the proband's 
individual genomic variation compared to the reference 
was assembled from the filtered, processed sequencing 
reads following GATK best practices guidelines (Van der 
Auwera et al., 2013).

Assessment and interpretation of variants was per-
formed manually or with the Varsome clinical genome in-
terpretation tool in accordance with American College of 
Medical Genetics and Genomics (ACMG) standards and 
guidelines for classification of pathogenic or likely patho-
genic variants (Richards et al., 2015).

2.4  |  Sequence data processing  
and analysis

The raw genomic sequencing reads generated from the 
proband were assessed for quality control (QC) and 
adaptor trimming prior to downstream analysis. Briefly, 
the FastQC tool (v0.11.9) was utilized to analyze per 
base sequence quality and other metrics to confirm 
sufficiently high-quality scores across bases in the raw 
reads (Andrews et  al., 2010). Adaptor trimming to re-
move Illumina sequencing adaptors was then performed 
using the Cutadapt software (v2.5) (Martin et al., 2011). 
In addition, duplicate read pairs were identified by the 
sequencing platform and removed early in the analy-
sis pipeline using the Picard Toolkit (v2.23.0) to avoid 
counting multiply mapped reads (Picard Toolkit, n.d.). 
The reads were not explicitly filtered based on Phred 
quality score thresholds or nucleotide length given 
the overall high data quality, making such filtering 
unnecessary.

Read alignment of the preprocessed sequencing data 
to the GRCh38 human reference genome was carried out 
using the Burrows-Wheeler Aligner (BWA-MEM v0.7.17) 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/
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(Li & Durbin,  2010). Variant calling was performed fol-
lowing Genome Analysis Toolkit (GATK v4.1.9.0) best 
practices guidelines (Van der Auwera et  al.,  2013), in-
cluding marking duplicates, base quality score recali-
bration, and final variant calling across the exome using 
HaplotypeCaller in GATK. Identified coding variants were 
then filtered based on population minor allele frequencies 
and predicted functional consequences to identify rare, 
potentially pathogenic variants for further analysis and 
interpretation.

3   |   RESULTS

Upon review by a hematopathologist, the Wright-Giemsa 
stained peripheral blood smear from the proband re-
vealed a marked lymphocytosis with many atypical 
appearing lymphocytes (Figure  2). At high magnifica-
tion, these cells were enlarged with lobulated nuclear 
contours and abundant cytoplasm containing multiple 
variably sized vacuoles. The lymphocytes with irregular 
nuclear morphology and cytoplasmic vacuolization are 
consistent with a reactive lymphocytosis in this clinical 
setting.

Analysis of the proband's whole-exome sequencing 
data revealed a heterozygous de novo variant in CLCN7 
(c.2144A>G [p.Tyr715Cys], GenBank: NM_001287.5) that 
was absent from both parental exomes (Figure 3). CLCN7 
encodes a member of the voltage-gated chloride channel 
protein family that includes chloride channels and chlo-
ride/proton exchangers (Jentsch, 2007; Jentsch et al., 2005; 
Kieferle et  al.,  1994; Steinmeyer et  al.,  1991; Thiemann 
et al., 1992; Uchida et al., 1994). Following ACMG crite-
ria (Richards et  al.,  2015), this CLCN7 missense variant 
was classified as a pathogenic variant based on its rarity 
in population databases, de novo occurrence, location 
in a critical functional domain, and demonstration of its 

functional impact in previous mechanistic study (Nicoli 
et al., 2019).

4   |   DISCUSSION

Nicoli et al. (2019) previously reported two similar cases in-
volving a 22-month-old Caucasian girl and a 14-month-old 
Ghanaian boy who presented with shared features of hy-
popigmentation, hepatosplenomegaly, and delayed myeli-
nation and psychomotor development. Genetic analysis in 
these published cases revealed the identical de novo het-
erozygous missense mutation c.2144A>G (p.Tyr715Cys) 
(NM_001287.5) located in exon 23 of the CLCN7 gene. 
This variant resulted in substitution of a cysteine for a 
highly conserved tyrosine residue at position 715 within 
the C-terminal cytoplasmic domain of ClC-7. This exact 
CLCN7 mutation was absent in the unaffected parents in 
each case and has not been reported in major population 
genetic databases, including ExAC, gnomAD, ESP, and 
EVS, indicating it almost certainly represents a sporadic 
de novo mutation.

Functional studies conducted by Nicoli et al. (2019) re-
vealed a 3-fold increase in outwardly rectifying chloride 
currents in Xenopus laevis oocytes expressing the mutant 
Y715C CLCN7 channel compared to those expressing 
wild-type CLCN7. Electron microscopy of patient-derived 
fibroblasts demonstrated pathologically enlarged single- 
and double-membrane cytoplasmic vacuoles containing 
debris, reminiscent of lysosomes. Quantitative live cell 
imaging showed increased lysosomal acidity and en-
hanced accumulation of acidotropic lysosomal dyes in pa-
tient fibroblasts, indicating a reduction in lysosomal pH. 
Intriguingly, the vacuolar phenotype could be partially 
replicated in control fibroblasts by exogenous overexpres-
sion of the Y715C mutant CLCN7 construct. Treatment 
with chloroquine, a lysosomotropic alkalinizing agent, 

F I G U R E  2   Peripheral blood smear from the proband demonstrating lymphocytosis with atypical lymphocyte morphology (Wright-
Giemsa stain). (a) and (b) High magnification images (100× oil immersion) showing reactive lymphocytes with lobulated nuclei and 
numerous cytoplasmic vacuoles of varying sizes (indicated by arrows).

(a) (b)
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was able to increase lysosomal pH and reduce cytoplas-
mic vacuoles in the probands' cells in a dose-dependent 
manner. Taken together, these functional studies provide 
compelling evidence that the Y715C mutation leads to 
impaired CLCN7 chloride/proton exchange function, re-
sulting in defective lysosomal acidification and pathologic 
cytoplasmic vacuolization. Of note, while enlarged vacu-
oles were observed in fibroblasts in the Nicoli et al. (2019) 
report, we observed similar vacuoles accumulating in 
the lymphocytes of our proband, highlighting potential 
cell type differences. Other reports have documented the 
formation of large cytoplasmic vacuoles following treat-
ment with vacuolin-1 to impair lysosomal degradation 
(Lu et  al.,  2014) or overexpression of LIMPII to disrupt 
lysosomal trafficking (Kuronita et al., 2002). Further stud-
ies are warranted to investigate the mechanistic basis by 
which decreased lysosomal pH could induce intracellular 
vacuole formation and determine the origin of these vacu-
oles across cell types.

The findings by Nicoli et  al.  (2019) revealed patient 
fibroblasts harboring the activating Y715C mutation ex-
hibited a reduced lysosomal pH profile, lending support 
to the hypothesized role of ClC-7 in directly regulating 
lysosomal pH—a topic that has been controversial with 
conflicting reports in the literature (Graves et  al.,  2008; 
Jentsch,  2007; Kasper et  al.,  2005; Kornak et  al.,  2001; 
Majumdar et  al.,  2011; Steinberg et  al.,  2010; Weinert 
et  al.,  2010). The extensive cellular pathology observed 
in the probands studied by Nicoli et al. (2019) highlights 
that even a subtle reduction of approximately 0.2 pH 
units (from 4.4 to 4.2) in lysosomal pH, reflecting around 
a 60% increase in lysosomal free proton concentration, 
can profoundly and adversely impact numerous down-
stream processes and metabolic pathways. The wide array 

of clinical phenotypes and cellular abnormalities seen, 
including features resembling the sequelae of many es-
tablished lysosomal storage diseases, implies there is im-
paired activity of multiple lysosomal hydrolase enzymes 
that require an acidic pH optimum to function correctly 
at the lower lysosomal pH resulting from disrupted ClC-7 
activity. However, direct quantification of specific lyso-
somal enzyme activities in patient fibroblasts was incon-
clusive using standard assays because these are performed 
in artificially buffered solutions at the optimal pH for 
each individual enzyme's activity. Alternative lysosomal 
enzyme quantification approaches in unbuffered solu-
tions across a range of pH may help further clarify and 
quantify this relationship between pH and cellular phe-
notype. Nevertheless, the generalized hypopigmentation 
and aberrant melanosome morphology observed by light 
and electron microscopy in the probands studied by Nicoli 
et al. (2019) strongly supports the functional importance 
of melanosomal pH homeostasis in normal melanogene-
sis (Ancans et al., 2001).

In contrast to the previous cases reported by Nicoli 
et  al.  (2019), the patient described in our current case 
report prominently exhibited hypogammaglobulinemia, 
which was characterized by significantly low levels of IgM 
and IgG immunoglobulin classes. Recent research studies 
have demonstrated the critical importance of proper ly-
sosomal acidification for normal B cell maturation, B cell 
receptor trafficking, plasma cell differentiation, and anti-
body production (Chen et al., 2014; Crotzer & Blum, 2005; 
Fehr et  al.,  1970; Rocha & Neefjes,  2008; Sandoval 
et al., 2018). The lysosomal pH has been shown to be a key 
factor enabling antigen processing and loading onto MHC 
class II proteins in B cells (Crotzer & Blum, 2005; Rocha 
& Neefjes, 2008). Additionally, antibody-secreting plasma 
cells require an acidic lysosomal compartment both for 
efficient synthesis of enormous amounts of immunoglob-
ulin proteins and also for correct immunoglobulin protein 
folding and QC prior to secretion (Fehr et al., 1970; Trivedi 
et al., 2006).

Certain congenital lysosomal storage disorders 
caused by defects in lysosomal acidification, such as 
Mucolipidosis type II (I-cell disease) and Mucolipidosis 
type III (Pseudo-Hurler polydystrophy), as well as 
Chédiak–Higashi syndrome, can frequently manifest 
with hypogammaglobulinemia and increased infec-
tion susceptibility along with other systemic features 
(Kypri et al., 2007; Otomo et al., 2011). The underlying 
genetic mutations in these diseases lead to impaired 
lysosomal pH homeostasis through various mecha-
nisms, but ultimately converge on disrupting B cell 
maturation and plasma cell function due to the lyso-
somal defects. Additionally, some acquired conditions 
such as multiple myeloma have been shown to impair 

F I G U R E  3   Targeted Sanger sequencing was also performed on 
DNA extracted from blood samples of family members.
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lysosomal acidification, which correlates with the abil-
ity of the neoplastic plasma cells to produce monoclo-
nal immunoglobulins, potentially owing to intracellular 
accumulation of misfolded immunoglobulin proteins 
overloading the lysosomal compartment (Carrino 
et al., 2019; Nicastri et al., 2002). Therapeutic modula-
tion of lysosomal pH using agents such as chloroquine 
has shown promise in partially restoring immunoglobu-
lin concentrations in some patients with certain congen-
ital lysosomal storage diseases (Martinez et  al.,  2020), 
highlighting the reversible nature of this pathophysiol-
ogy. These findings point to intriguing new therapeutic 
opportunities using lysosomal modulators to treat the 
antibody deficiency and increased infections associated 
specifically with lysosomal acidification defects.

The tissue and cellular distribution of CLCN7 expres-
sion is indeed intriguing and may provide insights into the 
multisystem pathologies observed in our patient. As you 
astutely point out, several studies have demonstrated that 
CLCN7 mRNA and protein are highly expressed in me-
lanocytes, neurons, and monocyte-derived cells such as 
macrophages and Kupffer cells, while expression appears 
to be lower in lymphocytes (Kasper et al., 2005; Kornak 
et al., 2001; Weinert et al., 2010).

The high expression in melanocytes aligns with the 
critical role of CLCN7 in regulating melanosomal pH and 
supports the hypopigmentation phenotype observed in 
our patient and in mice harboring the homologous Clcn7 
mutation (Nicoli et  al.,  2019). Similarly, the abundance 
of CLCN7 in neurons, particularly in specific subpopula-
tions like horizontal cells, may relate to the neurological 
manifestations of the disease such as developmental delay 
and myelination abnormalities. The lysosomal storage 
phenotype may be exacerbated in highly phagocytic cells 
like macrophages and Kupffer cells, where the degrada-
tive capacity of lysosomes is essential for processing in-
gested material.

The relatively lower expression of CLCN7 in B cells 
is noteworthy, as it suggests that the hypogammaglobu-
linemia in our patient may not be a direct consequence 
of the CLCN7 dysfunction within B cells themselves. 
Rather, it is possible that disrupted lysosomal function 
in other cell types that interact with or support B cells, 
such as macrophages or dendritic cells, could indirectly 
impair B cell maturation or function. Alternatively, 
CLCN7 may be more selectively upregulated in specific 
B cell subsets (e.g., plasma cells) or during particular 
phases of B cell differentiation, which could reconcile 
an important physiological role for CLCN7 in B cells 
with the ostensibly low expression at a bulk population 
level.

Examining CLCN7 expression patterns in human B cell 
subsets and determining the impact of CLCN7 mutations 

on B cell and plasma cell function are important areas 
for future investigation. Delineating the cell type-specific 
consequences of CLCN7 mutations and how they culmi-
nate in the aggregate clinical phenotype could advance 
our understanding of the underlying disease mechanisms 
and pinpoint the most consequential cellular targets for 
therapeutic intervention.

We acknowledge several limitations of our study. One 
important limitation is the lack of neonatal immunoglob-
ulin data for the patient. As the patient was born at an 
outside hospital and only transferred to our institution at 
around 2 years of age, we were unable to assess the pa-
tient's baseline IgG and IgM levels at birth. This is partic-
ularly relevant as maternal IgG is actively transferred to 
the fetus during pregnancy, and IgG levels are normally 
highest at birth before declining over the first few months 
of life as maternal antibodies are catabolized (Heininger 
et al., 2009; Leuridan et al., 2011; Mankarious et al., 1988). 
In contrast, IgM does not cross the placenta, and neonatal 
IgM levels are normally low (Ballow et al., 1986; Wilson 
et al., 1986).

Without access to neonatal data, we cannot rule out 
the possibility that the patient may have had normal or 
near-normal IgG levels that subsequently fell as maternal 
antibodies waned, which would suggest a different tempo 
of antibody decline compared to the typical transient 
hypogammaglobulinemia of infancy. Alternatively, the 
patient may have had low IgG and/or IgM levels even at 
birth, which could point to an underlying primary immu-
nodeficiency. Delineating these possibilities would pro-
vide important insights into the mechanism and timeline 
of the hypogammaglobulinemia. We were unable to ob-
tain the original neonatal records after multiple attempts, 
reflecting the challenges of piecing together a complete 
medical history for patients with rare diseases who have 
received care at multiple institutions. Prospective track-
ing of immunoglobulin trajectories from birth in future 
cases could be very informative for understanding the 
clinical history and classifying these disorders.

5   |   CONCLUSIONS

In summary, tightly regulated lysosomal acidification 
within a narrow physiological range is essential for sup-
porting normal B cell maturation, immunoglobulin pro-
duction, plasma cell function, and adaptive humoral 
immunity. Subtle disruptions in lysosomal pH homeostasis 
can result in a spectrum of immunoglobulin deficiencies 
with increased susceptibility to infections. Further eluci-
dating the molecular mechanisms regulating lysosomal 
pH will enable improved understanding, diagnosis, and 
personalized management of this subset of inborn errors 
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of immunity. Our case report demonstrates that the novel 
gain-of-function CLCN7 mutation, p.Tyr715Cys, underlies 
a complex human disease phenotype including hypopig-
mentation, organomegaly, developmental delay, hypogam-
maglobulinemia with lymphocyte vacuoles, and CNS 
demyelination in the absence of the osteopetrosis typically 
associated with CLCN7 loss-of-function mutations. These 
clinical findings underscore the intricate role of ClC-7 in 
meticulously regulating lysosomal pH within a narrow 
range to support diverse cellular processes. The ability of 
chloroquine treatment to reverse the abnormal cellular 
phenotype provides a potential precision therapy for pa-
tients harboring this specific mutation, while highlighting 
the value of understanding the molecular factors regulating 
lysosomal pH homeostasis for discovering new treatment 
strategies. This case also motivates future investigations 
into the pathophysiological mechanisms connecting dis-
rupted lysosomal pH regulation with membrane traffick-
ing defects and cytoplasmic vacuolization across cell types.
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