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Simple Summary: This study explored the liver-protective effects of dapagliflozin and silymarin,
alone and combined, against liver damage caused by carbon tetrachloride (CCly) in rats. Thirty rats
were divided into five groups. All groups except the normal control group were given CCly to induce
liver damage. The other groups received treatments with gum acacia, silymarin, dapagliflozin, or a
combination of dapagliflozin and silymarin for 14 days. The results show that both dapagliflozin and
silymarin, alone and combined, significantly reduced liver damage markers in the blood compared
to the group that only received CCly. Additionally, these treatments lowered levels of inflammatory
substances and increased antioxidant enzyme levels in the liver. The combination of dapagliflozin and
silymarin was especially effective, suggesting they work well together to protect the liver. This study
highlights the potential of dapagliflozin and silymarin in preventing liver damage by influencing
specific protective pathways in the body.

Abstract: This study was aimed to investigate the hepatoprotective potential of dapagliflozin and
silymarin alone and in combination to combat carbon tetrachloride (CCly)-induced hepatotoxicity
and the anticipated mechanisms. Thirty female Wistar rats were randomly allocated into five different
groups. All the experimental animals except the normal control (Group I) were administered CCly.
Additionally, Groups II, III, IV, and V were treated with gum acacia, silymarin, dapagliflozin, and a
combination of dapagliflozin and silymarin, respectively, for 14 days. Dapagliflozin, silymarin alone,
and in combination, significantly reduced (p < 0.05) serum levels of ALT, AST, AST:ALT ratio, and
total bilirubin compared to CCly-intoxicated control rats. There was a notable reduction (p < 0.05)
observed in the levels of IL-1beta, IL-6, TNF-alpha, nitrites, and 4-hydroxynonenal, accompanied by
an elevation in catalase, superoxide dismutase, glutathione peroxidase, nuclear erythroid 2-related
factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in liver homogenates of the groups treated with
dapagliflozin, silymarin alone, and in combination, as compared to the CCly-intoxicated control
group. Dapagliflozin in combination with silymarin showed a synergistic hepatoprotective effect.
Our study reveals the profound hepatoprotective potential of dapagliflozin alone and in combination
with silymarin in CCly-intoxicated Wistar rats by modulating the Nrf2 and HO-1 signaling pathways.

Keywords: sodium-glucose co-transporter-2 inhibitors; hepatotoxicity; liver diseases; non-alcoholic
fatty liver disease; oxidative stress; repurposing; antidiabetics
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1. Introduction

The liver is a vital organ within the human body. It constitutes about 2% of an adult’s
body weight, yet it processes approximately 25% of the total cardiac output [1]. The liver
filters blood from the gastrointestinal tract, detecting and metabolizing molecu-lar signals
and foreign substances. It processes and eliminates internal and external compounds, stores
and regulates essential nutrients, and synthesizes vital proteins, bile acids, hormones, and
regulatory molecules. The liver also supports the immune system by clearing microorgan-
isms and toxins from the blood. It is a main target for toxic effects from foreign substances
and pathogens, often damaged by metabolizing chemicals, drugs, and pollutants due to its
high blood flow and metabolic activity.

Hepatotoxicity, characterized by liver damage induced by chemical substances, re-
mains a significant global health concern. Liver disease contributes to over two million
deaths annually, including those attributed to cirrhosis, viral hepatitis, and liver cancer,
making up 4% of global mortality, which translates to approximately one out of every
25 deaths [2]. Among these fatalities, liver cancer alone is responsible for between 600,000
to 900,000 deaths [3]. Although liver disease currently ranks as the eleventh-leading cause
of death globally, there is a possibility that the actual number of liver-related deaths is
underestimated [2]. One of the studies has reported that the increase in mortality in cir-
rhosis is higher in comparison with other chronic conditions [4]. Liver diseases remain
a critical challenge in clinical practice due to their complex pathogenesis and limited
therapeutic options.

CCly-induced hepatotoxicity is extensively used as an experimental model to study
the mechanisms of liver injury and to screen potential hepatoprotective agents [5]. A
CCly-induced hepatotoxicity model mimics the pathophysiology of human liver diseases
such as fibrosis, cirrhosis, and hepatocellular carcinoma [5,6]. The pathogenesis of CCly-
induced hepatotoxicity involves oxidative stress, inflammation, and apoptosis, with reactive
oxygen species (ROS) playing a crucial role [7]. The metabolic activation of CCly by hep-
atic cytochrome P450 enzymes generates trichloromethyl radicals (CClze), which trigger
lipid peroxidation, protein oxidation, and DNA damage, leading to hepatic necrosis and
fibrosis [8].

Despite significant advancements in modern medicine, liver diseases continue to be a
significant public health issue, underscoring the need for new, side-effect-free medications.
A significant focus has been placed on investigating therapeutic agents that can mitigate
liver damage through antioxidant mechanisms [9]. Some of the studies have reported that
plant extracts like silymarin, derived from the seeds of Silybum marianum, commonly
known as milk thistle, are used to treat liver diseases [10-14]. Research has highlighted
its strong hepatoprotective antioxidant properties, which are achieved by inhibiting lipid
peroxidation [15,16].

The strategy of repurposing existing drugs for new therapeutic purposes is becoming
more prominent in drug discovery and development due to its potential to expedite
treatment availability for various medical conditions. Repurposing existing drugs offers
numerous advantages, including cost savings, reduced development time, and improved
patient outcomes [17].

SGLT2 inhibitors, initially developed to treat type 2 diabetes mellitus (T2DM), have
garnered attention due to their multifaceted effects beyond glycemic control. Dapagliflozin,
a selective SGLT2 inhibitor, has shown antioxidative, antiapoptotic, and anti-inflammatory
effects in various experimental models [18]. While primarily known for its antihyper-
glycemic effects, recent studies reveal its broad impacts, including weight loss, cardio-
vascular benefits, and improvements in metabolic parameters [19,20]. Dapagliflozin’s
antioxidant effects, such as reduced ROS production and modulation of Ca?* influx, along
with its anti-inflammatory properties, suggest its potential in mitigating CCly-induced
hepatotoxicity [21]. Human hepatocellular carcinoma cells (HepG2) are known to express
both SGLT-1 and SGLT-2 co-transporters [22]. Additionally, SGLT-2 has been observed in
immortalized normal human hepatocyte-derived liver cells (L02) and immortalized human



Biology 2024, 13, 473

30f16

primary hepatocyte cells (HuS-E/2) [23]. Some of the in vitro studies have reported that
SGLT-2 inhibitors exhibit anti-proliferative effects in various hepatocellular cell lines, partly
by reducing glucose uptake [24,25]. Our study aimed to evaluate the hepatoprotective
potential of dapagliflozin in an established model of CCl-induced liver injury and explore
the molecular mechanisms of dapagliflozin’s effects by concentrating on the Nrf2/HO-1
signaling pathway. This research endeavor seeks to enhance comprehension and treatment
strategies for oxidative stress-associated liver diseases.

2. Materials and Methods
2.1. Drugs and Reagents

The active pharmaceutical ingredient of silymarin was sourced from Sigma-Aldrich-
Merck Limited, Bangalore, India. Dapagliflozin was acquired from AstraZeneca. Colorimet-
ric assay kits for ALT, AST, and total bilirubin were obtained from Alliance Global, Dubai,
United Arab Emirates. Fasting blood glucose glucometer strips were purchased from Life
Pharmacy, Dubai, United Arab Emirates. Colorimetric assay kits for glutathione peroxidase,
catalase, SOD, nitrites, and rat ELISA kits for 4-HNE, IL-13, IL-6, TNF-«, Nrf2, and HO-1
were procured from Elabscience, United States through the Scientechnic, a distributor based
in the UAE. All laboratory-grade chemicals including carbon tetrachloride were obtained
through local distributors in the UAE.

2.2. Animals

Thirty adult female Wistar rats ranging from 8-10 weeks old and weighing 150-200 g
were bred at the Central Animal Research Facility, Ras Al Khaimah Medical and Health
Sciences University (RAKMHSU), UAE. These animals were housed in controlled conditions
including a 12 h dark/12 h light cycle, temperatures between 22-24 °C, and relative air
humidity of 40-60%. They had a regular supply of tap water and a normal rat pellet diet
consisting of standard calories. After a week of acclimatization to the research animal holding
room, the rats were randomly allocated into various groups. Ethics approval was taken from
the RAKMHSU Research and Ethics Committee (RAKMHSU-REC-014-2022/23-UG-M).

2.3. Rationale for Dose Selection of Carbon Tetrachloride, Silymarin, and Dapagliflozin and
Their Dissolution

Hepatotoxicity was induced by administering 1:1 mixture of CCly and olive oil;
(1.59 mg/kg and 0.92 mg/kg, respectively, ~1 mL/kg; i.p. every 48 h) [11,12,14]. We
have earlier reported the hepatoprotective dose of silymarin as 50 mg/kg/day for Wistar
rats [7,9,11-14]. The US FDA-approved dose for the antidiabetic effect of dapagliflozin
in humans is 10 mg/day. According to Paget and Barnes’ body surface area ratio, the
human dose was converted to the rat dose equivalent of 0.9 mg/kg/day. Silymarin and
dapagliflozin were each dissolved in 2% gum acacia and administered orally.

2.4. Experimental Design

Following the measurement of baseline body weight, 30 adult female Wistar rats
(8-10 weeks old) were randomly divided into five groups (1 = 6/group). The treatment
regimen followed for 14 days between 10 and 11 AM every day is mentioned below:

Group I (Normal healthy control): Olive oil (1 mL/kg; i.p. every 48 h) + 2% gum
acacia (1 mL/kg/day; p.o.)

Group II (Negative control): CCly-intoxicated hepatotoxic control rats (1:1 mixture of
CCly and olive oil; 1 mL/kg; i.p. every 48 h) + 2% gum acacia (1 mL/kg/day; p.o.)

Group III (Positive control; CCly + silymarin): CCly-intoxicated hepatotoxic rats (1:1 mix-
ture of CCly and olive oil; 1 mL/kg; i.p. every 48 h) + silymarin (50 mg/kg/day; p.o.)

Group IV (Test; CCly + dapagliflozin): CCls-intoxicated hepatotoxic rats (1:1 mixture
of CCly and olive oil; 1 mL/kg; i.p. every 48 h) + dapagliflozin (0.9 mg/kg/day; p.o.)
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Group V (Test; CCly + silymarin + dapagliflozin): CCly-intoxicated hepatotoxic rats
(1:1 mixture of CCly and olive o0il; 1 mL/kg; i.p. every 48 h) + silymarin (50 mg/kg/day;
p.o. + dapagliflozin 0.9 mg/kg/day; p.o.)

The body weight was monitored weekly during the experiment. On 15th day, overnight
fasted experimental rats were anesthetized by administering ketamine (60 mg/kg) and
xylazine (10 mg/kg) intraperitoneally. Fasting blood glucose was estimated by glucose
oxidase—peroxide reactive strips using a glucometer after the fasting blood samples were
obtained from their tail vein (tail tip).

2.5. Collection of Blood and Serum Preparation

Blood was collected from the retro-orbital plexus of veins using capillary tubes and
transferred into microcentrifuge tubes. The serum was then isolated from the whole
blood by centrifugation at 3000 rpm at 4 degrees Celsius (°C) for 20 min in a cooling
centrifuge. Subsequently, the supernatant was stored at —80 degrees Celsius (°C) for
biochemical analysis.

2.6. Collection of the Liver and Its Gross Examination

Anesthetized animals were euthanized after the blood collection. Animals were placed
in a recumbent supine position on the animal operation table. An incision was made on
the ventral aspect of the anterior abdominal wall by using a surgical scalpel to open the
abdominal cavity. The liver was collected from the right upper quadrant of the abdomen
by dissecting it from the abdominal muscles, fascia, visceral fats, and major blood vessels.
Gross morphological examination of the liver was performed. The liver was then washed
in regular saline and soaked on blotting paper to extract the blood. Half of the liver was
used to prepare its homogenate for biochemical estimations, and the other half was kept in
10% formalin for histopathological analysis.

2.7. Liver Homogenate Preparation

A 10% liver homogenate was prepared in a cold potassium phosphate buffer of 50 mM
concentration and pH 7.4 using tissue homogenizer. Following further centrifugation at
3000 rpm for 10 min, the resultant supernatant was stored at —80 degrees Celsius (°C).

2.8. Biochemical Estimations in Serum and Liver Homogenates

ALT, AST, and total bilirubin levels in the serum were determined using standard
protocols outlined in their respective assay kits, employing a colorimetric method with an
autoanalyzer. SOD, GSH-Px, CAT, and nitrite levels were measured following colorimetric
assay protocols provided with the kits, with optical density readings taken at 540 nm,
340 nm, 405 nm, and 550 nm, respectively, using a microplate reader.

Rat-specific 4-HNE levels in liver homogenate were estimated using Competitive
ELISA principle. The micro ELISA plate provided was pre-coated with 4-HNE. During the
reaction, 4-HNE in samples or standards competed with a fixed amount of 4-HNE on the
solid phase supporter for sites on the Biotinylated Detection Ab specific to 4-HNE. Excess
conjugate and unbound samples or standards were washed, followed by the addition of
avidin conjugated to horseradish peroxidase (HRP) to each well and incubation. Subse-
quently, a TMB substrate solution was added to each well. The enzyme—substrate reaction
was halted with stop solution, and the color change was measured spectrophotometrically
at a wavelength of 450 nm using a microplate reader. 4-HNE concentration in the samples
was determined by comparing their OD to the standard curve.

Rat-specific Nrf2, HO-1, IL-13, IL-6, and TNF-« levels in liver homogenate were
assessed via sandwich ELISA principle. The provided micro ELISA plates were pre-coated
with antibodies specific to rat Nrf2/HO-1/IL-13 /IL-6/ TNF-«. Samples (or standards) were
added to the wells and combined with the specific antibody. Subsequently, a biotinylated
detection antibody specific for rat Nrf2/HO-1/IL-1p /IL-6/ TNF- and avidin horseradish
peroxidase (HRP) conjugate was added sequentially to each well and incubated. After
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washing away free components, substrate solution was added to each well. Wells contain-
ing rat Nrf2/HO-1/IL-1B /IL-6/ TNF-«, biotinylated detection antibody, and avidin-HRP
conjugate exhibited a blue coloration. The enzyme-substrate reaction was stopped with
stop solution, resulting in a yellow color change. Optical density (OD) was measured
spectrophotometrically at 450 nm using a microplate reader, with OD values proportional
to the concentration of rat Nrf2/HO-1/IL-1f3 /IL-6/TNF-«. Concentrations in the samples
were calculated by comparing their OD to the standard curve.

2.9. Qualitative Histopathological Examination of Liver

Liver tissue specimens were obtained from every group and fixed in a 10% phosphate-
buffered formalin solution. Furthermore, a small portion of each liver sample was cut and
dehydrated using increasing concentrations of ethyl alcohol (50% for 24 h, 70% for 24 h, 90%
for 12 h, and 100% for 12 h), cleared with 99.14% xylene until the tissues became transparent
and embedded in molten paraffin wax. After 24 h, 6-micron-thick paraffin sections were
sliced using a microtome and affixed onto albumenized glass slides, with appropriate
labeling. These sections underwent de-waxing in 99.14% xylene for 10 min, followed by
hydration through decreasing ethyl alcohol concentrations for 2 min in each 100%, 90%,
70%, and 50% and finally in the distilled water for 10 min. Subsequently, the sections were
stained with commercially prepared Harris hematoxylin for 5 min. Thereafter, sections
were kept in running tap water for 10 min. Further, staining was performed with 2% eosin
for 2 min. Later, sections were washed in 90% alcohol for 2 min and in 100% alcohol for
another 2 min. Later, sections were cleared in 99.14% xylene. Finally, 2-3 drops of DPX
mountant were applied onto the slides, and coverslips were gently placed to prevent tissue
drying. The prepared slides were then examined for any morphological changes under a
light microscope (Olympus BX53, Olympus Life Science Solutions, Tokyo, Japan) at 100x
and 400 x magnifications. Later, photomicrographs of the liver cell slides were captured
and qualitatively analyzed.

2.10. Statistical Analysis

Using SPSS version 29, normally distributed data were presented as mean + standard
deviation. Thereafter, two-way analysis of variance (ANOVA) was conducted followed by
a post hoc Tukey’s test. Statistical significance was defined as p < 0.05.

3. Results
3.1. Impact on Liver Function Test

The liver function test revealed a significant increase in serum ALT (52.13 + 3.39;
p =0.002), AST (221.41 £ 33.13; p < 0.001), AST:ALT ratio (4.23 + 0.46; p < 0.001), and
TB levels (0.87 & 0.16; p < 0.001) for the CCly-intoxicated hepatotoxic control group in
contrast to the normal control rats (ALT: 43.78 4+ 2.53; AST: 119.86 + 15.24; AST:ALT ratio:
2.73 £ 0.30; and TB: 0.36 & 0.11). On the other hand, the administration of dapagliflozin to
the CCly-intoxicated hepatotoxic rats led to a considerable decrease in ALT (37.22 + 4.64;
p <0.001), AST (122.29 + 8.51; p < 0.001), AST:ALT ratio (3.33 £ 0.51; p = 0.018), and
TB (0.39 £ 0.07; p < 0.001) in comparison to the CCly-intoxicated hepatotoxic control
group. Silymarin demonstrated a marked reduction in ALT (34.22 £ 3.61; p < 0.001), AST
(109.26 £ 13.97; p < 0.001), AST:ALT ratio (3.22 £ 0.55; p = 0.007), and TB (0.36 + 0.06;
p <0.001) compared to the CCl-intoxicated hepatotoxic control rats. Interestingly, com-
bined treatment with dapagliflozin and silymarin resulted in a notable decrease in serum
levels of ALT (30.27 £ 2.29; p < 0.001), AST (100.85 £ 11.09; p < 0.001), AST:ALT ratio
(3.34 £ 0.43; p = 0.021), and TB (0.33 £ 0.05; p < 0.001) compared to the CCly -intoxicated
hepatotoxic control group. Furthermore, the CCly-intoxicated hepatotoxic rats treated with
a combination of both silymarin and dapagliflozin exhibited a notable decrease in ALT
levels (p = 0.013) compared to the dapagliflozin alone-treated hepatotoxic rats (Figure 1).
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Figure 1. Effect on liver function test. (A) Effect on aspartate aminotransferase (AST); (B) Effect on
alanine aminotransferase (ALT); (C) Effect on the ration of aspartate aminotransferase (AST) and
alanine aminotransferase (ALT); (D) Effect on total bilirubin.

3.2. Effect on Fasting Blood Glucose Levels, Body Weight, and Mortality Rate

During the experimental period, no significant changes (p > 0.05) were observed in
either fasting blood glucose levels or body weight among all the experimental animals.
Additionally, there were no instances of mortality recorded during the experiment.

3.3. Influence on Inflammatory Cytokines

A significant increase (p < 0.001) in IL-1 beta (874.43 + 14.64), IL-6 (208.19 + 5.08),
and TNF-alpha (6223.86+343.45) was noted in the CCly-intoxicated hepatotoxic control
rats in contrast to the normal control (IL-1 beta: 59.21 + 6.61 and IL-6: 92.91 + 10.04;
2352.74 4+ 17.53). Furthermore, the administration of dapagliflozin to the CCly-intoxicated
hepatotoxic rats resulted in a notable reduction (p < 0.001) in IL-1 beta (314.37 £ 9.38), IL-6
(139.77 £ 4.97), and TNF-alpha (2684.21 + 74.83) in contrast to both the CCl-intoxicated
hepatotoxic control and silymarin-treated hepatotoxic groups. Silymarin exhibited a signif-
icant decrease (p < 0.001) in IL-1 beta (386.39 & 44.79), IL-6 (172.08 & 9.73), and TNF-alpha
(3480.29 £ 124.17) compared to the CCly-intoxicated hepatotoxic control group. Notably,
a combined treatment with dapagliflozin and silymarin in the CCly-intoxicated hepato-
toxic group demonstrated a significant decrease (p < 0.001) in IL-1 beta (145.05 £ 5.07),
IL-6 (115.95 +£ 6.50), and TNF-alpha (2376.81 + 64.04) in contrast to the CCly-intoxicated
hepatotoxic control rats. Furthermore, the CCly-intoxicated hepatotoxic group treated with
a combination of silymarin and dapagliflozin displayed a significant decline (p < 0.001) in
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Figure 2. Effect on inflammatory cytokines. (A) Effect on IL-1beta; (B) Effect on IL-6; (C) Effect on
TNF-alpha.

3.4. Effect on Oxidative Stress Biomarkers

A significant increase (p < 0.001) in nitrites (383.03 & 7.88) and 4-HNE (201.86 + 4.79),
along with a reduction (p < 0.001) in CAT (5.79 & 0.16) and SOD (3.15 £ 0.12), and GSH-Px
(2.95 £ 1.20), was observed in the CCly-intoxicated hepatotoxic control rats compared to
the normal control group (nitrites: 1.88 £ 0.11; 4-HNE: 83.58 & 7.01; CAT: 89.55 £ 5.28;
SOD: 12.92 £ 0.71; and GSH-Px: 29.03 + 11.85). Conversely, administering dapagliflozin to
these CCly-intoxicated hepatotoxic rats resulted in a notable decrease (p < 0.001) in nitrites
(171.08 £ 8.38) and 4-HNE (136.27 & 3.39), and an increase (p < 0.001) in CAT (46 + 1.54),
SOD (7.86 & 0.15), and GSH-Px (11.98 + 4.89) compared to both the CCls-intoxicated hepa-
totoxic control and silymarin-treated hepatotoxic groups. Silymarin exhibited a significant
reduction (p < 0.001) in nitrites (274 =+ 12.16) and 4-HNE (168.41 + 8.03) and an elevation
(p <0.001) in CAT (36.08 + 2.25), SOD (6.69 £ 0.18), and GSH-Px (10.76 £ 4.39) compared
to the CCly-intoxicated hepatotoxic control group. Notably, the combined treatment with
dapagliflozin and silymarin in the CCly-intoxicated hepatotoxic group showed a significant
decrease (p < 0.001) in nitrites (61.06 & 3.74) and 4-HNE (113.61 £ 4.18) and an increase
(p < 0.001) in CAT (67.60 % 3.33), SOD (9.77 £ 0.10), and GSH-Px (16.25 £ 6.63) in con-
trast to the CCly-intoxicated hepatotoxic control rats. Additionally, the CCly-intoxicated
hepatotoxic group treated with a combination of silymarin and dapagliflozin exhibited a
significant decrease (p < 0.001) in nitrites and 4-HNE and an increase (p < 0.001) in CAT,
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SOD, and GSH-Px in contrast to the silymarin alone-treated and dapagliflozin alone-treated
hepatotoxic groups (Figures 3 and 4).
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Figure 3. Effect on enzymatic antioxidants. (A) Effect on catalase; (B) Effect on superoxide dismutase;
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3.5. Modulation of Nrf2/HO-1 Signaling Pathway

The modulation of the Nrf2/HO-1 signaling axis showed notable changes in response
to various treatments. In CCly-intoxicated hepatotoxic control rats, there was a significant
decline (p < 0.001) in Nrf2 (6589.59 + 203.2) and HO-1 (1.61 + 0.13) levels in contrast to the
normal control group (Nrf2: 14,426 £ 280.78 and HO-1: 8.52 £ 0.46). On the other hand,
treatment of the CCly-intoxicated hepatotoxic rats with dapagliflozin showed a remarkable
increase (p < 0.001) in Nrf2 (12,474.40 £ 76.06) and HO-1 (5.14 & 0.09) levels in contrast
to the CCly-intoxicated hepatotoxic control groups. Nrf2 (p < 0.001) and HO-1 (p = 0.005)
were significantly increased in the hepatotoxic rats treated with dapagliflozin compared to
the silymarin-treated hepatotoxic group. Silymarin alone exhibited a significant elevation
(p < 0.001) in Nrf2 (10,476.30 &+ 146.5) and HO-1 (4.54 £ 0.20) levels compared to the
CCly-intoxicated hepatotoxic control rats. Interestingly, the combination of silymarin and
dapagliflozin significantly elevated (p < 0.001) the levels of both Nrf2 (13,360.01 + 161.23)
and HO-1 (6.65 £ 0.23) in contrast to the CCly-intoxicated hepatotoxic control and the
silymarin alone-treated and dapagliflozin alone-treated hepatotoxic groups (Figure 5).
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Figure 5. Effect on Nrf2 and HO-1. (A) Effect on Nrf2; (B) Effect on HO-1.

3.6. Impact on Gross Examination of the Liver

Upon gross examination of the liver, we observed that the normal healthy control
group exhibited a dark reddish-brown liver with a soft, smooth, and shiny surface, whereas,
CCly-induced hepatotoxic control rats showed a slight pale color of the liver along with
multiple yellowish-white patches indicating fatty infiltration over the surface. Silymarin
alone-treated hepatotoxic rats displayed comparatively fewer yellowish-white patches than
the hepatotoxic control group. Surprisingly, hepatotoxic rats treated with dapagliflozin
alone, as well as in combination with silymarin, demonstrated normal liver morphology,
similar to that of the normal control group (Figure 6).
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A. Normal control

D. CCl, + dapagliflozin E. CCl, + silymarin + dapagliflozin

Figure 6. Gross examination of liver.

3.7. Effect on Cellular Architecture of Liver

The normal healthy control group displayed a typical hepatocellular structure, with
hepatocytes arranged in hepatic cords concentrically around the central vein. In con-
trast, the CCly-induced hepatotoxic control group exhibited subcapsular fat vacuoles, a
dilated and congested central vein, and moderate perivenular and periportal infiltration of
mononuclear cells, mainly macrophages and lymphocytes. Silymarin alone-treated hepato-
toxic rats showed mildly dilated central veins, mild to moderate perivenular mononuclear
cell infiltration, and subcapsular fat vacuoles. Dapagliflozin alone-treated hepatotoxic rats
demonstrated infiltration of a few mononuclear inflammatory cells around the central vein,
along with significant restoration of hepatocyte architecture. Hepatotoxic rats treated with
a combination of dapagliflozin and silymarin had a hepatocellular architecture closely
resembling that of the normal control group (Figure 7A,B).
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a- Subcapsular fat vacuoles

b- Central vein congestion

- - P L %o

CCl, + dapagliflozin  CCl, + silymarin + dapagliflozin
(B)
Figure 7. (A) Qualitative histopathological examination of liver (stained with H & E and observed

under 100 x magnification). (B) Qualitative histopathological examination of liver (stained with H &
E and observed under 400 x magnification).
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4. Discussion

This study employed a comprehensive approach, including biochemical, histological,
and molecular analyses, to uncover the molecular mechanisms that protect against carbon
tetrachloride-induced hepatotoxicity through the use of dapagliflozin. The results enhance
our understanding of dapagliflozin’s varied effects and provide detailed insights into the
hepatoprotective properties of both dapagliflozin and silymarin in the context of CCly-
induced liver damage. This is demonstrated by changes in liver function, inflammatory
markers, oxidative stress biomarkers, modulation of the Nrf2/HO-1 signaling pathway,
and noticeable gross and histopathological changes in the liver.

Carbon tetrachloride (CCly) has been widely used in experimental models to in-
vestigate the cellular mechanisms behind oxidative damage [26]. CCly is activated by
cytochrome P-4502E, 2B1, 2B2, and possibly CYP 3A to form the trichloromethyl radical
(CCI3°®) and trichloromethyl peroxy radical (CCI300*), leading to lipid peroxidation and
subsequent tissue damage [8]. Enhanced lipid peroxidation, coupled with the depletion of
antioxidants in tissues, results in structural changes in the endoplasmic reticulum and other
membranes, loss of metabolic enzyme activation, reduced protein synthesis, and elevated
levels of serum transaminases, total bilirubin, and conjugated bilirubin, culminating in
liver damage [27]. The leakage of cellular enzymes into plasma indicates hepatic tissue
damage. Alanine transaminase (ALT) is considered an important diagnostic marker of liver
injury [28]. The marked increase in serum ALT, AST, AST:ALT ratio, and total bilirubin
in the CCly-intoxicated hepatotoxic control rats highlights the extent of liver damage. Da-
pagliflozin, both alone and in combination with silymarin, exhibited a significant decrease
in these indicators, suggesting a protective effect on the liver. Our observations concerning
dapagliflozin’s positive impacts on liver function align with studies emphasizing its ability
to mitigate non-alcoholic fatty liver disease in diabetic animal models [29-31]. These find-
ings are consistent with our previous reports on CCly-induced elevation of hepatic injury
biomarkers in serum [11,12,14].

Notably, the combined treatment of dapagliflozin and silymarin significantly enhanced
liver function, suggesting a synergistic effect. Gross and histopathological examinations of
liver tissues further support the hepatoprotective effects of dapagliflozin and silymarin.
Rats treated with either dapagliflozin or silymarin, especially in the combination group,
exhibited a restoration of liver structure resembling the healthy control group. This obser-
vation is consistent with biochemical markers, reinforcing the potential therapeutic benefits
of these interventions.

CCly-induced hepatotoxicity is characterized by elevated pro-inflammatory cytokines [32].
Oxidative stress can elevate levels of inflammatory cytokines. Reactive oxygen species
(ROS) generated during oxidative stress can activate nuclear factor kappa B (NF-«kB), a key
transcription factor that promotes the expression of various pro-inflammatory cytokines
such as tumor necrosis factor-alpha (TNF-«), interleukin-1 beta (IL-1(3), and interleukin-6
(IL-6). This link between oxidative stress and inflammation underscores the intricate inter-
play between oxidative damage and the immune response, contributing to the pathogenesis
of various diseases [33]. Dapagliflozin exhibited a significant reduction in IL-1 beta, IL-6,
and TNF-alpha, aligning with studies emphasizing its anti-inflammatory effects [34-36].
The combination of dapagliflozin and silymarin displayed a robust suppression of inflam-
matory biomarkers, indicating a potential synergistic effect.

Oxidative stress is pivotal in CCly-induced liver damage [7,8]. Dapagliflozin sig-
nificantly reduced nitrites and 4-hydroxynonenal (4-HNE), while increasing antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-Px), supporting studies that highlight dapagliflozin’s antioxidative potential [37,38]
and silymarin’s effects [39]. The combination therapy showed a comprehensive improve-
ment, underscoring a synergistic effect in combating oxidative stress. Nrf2, a protective
transcription factor sensitive to redox changes, regulates detoxification gene activation,
safeguarding cells from oxidative stress. During oxidative stress, Nrf2 dissociates from
Keapl and enters the nucleus, where it binds to antioxidant response elements (AREs) in
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the promoter region of genes encoding numerous antioxidant enzymes like SOD, GSH-PX,
CAT, and phase II detoxification enzymes, such as NAD(P)H quinone dehydrogenase 1
(NQO1), to counteract oxidative stress [40]. The Nrf2/HO-1 pathway coordinates the
antioxidant response, playing critical roles in cellular defense against oxidative stress and
inflammation. Activation of this pathway upregulates various antioxidant and cytopro-
tective genes, contributing to cellular homeostasis. Nrf2 activation has been shown to
enhance the expression of SOD isoforms, including SOD1, SOD2, and SOD3, in response to
oxidative stress [41]. These enzymes scavenge superoxide radicals and are crucial in cellular
antioxidant defense. Although direct evidence linking Nrf2 to catalase regulation is limited,
studies show the interplay between Nrf2 and catalase in protecting cells from oxidative
stress [42]. Nrf2 activation indirectly enhances catalase activity by modulating the cellular
redox environment. Activation of Nrf2 also leads to the transcriptional upregulation of
GSH-Px, as demonstrated in various studies [43]. GSH-Px enzymes reduce hydrogen
peroxide and organic hydroperoxides using reduced glutathione, thus protecting cells
from oxidative damage. The Nrf2/HO-1 pathway has been shown to reduce nitrite levels
indirectly by decreasing oxidative stress and inflammation [44]. Activation of Nrf2 inhibits
nitric oxide (NO) production and oxidative stress-induced nitrosative damage. Activation
of the Nrf2/HO-1 pathway mitigates lipid peroxidation and reduces 4-HNE accumulation
in various cellular models [45]. Nrf2 activation induces the expression of HO-1, which
inhibits 4-HNE-induced oxidative damage by promoting its metabolism [46-48].

In our study, CCly exposure resulted in a notable decrease in Nrf2 and HO-1 levels,
indicating compromised antioxidant defense. Dapagliflozin significantly modulated these
markers, highlighting its role in enhancing the Nrf2/HO-1 pathway. The combination ther-
apy exhibited strong activation of the Nrf2/HO-1 axis, suggesting a potential mechanism
for the observed antioxidative effects, including increased levels of enzymatic antioxidant
parameters such as GSH-Px, SOD, and CAT along with decreased levels of non-enzymatic
antioxidant parameters like 4-HNE and nitrites. The amelioration of a CCly-induced de-
cline in liver function, inflammation, oxidative stress, and normalization of hepatocellular
architecture may be attributed to the upregulation of Nrf2/HO-1 by dapagliflozin alone
and in combination with silymarin. Our results underscore the therapeutic promise of
focusing on Nrf2/HO-1 in addressing different pathological conditions linked to oxidative
stress and inflammation. One of the studies reported that dapagliflozin recovered choles-
terol metabolism functions in type 2 diabetes mellitus (T2DM) mice liver via activating
the antioxidant Nrf2/HO-1 pathway, highlighting the involvement of this pathway in
dapagliflozin-mediated hepatoprotection protection [49]. Emerging evidence suggests
that dapagliflozin exerts its hepatoprotective effects through modulation of key signaling
pathways. The Nrf2/HO-1 pathway, known for its role in cellular defense against oxidative
stress, appears to be activated by dapagliflozin.

Our study boasts several strengths, employing a multidimensional approach encom-
passing biochemical, histological, and molecular analyses to thoroughly evaluate liver
function, inflammation, oxidative stress, and underlying molecular mechanisms. We
investigated the potential repurposing effect of the well-established antidiabetic drug da-
pagliflozin at a dosage of 0.9 mg/kg/day, equivalent to the human therapeutic dose of
10 mg/day, without compromising safety considerations. Our research delves into the
mechanistic underpinnings of the hepatoprotective effects, particularly emphasizing the
modulation of the nuclear erythroid 2-related factor 2/heme oxygenase-1 signaling path-
way, which enhances antioxidant and anti-inflammatory responses. However, our study
does have limitations. These include a small sample size and the use of a rat model of CCly-
induced hepatotoxicity potentially limiting its representation of human physiology and
pathophysiology and thus restricting the generalizability of the findings to clinical settings.
Although our study sheds light on the hepatoprotective potential of dapagliflozin and its
combination with silymarin in carbon tetrachloride-induced hepatotoxicity, addressing the
aforementioned limitations would bolster the robustness and applicability of our findings.
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5. Conclusions

The present study reveals the substantial hepatoprotective potential of dapagliflozin
alone and in combination with silymarin in carbon tetrachloride-induced hepatotoxicity
model in Wistar rats by upregulating the Nrf2/HO-1 signaling pathway. Silymarin and
dapagliflozin combination therapy demonstrated synergistic effects across various param-
eters, surpassing the individual effects of dapagliflozin and silymarin. These promising
findings suggest that co-administering dapagliflozin and silymarin could be an effective
therapeutic strategy for mitigating CCl4-induced hepatotoxicity. This study is significant
as it explores a novel therapeutic use for dapagliflozin beyond its established role in dia-
betes management. Exploring the translational potential of dapagliflozin and silymarin in
combating hepatotoxicity holds promise for improving clinical outcomes.
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