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Abstract: In animal assisted reproductive technology, the production of high-quality oocytes is crucial.
The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells
that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the
impact of HIF-1α on yak oocyte maturation and early embryonic development in vitro through the
regulation of autophagy. The in vitro maturation process of yak oocytes involved the addition of
the HIF-1α inducer DFOM and the inhibitor LW6 to examine their effects on yak oocyte maturation,
early embryonic development, cell autophagy, cytochrome P450s (CYP450s) enzyme expression, and
cumulus diffusion factors. The findings revealed that DFOM significantly upregulated the expression
of HIF-1α, resulting in increased the cumulus diffusion area, elevated first polar body expulsion
rate of oocytes, enhanced mitochondrial and actin levels, decreased ROS production, and reduced
early apoptosis levels of oocytes. Moreover, DFOM promoted the expression of autophagy-related
proteins, CYP450s enzymes, and cumulus diffusion factors, thereby enhancing oocyte maturation
and early embryonic development. Conversely, LW6 exhibited opposite effects. The inhibition
of autophagy levels with 3-MA during DFOM treatment yielded similar outcomes. Furthermore,
reducing autophagy led to increased apoptosis levels at all stages of early embryonic development,
as well as a significant decrease in total cell number and ICM/TE ratio of blastocysts. Studies have
shown that during the in vitro maturation of yak oocytes, HIF-1α can affect the cumulus expansion
area of oocytes by regulating autophagy, the first polar body excretion rate, mitochondrial level,
actin level, ROS and early apoptosis level, the CYP450s enzyme, and the expression of cumulus
expansion factors, thereby improving the in vitro maturation and early embryonic development of
yak oocytes. These findings offer valuable insights into the reproductive regulation mechanism of
yaks in hypoxic environments and suggest potential strategies for the advancement of yak assisted
reproductive technology.
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1. Introduction

The protection of endangered animals is essential for preserving the earth’s biodiver-
sity and ecological equilibrium. Due to increased human activities and the ongoing loss
of natural habitats, numerous animal species are at risk of extinction. Safeguarding these
species not only aids in maintaining ecosystem stability but also guarantees that future
generations can appreciate a diverse natural heritage. The yak, as a high-risk animal, serves
as a significant case in endangered species conservation [1]. Yaks, a dominant species
adapted to high-altitude environments with strong ultraviolet radiation and low oxygen
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levels in plateau areas, play a vital role in providing meat, milk, fur, and other essential re-
sources for herdsmen on the Qinghai-Tibet Plateau [2]. Additionally, they serve as a crucial
mode of transportation. Despite their importance, yaks have limited reproductive capacity,
being seasonal estrus animals from August to November, with a low reproduction rate
allowing for reproduction only once every two years [3]. These limitations have hindered
the enhancement of yak production performance and pose a significant challenge to the
development of the yak industry. Due to climate change and human activities, the yak pop-
ulation has experienced a significant decline and has been listed on the International Union
for the Conservation of Nature and Natural Resources (IUCN) Red List of Endangered
Species. Over the past three decades, the yak population has decreased by approximately
20–30%. Ecologists warn that without immediate and effective conservation efforts, the
yak population could plummet by over 50% in the upcoming centuries [4]. To address
this issue and increase income, the implementation of assisted reproductive technology
is essential [5]. Notably, the in vitro maturation of oocytes is a key aspect, as it directly
impacts the developmental potential of embryos [6]. Due to their high-altitude habitat
of 3000–5000 m, yaks exhibit low reproductive rates, as well as limited in vitro oocyte
maturation and embryonic development capabilities. These factors contribute to lower
pregnancy rates following embryo transfer, increased risk of miscarriage, and reduced live
birth rates, highlighting challenges in yak reproduction [7]. Therefore, the development of
a high-quality oocyte production strategy is crucial in improving yak fertility [8,9].

Hypoxia-inducible factor 1-alpha (HIF-1α) is a crucial transcription factor that plays
a significant role in regulating cellular adaptability to hypoxic environments [10,11]. It is
recognized as the primary sensor through which cells respond to hypoxic stress, ultimately
promoting cell survival and adaptation in low-oxygen conditions [12]. Yaks, long-term resi-
dents of the Qinghai-Tibet Plateau, exhibit unique reproductive characteristics influenced
by their specific environmental conditions, impacting gene and protein expression [13].
Research has demonstrated that the development of yak embryos and germ cells in vitro is
governed by hypoxia-inducible factors [14,15]. Autophagy, a vital cellular catabolic process
involved in component degradation and recycling, is integral to various physiological
and biological functions including cell survival, metabolism, and immunity [16,17]. By
aiding cells in adapting to stressors like starvation and hypoxia, autophagy plays a role
in reducing the risk of diseases and developmental disorders [18]. In mammalian oocyte
maturation, autophagy contributes to enhancing mitochondrial distribution, Ca2+ content,
and cellular resistance to oxidative stress while slowing down apoptosis [19]. Studies have
indicated that HIF-1α can trigger autophagy via epigenetic modifications during hypoxia,
with the upregulation of HIF-1α inducing autophagy in mouse granulosa cells [20,21].

Members of the cytochrome family, such as cytochrome P450Scc (CYP11A1), cy-
tochrome P450c17 (CYP17A1), and cytochrome P450arom (CYP19A1), play a crucial role in
regulating the hypothalamic–pituitary–gonadal axis in animals by catalyzing the cleavage
reaction of cholesterol and steroid hormone precursors [22–25]. Androgens are converted
into estrogens in cumulus cells, with ovarian granulosa cells synthesizing androgen to
enhance oocyte maturation [26]. Recent studies indicate that HIF-1α can up-regulate es-
trogen receptors in pulmonary artery endothelial cells, leading to increased steroidogenic
enzyme levels in granulosa cells under hypoxia [27,28]. Cumulus expansion, which is
essential for oocyte development, involves key factors like hyaluronan synthase 2 (HAS2),
prostaglandin-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3), and tumor necro-
sis factor alpha-induced protein 6 (TNFAIP6) [29]. These factors contribute to cumulus
formation and ovulation, with HAS2 synthesizing hyaluronic acid, PTGS2 producing
prostaglandins, PTX3 regulating cumulus matrix formation, and TNFAIP6 promoting extra-
cellular matrix synthesis [30–32]. Insufficient levels of these factors can result in infertility
and impact oocyte fertilization. The luteinizing hormone surge before ovulation stimulates
the expression of genes related to hyaluronic acid and prostaglandin production, creating a
conducive environment for oocyte development [33].
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Currently, there is a lack of comprehensive understanding regarding the role of HIF-1α
in the in vitro maturation process of yak oocytes. This study aims to explore the connection
between HIF-1α and autophagy, CYP450s, and cumulus diffusion factors in the context
of in vitro maturation of yak oocytes. The findings from this research could offer a novel
approach to enhancing the quality of in vitro matured yak oocytes, thereby contributing to
the advancement of assisted reproduction and breeding biotechnology in yaks.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals and reagents used in this study were obtained from Sigma Chemical (St.
Louis, MO, USA). The HIF-1α activity inducer (DFOM) and inhibitor (LW6) were procured
from MCE (Monmouth Junction, NJ, USA).

2.2. Oocyte Collection and Treatment with DFOM and LW6

Yak ovary samples were collected from a commercial slaughterhouse in Linxia, Gansu
Province. Approximately 50 pairs of ovaries were delivered to the laboratory daily over
a period of two months. The ovaries were stored in a sterile incubator at 32–36 ◦C and
promptly transported to the laboratory. Follicles with a diameter of 3–8 mm were extracted
from the ovarian surface using a 12–18 G sterile syringe needle. Immature cumulus-oocyte
complexes (COCs) with intact morphology and at least three layers of granulosa cells were
carefully selected under a stereomicroscope. The COCs were washed three times with a
preheated egg washing solution (M199 + 5% serum) under a microscope, then transferred
to a well-balanced maturation medium (M199 + 10% fetal bovine serum + 100 µg/mL
FSH + 50 µg/mL LH + 100 µg/mL penicillin + 100 µg/mL streptomycin). Each 400 µL
oocyte maturation medium contains 50 COCs. The oocyte maturation medium was sup-
plemented with HIF-1α activity inducer DFOM (0, 100, 150, 200 µM) and inhibitor LW6
(0, 25, 50, 75 µM) according to the experimental design, with a control group receiving an
equal volume of normal saline. After 24 h of culture at 38.5 ◦C and 5% CO2, mature COCs
were collected. The oocytes were treated with 0.1% hyaluronidase to remove cumulus
cells, rinsed with DPBS, and gently blown with an egg-sucking needle. Oocyte maturation
was assessed based on first polar body discharge, and mature oocytes were collected for
parthenogenetic-activated embryo production.

2.3. Parthenogenetic Activation and Embryo Culture

Mature naked eggs were collected and divided into treatment groups with 3 replicates
each. Each replicate consisted of 300 naked eggs, with 50 of them being washed 3 times with
DPBS and stored at −80 ◦C for subsequent real-time quantitative polymerase chain reaction.
Another 50 eggs underwent DPBS washing and were then placed in immunofluorescence
fixative for immunofluorescence staining. A total of 100 eggs were used to assess the
developmental potential of yak oocytes. The remaining naked eggs were cultured in
modified synthetic oviduct fluid (mSOF, modified synthetic oviduct fluid) after being rinsed
three times, exposed to 5 µM ionomycin for 5 min in the dark, and then promptly transferred
to fallopian tube fluid medium (mSOF) supplemented with 2 mM 6-dimethylaminopurine
(6-DMAP) at 38.5 ◦C for 4–6 h. The embryos should be washed three times with preheated
DPBS for 5 min each time. Subsequently, a group of 45 embryos should be placed in a
35 mm embryo culture dish (174943, Nunclon, Shanghai, China). Within each culture dish,
three pre-balanced G1 droplets of culture medium should be placed, with each droplet
containing 15 embryos, covered with mineral oil, and cultured under conditions of 38.5 ◦C,
saturated humidity, and 5% CO2. The development of yak embryos was monitored at
2-cell (Figure 1D), 4-cell (Figure 1E), 8-cell (Figure 1F), morula (Figure 1G), and blastocyst
(Figure 1H) stages at 36, 48, 60, 96, and 192 h, respectively.
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Figure 1. Mature morphology and parthenogenetically activated embryonic development of yak 
COCs. (A) Immature COCs. (B) Mature COCs. (C) Mature oocytes excrete the first polar body (red 
arrow). (D–H) Respectively represent the activation of yak parthenogenetic embryos in the devel-
opment of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages; bar = 100 µm. 
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mer Premier 6.0 software and synthesized by Shanghai Shenggong Company. Infor-
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µL cDNA, 0.8 µL of forward and reverse primers, 10µL of SYBR Green II fluorescence 
quantitative PCR Mix (2×), and water to adjust the final volume to 20 µL. This mixture 
was then subjected to real-time PCR using the Roche 480 instrument (Roche, Basel, Swit-
zerland)under the following conditions: pre-denaturation at 95 °C for 30 s, denaturation 
at 95 °C for 5 s, annealing at 60 °C for 34 s, and extension at 72 °C for 30 s, for a total of 45 
cycles. The internal reference gene, β-actin, was used and the normal saline treatment 
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HIF-1α 
F: TGAAGGCACAGATGAATTGCTT 

R: GTTCAAACTGAGTTAATCCCATGT 56 KU353607.1 

Atg5  F: AGTTGCTCCTGAAGATGGGG 
R: TCTGTTGGTTGCGGGATGAT 

59 NM_001034579.2 

Beclin-1 F: GAAACCAGGAGAGACCCAGG 
R: GTGGACATCATCCTGGCTGG 58 NM_001033627.2 

LC3 
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R: TGAGCTGTAAGCGCCTTCTT 56 NM_001001169.1 

CYP11A1 F: CCTCTACTGCCTCCTGAA 
R: ATCTCGTACAAGTGCCATT 

57 NM_176644.2 

Figure 1. Mature morphology and parthenogenetically activated embryonic development of yak
COCs. (A) Immature COCs. (B) Mature COCs. (C) Mature oocytes excrete the first polar body
(red arrow). (D–H) Respectively represent the activation of yak parthenogenetic embryos in the
development of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages; bar = 100 µm.

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

A set of 50 oocytes per group and total RNA was extracted using the Micro Eute
total RNA kit (Omega, Norcross,Georgia, USA). Subsequently, cDNA was synthesized
through reverse transcription with the GoScript Reverse Transcription kit (Promega, Madi-
son,Wisconsin, USA). The CDS region of the gene, based on the mRNA sequence of yak
stored in GenBank, was selected for RT-qPCR analysis. Primer sequences were designed
using Primer Premier 6.0 software and synthesized by Shanghai Shenggong Company.
Information for primers used in real-time PCR(Table 1). The reaction mixture consisted of
1.5 µL cDNA, 0.8 µL of forward and reverse primers, 10µL of SYBR Green II fluorescence
quantitative PCR Mix (2×), and water to adjust the final volume to 20 µL. This mixture
was then subjected to real-time PCR using the Roche 480 instrument (Roche, Basel, Switzer-
land)under the following conditions: pre-denaturation at 95 ◦C for 30 s, denaturation at
95 ◦C for 5 s, annealing at 60 ◦C for 34 s, and extension at 72 ◦C for 30 s, for a total of
45 cycles. The internal reference gene, β-actin, was used and the normal saline treatment
group served as the control. The mRNA levels in different treatment groups were analyzed
using the relative template algorithm and expressed as 2−∆∆ct.

Table 1. Information for primers used in real-time PCR.

Gene Primer Sequences 5′–3′ Tm/◦C Accession Number

HIF-1α
F: TGAAGGCACAGATGAATTGCTT

R: GTTCAAACTGAGTTAATCCCATGT 56 KU353607.1

Atg5 F: AGTTGCTCCTGAAGATGGGG
R: TCTGTTGGTTGCGGGATGAT 59 NM_001034579.2

Beclin-1 F: GAAACCAGGAGAGACCCAGG
R: GTGGACATCATCCTGGCTGG 58 NM_001033627.2

LC3 F: CCGACTTATCCGAGAGCAGC
R: TGAGCTGTAAGCGCCTTCTT 56 NM_001001169.1

CYP11A1 F: CCTCTACTGCCTCCTGAA
R: ATCTCGTACAAGTGCCATT 57 NM_176644.2

CYP17A1 F: GCCCAAGACCAAGCACTC
R: GGAACCCAAACGAAAGGA 60 NM_174304.2
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Table 1. Cont.

Gene Primer Sequences 5′–3′ Tm/◦C Accession Number

CYP19A1 F: GATTTCGCCACTGAGTTGATT
R: TCTGGATTTCCCTTATTATTGC 56 NM_174305.1

HAS2 F: ACTCATTCCCGTATCCGTTTG
R: TTCTTCCGCCTGCCACATT 56 NM_174079.3

PTGS2 F: TTCTCGTGAAGCCCTATGA
R: GAGGCAGTGTTGATGATTTT 58 NM_174445.2

PTX3 F: GCTATCGGTCCATAATGCTTGT
R: CTTTCTTTGAATCCCAGGTGC 57 NM_001076259.2

TNFAIP6 F: CAAAGGAGTGTGGTGGTGTGTT
R: TTCAACATAGTCAGCCAAGCAA 56 NM_001007813.2

β-Actin F: GCGGCATTCACGAAACTA
R: TGATCTTCATTGTGCTGGGT 56 DQ838049.1

2.5. Immunofluorescence Staining

The oocytes and embryos from each treatment group (five oocytes in each group) were
fixed in 4% paraformaldehyde at room temperature for 1 h, followed by permeabilization
with 0.5% TritonX-100 for 45 min. To minimize non-specific antibody binding, we blocked
them with 8% BSA for 90 min. Subsequently, the oocytes and embryos were incubated with
the primary antibody (the negative control group used PBS instead of antibody working
solution) at 4 ◦C overnight, and then with the corresponding fluorescent secondary antibody
at room temperature for 1 h. After washing with DPBS three times, 2.5 ng/mL of DAPI
was added and incubated at room temperature in the dark for 3–5 min, followed by
three additional washes. Images were captured using the GE DeltaVision Elite living cell
workstation. Negative control pictures in supplementary materials (Figures S1–S3).

2.6. Detection of ROS Level in Oocytes

After washing the oocytes with 0.5% PVP-PBS three times, they were transferred
to DCFH-DA (1:5000, S80033, Beyotime, shanghai, China) and incubated in a CO2 cell
incubator for 20 min. Subsequently, images were captured using a fluorescence-inverted
microscope.

2.7. Detection of Actin Level in Oocytes

Following oocyte maturation, oocytes were fixed with 4% paraformaldehyde and
stained for actin using the Phalloidin-Fluor TM 594 Conjugate Kit (1:1000, 23122.AAT Bio-
qucst, Shanghai, China). Subsequently, permeabilization with 0.1% TritonX-100 was carried
out for 30 min, followed by transfer to phalloidin droplets, staining at room temperature
for another 30 min, and imaging using a fluorescence inverted microscope.

2.8. Detection of Mitochondrial Distribution in Oocytes

Mitochondrial distribution in oocytes was visualized using MitoTracker Mitochondrion-
Selective Probes (Invitrogen, Carlsbad, CA, USA). The probe, 50 µg, was dissolved in
DMSO solution to create a storage solution with a concentration of 1 mM, then diluted at a
ratio of 1:5000 and incubated in a cell incubator for 20 min. Images were captured using a
fluorescence-inverted microscope.

2.9. Detection of Mitochondrial Membrane Potential in Oocytes

After washing the oocytes with 0.5% PVP-PBS three times, they were transferred to
JC-1 (1:200, C2006, Beyotime, Shanghai, China) and stained in a CO2 cell incubator for
30 min. Subsequently, images were captured using a fluorescence-inverted microscope.
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2.10. Detection of Early Apoptosis of Oocytes

The level of early apoptosis in oocytes was assessed using the Annexin V-FITC apop-
tosis detection kit (C1062L, Beyotime, Shanghai, China). A working solution was prepared
by mixing 97.5 µL of Annexin V-FITC binding solution with 2.5 µL of Annexin V-FITC.
After three washes with 0.5% PVP-PBS, the oocytes were transferred to the Annexin V-FITC
working solution and incubated at room temperature in the dark for 25 min. Images were
captured using a fluorescence-inverted microscope.

2.11. Detection of Apoptosis Level

The level of apoptosis was detected using a TUNEL apoptosis kit (11684795910,
Roche, Basel, Switzerland). The samples of different treatment groups were fixed with 4%
paraformaldehyde for 45 min and then permeabilized with 0.5% TritonX-100 for 30 min.
The 10 µL enzyme solution and 90 µL label solution were mixed to prepare the working
solution. After washing with 0.5% PVP-PBS three times, it was transferred to the TUNEL
working solution. After 120 min of staining in a CO2 cell incubator, the nucleus was stained
with DAPI and incubated at room temperature for 5 min. Images were taken using a
fluorescence-inverted microscope.

2.12. Statistical Analyses

All experimental groups were replicated a minimum of three times. A statistical
analysis was conducted using SPSS 25.0 software (Statistical Analysis System Inc., Cary,
IL, USA). The comparison between the two groups was assessed using a Student’s t-test,
while differences among groups were evaluated through one-way ANOVA; Tukey’s test is
used as a post hoc test. A p-value of less than 0.05 was considered statistically significant.
Data are presented as mean ± standard error (mean ± SEM).

3. Results
3.1. DFOM and LW6 Regulate the Expression of HIF-1α

To regulate HIF-1α expression in yak oocytes, DFOM, LW6, and HIF-1α were subjected
to molecular docking. The findings indicated that DFOM and LW6 are effectively bound
to the target with high affinity (Figure 2A,B). Subsequently, different concentrations of
HIF-1α inducer DFOM (0, 100, 150, 200 µM) and inhibitor LW6 (0, 25, 50, 75 µM) were intro-
duced into the yak oocyte maturation system. An RT-qPCR analysis revealed that 100 µM
DFOM showed the most significant upregulation effect on HIF-1α (p < 0.05) (Figure 2C).
Similarly, 25 µM LW6 exhibited the most significant down-regulation effect on HIF-1α
(p < 0.05) (Figure 2D). The combination of 100 µM DFOM and 25 µM LW6 was chosen for
the immunofluorescence labeling of the HIF-1α protein in mature yak oocytes (Figure 2E).
The results demonstrated that 100 µM DFOM notably upregulated HIF-1α protein levels
compared to the control group (p < 0.05), while 25 µM LW6 significantly down-regulated
HIF-1α protein levels (p < 0.05) (Figure 2F).

3.2. Effects of HIF-1α on Cumulus Expansion Area and First Polar Body Extrusion Rate
of Yak Oocytes

To determine the cumulus expansion area of yak mature oocytes in different treat-
ment groups, the immature COCs in each group were compared with the mature COCs
(Figure 3A). Results indicated a significantly higher cumulus expansion area in the DFOM
group compared to the control group (p < 0.05), while the LW6 group showed a signif-
icant decrease (p < 0.05) (Figure 3B). Furthermore, the first polar body excretion rate of
each treatment group was assessed. After maturation, cumulus cells were removed with
hyaluronic acid to obtain naked eggs, and the first polar body was observed by gently
blowing the rotating oocytes with a suction needle under a stereomicroscope (Figure 3C).
The results revealed a significantly higher first polar body rate in oocytes from the DFOM
group compared to the control group (p < 0.05) and a significantly lower rate in the LW6
group compared to the control group (p < 0.05) (Figure 3D).
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cytes from the DFOM group compared to the control group (p < 0.05), while oocytes in the 
LW6 group displayed a significant decrease in mitochondrial membrane potential (p < 
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Figure 3. HIF-1α regulates the cumulus expansion area and the first polar body extrusion rate of
yak oocytes. (A) Cumulus spreading area of oocytes in different treatment groups. (A1) Immature
COCs in the control group. (A2) Immature COCs in DFOM group. (A3) Immature COCs in LW6
group. (A4) Mature COCs in DFOM group. (A5) Immature COCs in the control group. (A6) Mature
COCs in LW6 group. (B) The cumulus expansion area of yak mature oocytes in different treatment
groups. (C) The first polar body of oocytes in different treatment groups was excreted. (C1) The first
polar body extrusion of oocytes in the control group. (C2) The first polar body extrusion of oocytes
in DFOM group. (C3) The first polar body extrusion of oocytes in LW6 group. (D) The first polar
body extrusion rate of yak mature oocytes in different treatment groups. The red frame represents
the cumulus expansion area. Bar = 200 µm. The difference of different letters in the histogram was
statistically significant (p < 0.05).
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3.3. Effect of HIF-1α on the Developmental Potential of Yak Oocytes

To assess the oxidative stress level of oocytes, DCFH staining was utilized to compare
the ROS levels among different treatment groups (Figure 4A). The findings indicated
a significantly lower ROS level in oocytes treated with DFOM compared to the control
group (p < 0.05), while oocytes in the LW6 group exhibited a notably higher ROS level
than the control group (p < 0.05) (Figure 4F). Actin plays a crucial role in oocyte meiosis,
and its levels were assessed using Phalloidin-iFluorTM 488 Conjugate (Figure 4B). The
results revealed a significant increase in actin levels when DFOM was added to the oocyte
maturation system compared to the control group (p < 0.05), whereas LW6 addition led to a
significant reduction in actin levels (p < 0.05) (Figure 4G). Mitochondria, pivotal organelles
responsible for energy generation in cells, greatly influence the developmental potential
of oocytes. Mito Tracker® Mitochondrion-Selective Probes were employed to examine the
distribution of oocyte mitochondria (Figure 4C). The outcomes demonstrated a significantly
higher mitochondrial level in oocytes from the DFOM group compared to the control group
(p < 0.05), whereas oocytes treated with LW6 exhibited a significantly lower mitochondrial
level than the control group (p < 0.05) (Figure 4I). Additionally, JC-1 staining was used to
assess the mitochondrial membrane potential (∆Ψm) (Figure 4E). The results indicated a
significant increase in mitochondrial membrane potential in oocytes from the DFOM group
compared to the control group (p < 0.05), while oocytes in the LW6 group displayed a
significant decrease in mitochondrial membrane potential (p < 0.05) (Figure 4J). In addition,
the impact of HIF-1α on early apoptosis of oocytes was assessed using the Annexin V-
FITC apoptosis detection kit. Results indicated a significant decrease in the Annexin V
positive signal in oocytes from the DFOM group compared to the control group (p < 0.05).
Conversely, oocytes treated with LW6 exhibited a notably higher Annexin V positive signal
compared to the control group (p < 0.05) (Figure 4D,H).
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different treatment groups on early apoptosis of oocytes. (E) The effect of different treatment groups
on the distribution of oocyte mitochondria. (F) Relative fluorescence intensity of ROS in oocytes
of different treatment groups. (G) Relative fluorescence intensity of actin in oocytes of different
treatment groups. (H) Relative fluorescence intensity of oocyte apoptosis in different treatment groups.
(I) Relative fluorescence intensity of oocyte mitochondria in different treatment groups. (J) Effects of
different treatment groups on mitochondrial membrane potential of oocytes. Bar = 50 µm. Different
letters in the histogram indicate statistically significant differences (p < 0.05).

3.4. HIF-1α Regulates the Levels of Autophagy-Related Factors, CYP450s, and Cumulus Diffusion
Factors in Yak Oocytes

To investigate the impact of regulating HIF-1α on autophagy levels in oocytes, changes
in autophagy-related factors were assessed at the transcriptional and translational levels.
An RT-qPCR analysis revealed that Atg5, Beclin-1, and LC3 mRNA levels in oocytes
from the DFOM group were significantly higher compared to the control group (p < 0.05),
whereas the LW6 group exhibited the opposite trend (Figure 5A,D,H). Additionally, im-
munofluorescence labeling of Atg5, Beclin-1, and LC3 proteins showed that protein levels
in oocytes from the DFOM group were significantly elevated compared to the control group
(p < 0.05), while oocytes from the LW6 group had significantly lower protein levels than
the control group (p < 0.05) (Figure 5B,C,E–G,I).
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(B,E,F) Immunofluorescence labeling of Atg5, Beclin-1, and LC3 proteins in oocytes of different
treatment groups. (C,G,I) The relative expression levels of Atg5, Beclin-1, and LC3 proteins in yak
mature oocytes of different treatment groups. Bar = 50 µm. The difference of different letters in the
histogram was statistically significant (p < 0.05).

CYP450s were analyzed using RT-qPCR to assess the mRNA levels of CYP11A1,
CYP17A1, and CYP19A1 in oocytes from various treatment groups. Results indicated
significantly higher mRNA levels of CYP11A1, CYP17A1, and CYP19A1 in oocytes from the
DFOM group compared to the control group (p < 0.05), whereas the LW6 group exhibited
the opposite trend (Figure 6A,D,G). Additionally, immunofluorescence labeling was used
to detect CYP11A1, CYP17A1, and CYP19A1 proteins (Figure 6B,E,F). The protein levels of
CYP11A1, CYP17A1, and CYP19A1 in oocytes from the DFOM group were significantly
higher than those in the control group (p < 0.05), while the LW6 group showed significantly
lower protein levels (p < 0.05) (Figure 6C,G,I).
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Figure 6. HIF-1α regulates the levels of CYP450s-related factors in yak oocytes. (A,D,H) The relative
expression levels of CYP11A1, CYP17A1, and CYP19A1 mRNA in oocytes of different treatment
groups. (B,E,F) Immunofluorescence labeling of CYP11A1, CYP17A1, and CYP19A1 proteins in
oocytes of different treatment groups. (C,G,I) The relative expression levels of CYP11A1, CYP17A1,
and CYP19A1 proteins in yak mature oocytes of different treatment groups. Bar = 50 µm. The
difference of different letters in the histogram was statistically significant (p < 0.05).

Changes in cumulus diffusion-related factors in yak oocytes were examined by intro-
ducing different treatments to an in vitro culture model. After 24 h, oocytes were retrieved
to assess the expression of cumulus diffusion marker genes during in vitro maturation.
RT-qPCR analysis revealed that in comparison to the control group, the mRNA levels
of HAS2, PTGS2, PTX3, and TNFAIP6 were significantly elevated in the DFOM group
(p < 0.05), while the LW6 group exhibited the opposite trend (Figure 7A,D,G,J). In order to
further verify these results, immunofluorescence labeling was conducted to analyze the
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expression of HAS2, PTGS2, PTX3, and TNFAIP6 proteins (Figure 7B,E,H,K). The results
indicated that the changes in cumulus diffusion-related factors were consistent with mRNA
expression trends. Specifically, the protein levels of HAS2, PTGS2, PTX3, and TNFAIP6
were significantly higher in the DFOM group compared to the control group (p < 0.05).
Conversely, the protein levels of these proteins in the LW6 group were significantly lower
than those in the control group (p < 0.05) (Figure 7C,F,I,L).
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Figure 7. HIF-1α regulates the levels of cumulus diffusion-related factors in yak oocytes. (A,D,G,J)
Relative expression levels of HAS2, PTGS2, PTX3, and TNFAIP6 mRNA in oocytes in different
treatment groups. (B,E,H,K) HAS2, PTGS2, PTGS2, immunofluorescence labeling of PTX3 and
TNFAIP6 proteins. (C,F,I,L) Relative expression levels of HAS2, PTGS2, PTX3, and TNFAIP6 proteins
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indicate statistically significant differences (p < 0.05).

3.5. HIF-1α Regulates the Levels of CYP450s and Cumulus Diffusion Factors in Yak Oocytes
through Autophagy

In further investigating the potential role of autophagy in the regulation of CYP450s
and cumulus diffusion factors, an autophagy-specific inhibitor, 3-MA, was utilized to sup-
press autophagy levels. A combined treatment group of DFOM and 3-MA was established
based on previous findings. The RT-qPCR results revealed a significant decrease in the
mRNA levels of Atg5, Beclin-1, and LC3 in the DFOM + 3-MA group compared to the
DFOM group (p < 0.05) (Figure 8A,D,G). To validate these findings, immunofluorescence
labeling of Atg5, Beclin-1, and LC3 proteins was performed (Figure 8B,E,H), showing a
consistent trend with mRNA expression (Figure 8C,F,I). These results confirm the efficacy
of 3-MA in reducing autophagy levels in oocytes.
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Figure 8. 3-MA regulated the level of autophagy-related factors in yak oocytes. (A,D,G) The relative
expression levels of Atg5, Beclin-1, and LC3 mRNA in oocytes of different treatment groups. (B,E,H)
Immunofluorescence labeling of Atg5, Beclin-1, and LC3 proteins in oocytes of different treatment
groups. (C,F,I) The relative expression levels of Atg5, Beclin-1, and LC3 proteins in yak mature
oocytes of different treatment groups. Bar = 50 µm. The difference of different letters in the histogram
was statistically significant (p < 0.05).

RT-qPCR was utilized to assess the levels of CYP450s-related factors CYP11A1, CYP17A1,
and CYP19A1 in oocytes following a reduction in autophagy levels. The combined treat-
ment of DFOM and 3-MA resulted in significantly lower levels of CYP17A1 and CYP19A1
mRNA compared to the DFOM group (p < 0.05). There was no significant difference
in CYP11A1 (p > 0.05). (Figure 8A,D,G). The immunofluorescence labeling of CYP11A1,
CYP17A1, and CYP19A1 proteins showed a significant decrease in CYP17A1 and CYP19A1
levels in oocytes from the combined treatment group compared to the DFOM group
(p < 0.05). There was no significant difference in CYP11A1 (p > 0.05) (Figure 9B,C,E–G,I).
These findings support the role of HIF-1α in regulating CYP450s-related factors in yak
oocytes through autophagy.
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immunofluorescence labeling of HAS2, PTGS2, PTX3, and TNFAIP6 proteins (Figure 
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Figure 9. HIF-1α regulates the levels of CYP450s-related factors in yak oocytes through autophagy.
(A,D,H) The relative expression levels of CYP11A1, CYP17A1, and CYP19A1 mRNA in oocytes
of different treatment groups. (B,E,F) Immunofluorescence labeling of CYP11A1, CYP17A1, and
CYP19A1 proteins in oocytes of different treatment groups. (C,G,I) The relative expression levels of
CYP11A1, CYP17A1, and CYP19A1 proteins in yak mature oocytes of different treatment groups.
Bar = 50 µm. The difference of different letters in the histogram was statistically significant (p < 0.05).

To investigate changes in cumulus diffusion-related factors in oocytes following a
reduction in autophagy levels, RT-qPCR was utilized to measure the mRNA levels of HAS2,
PTGS2, PTX3, and TNFAIP6 in oocytes from various treatment groups. The mRNA levels of
these factors in oocytes treated with DFOM combined with 3-MA were significantly lower
than those in the DFOM group (p < 0.05) (Figure 10A,D,G,J). Subsequently, immunofluores-
cence labeling of HAS2, PTGS2, PTX3, and TNFAIP6 proteins (Figure 10B,E,H,K) further
supported these findings, showing a consistent trend with mRNA expression. Protein
levels of these factors in oocytes treated with DFOM combined with 3-MA were also signif-
icantly reduced compared to the DFOM group (p < 0.05) (Figure 10C,F,I,L). These results
confirm that HIF-1α can modulate cumulus diffusion-related factors in yak oocytes through
autophagy.

In conclusion, the data demonstrate that HIF-1α plays a role in regulating CYP450s
and cumulus diffusion factors in yak oocytes via autophagy.
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Figure 10. HIF-1α regulates the level of cumulus diffusion-related factors in yak oocytes through
autophagy. (A,D,G,J) Relative expression levels of HAS2, PTGS2, PTX3, and TNFAIP6 mRNA in
oocytes in different treatment groups. (B,E,H,K) HAS2, PTGS2, PTGS2, immunofluorescence labeling
of PTX3 and TNFAIP6 proteins. (C,F,I,L) Relative expression levels of HAS2, PTGS2, PTX3, and
TNFAIP6 proteins in mature oocytes of yak in different treatment groups. Bar = 50 µm. Different
letters in the histogram indicate statistically significant differences (p < 0.05).

3.6. HIF-1α Regulates the Developmental Potential of Yak Oocytes through Autophagy

To investigate the impact of reduced autophagy on the developmental potential
of oocytes, DCFH staining was utilized to compare ROS levels in different treatment
groups (Figure 11A). Results indicated a significant increase in ROS production in oocytes
treated with DFOM and 3-MA combined, compared to those treated with DFOM alone
(p < 0.05) (Figure 11B). Actin levels in oocytes were assessed using Phalloidin-iFluor TM
488 Conjugate staining (Figure 11C), revealing a significant reduction in actin levels with
the addition of 3-MA in the oocyte maturation system, as opposed to the DFOM group
(p < 0.05) (Figure 11D). The mitochondrial distribution was examined using MitoTracker®

Mitochondrion-Selective Probes (Figure 11E), showing a lower mitochondrial level in
oocytes from the DFOM + 3-MA group compared to the DFOM group (p < 0.05) (Figure 11F).
The evaluation of mitochondrial membrane potential (∆Ψm) through JC-1 staining
(Figure 11G) demonstrated a significant reduction in the DFOM and 3-MA combined
treatment group as opposed to the DFOM group (p < 0.05) (Figure 11H). Early apoptosis in
oocytes was assessed using the Annexin V-FITC apoptosis detection kit (Figure 11I), with
results showing a higher level of early apoptosis in oocytes from the DFOM combined with
the 3-MA treatment group, compared to the DFOM group (p < 0.05) (Figure 11J).
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Figure 11. HIF-1α regulates the developmental potential of yak oocytes through autophagy. (A)
Effects of different treatment groups on ROS in oocytes. (B) The relative fluorescence intensity of ROS
in oocytes of different treatment groups. (C) Effects of different treatment groups on actin in oocytes.
(D) The relative fluorescence intensity of actin in oocytes of different treatment groups. (E) The effects
of different treatment groups on the distribution of oocyte mitochondria. (F) Relative fluorescence
intensity of oocyte mitochondria in different treatment groups. (G) Effects of different treatment
groups on the mitochondrial membrane potential of oocytes. (H) Relative fluorescence intensity of
mitochondrial membrane potential in oocytes of different treatment groups. (I) Effects of different
treatment groups on early apoptosis of oocytes. (J) Relative fluorescence intensity of oocyte apoptosis
in different treatment groups. Bar = 50 µm. Different letters in the histogram indicate statistically
significant differences (p < 0.05).

3.7. HIF-1α Regulates the Dynamic Expression of Bax/Bcl-2 in Yak Oocytes and Preimplantation
Parthenogenetic Embryos through Autophagy

This study investigated the role of HIF-1α in regulating the expression of Bax/Bcl-2
in yak oocytes and preimplantation parthenogenetically activated embryos through au-
tophagy. DFOM was used to modulate HIF-1α levels, while 3-MA was added to decrease
autophagy. Immunofluorescence labeling of Bax and Bcl-2 proteins was conducted at
different developmental stages of oocytes and embryos (Figure 12A,C,E,G,I,K). The re-
sults revealed that the DFOM group exhibited a significant decrease in Bax protein levels
and an increase in Bcl-2 protein levels compared to the control group (p < 0.05). Con-
versely, the combination of DFOM and 3-MA treatment resulted in the opposite effect
(Figure 12B,D,F,H,J,L).
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3.8. HIF-1α Regulates Blastocyst Cell Fate and Apoptosis after Parthenogenetic Activation of Yak
Oocytes through Autophagy

To investigate the potential role of HIF-1α in regulating blastocyst development follow-
ing parthenogenetic activation of yak oocytes through autophagy, the blastocyst rate and
hatching blastocyst rate of various treatment groups were analyzed. Results indicated that
the blastocyst rate and hatching blastocyst rate of parthenogenetic embryos in the DFOM
group were significantly higher compared to the control group (p < 0.05), while the DFOM
and 3-MA combined treatment group showed the opposite trend (Figure 13A). Subsequent
immunofluorescence labeling of ICM and TE of blastocysts using CDX2 and SOX2 proteins
revealed an increased total number of blastocysts in the DFOM group, with higher ICM
and TE counts. Notably, the ICM/TE ratio was significantly elevated in the DFOM group
(p < 0.05), suggesting that the upregulation of HIF-1α could enhance blastocyst quality and
promote ICM fate, leading to a higher number of ICM cells. The inhibition of autophagy
hindered these effects (Figure 13B–E). Furthermore, TUNEL analysis demonstrated that
the apoptosis rate of blastocysts in the DFOM group was significantly lower than in the
control group (p < 0.05), while the DFOM combined with the 3-MA group exhibited a
higher apoptosis rate than the control group (p < 0.05) (Figure 13F,G).
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Figure 13. The effect of HIF-1α on the fate and apoptosis of blastocyst cells after parthenogenetic
activation of yak oocytes. (A) Statistics of blastocyst development rate after parthenogenetic activation
of oocytes in different treatment groups. (B) Immunofluorescence labeling of CDX2 and SOX2 proteins
in blastocysts after parthenogenetic activation of oocytes in different treatment groups. (C) Statistics
of total cell number of blastocysts after parthenogenetic activation of oocytes in different treatment
groups. (D) The number of ICM cells and TE cells in blastocysts after parthenogenetic activation
of oocytes in different treatment groups was counted. (E) The ICM/TE ratio of blastocysts after
parthenogenetic activation of oocytes in different treatment groups. (F) TUNEL staining of blastocysts
after parthenogenetic activation of oocytes in different treatment groups. (G) Statistics of blastocyst
apoptosis rate after parthenogenetic activation of oocytes in different treatment groups. (Bar = 50 µm).
The difference of different letters in the histogram was statistically significant (p < 0.05).

4. Discussion

HIF-1α, a transcription factor activated under hypoxic conditions, is crucial in various
biological processes, particularly cell survival and metabolic regulation [34]. Research
has demonstrated that HIF-1α enhances cellular adaptability to hypoxia by triggering
downstream gene activation [35]. This study specifically investigated the impact of the
HIF-1α transcription factor on the in vitro maturation of yak oocytes, suggesting its pivotal
role as a mediator connecting environmental stress to oocyte maturation quality.

In this research, DFOM (an inducer of HIF-1α activity) and LW6 (an inhibitor of HIF-
1α) were utilized in the treatment of oocytes. This study revealed that DFOM significantly
enhanced oocyte maturation rates, whereas LW6 had the opposite effect. Reactive oxygen
species (ROS) play a crucial role in oocyte senescence, potentially causing cellular dysfunc-
tion if not properly regulated [36]. Our findings demonstrated that the DFOM-induced
activation of HIF-1α led to a notable decrease in ROS levels within oocytes, suggesting
an enhanced cellular response to oxidative stress. This decrease in ROS levels may be
attributed to an improvement in autophagic clearance of damaged mitochondria and other
cellular debris, which otherwise could contribute to oxidative stress. Conversely, the in-
hibition of HIF-1α by LW6 resulted in elevated ROS levels, potentially compromising the
integrity and viability of oocytes. This underscores the protective function of HIF-1α in
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preserving redox balance during oocyte maturation. Vaibhao et al. reported that increasing
HIF-1α levels can decrease cellular ROS levels. This finding is in line with the results pre-
sented in our research report [37]. The maintenance of mitochondrial integrity and function
is crucial for ATP production, oocyte maturation, and embryonic development [38,39]. Our
study demonstrated that the activation of HIF-1α improved mitochondrial function by
increasing mitochondrial membrane potential, likely through the upregulation of genes
involved in mitochondrial biogenesis and the reduction of reactive oxygen species (ROS).
This led to a more efficient energy production system in oocytes. Previous research shows
that meiosis, a crucial process in oocyte maturation, requires precise cytoskeletal reorga-
nization. HIF-1α may play a role in meiosis by regulating the actin network to ensure
proper chromosome distribution during cell division. Treatment with DFOM enhanced
actin polymerization, facilitating accurate and efficient meiosis and reducing the risk of
chromosomal abnormalities in resulting embryos [40]. Maintaining oocyte quality involves
minimizing apoptosis during maturation. Our findings suggest that HIF-1α regulation
significantly impacts early apoptosis markers, with DFOM treatment decreasing early
apoptosis levels possibly by reducing oxidative stress and enhancing overall cell health.
Conversely, LW6 treatment appears to exacerbate apoptosis, underscoring the protective
role of HIF-1α in cellular stress. He et al. discovered that HIF-1α in yak has the ability to
suppress oocyte apoptosis and enhance oocyte maturation, a finding that aligns with our
own research results [9].

Autophagy is essential for maintaining cell health by eliminating damaged organelles
and proteins, ensuring a clean intracellular environment vital for normal oocyte matura-
tion [41,42]. Zhang et al. discovered that in H9C2 cells, HIF-1α has the ability to elevate
autophagy levels [43]. Our findings demonstrate that activating HIF-1α with DFOM no-
tably boosts the expression of autophagy markers like Atg5, Beclin-1, and LC3, which are
crucial for forming autophagosomes. This indicates that increased autophagy flux is a
protective response facilitated by HIF-1α under hypoxic stress, which is particularly benefi-
cial for oocytes needing robust mechanisms to combat oxidative stress and ensure proper
cytoplasmic maturation. The mechanism involves HIF-1α enhancing the expression of
autophagy-related genes, such as LC3 and Beclin-1, which are directly involved in forming
autophagic vesicles to eliminate damaged components and maintain intracellular stability.
These results suggest that HIF-1α may enhance oocyte maturation rate and quality by
promoting autophagy. Previous studies have shown that HIF-1α promotes autophagy
in mouse granulosa cells, which is consistent with the findings in this study [21]. This
was further confirmed when they were treated with 3-MA, an autophagy inhibitor, which
significantly dampened autophagy activity, leading to reduced oocyte maturation rate and
developmental potential. This highlights the critical role of autophagy in oocyte maturation,
with HIF-1α positively regulating the autophagy process to adapt to hypoxic and other
stress conditions.

CYP450s are a group of enzymes essential for the synthesis of steroid hormones, such
as CYP11A1, CYP17A1, and CYP19A1. These enzymes play key roles in cholesterol side
chain cleavage and sex hormone biosynthesis [25,44,45]. After the DFOM treatment of
yak oocytes, there was a significant increase in mRNA and protein expression levels of
CYP11A1, CYP17A1, and CYP19A1. This upregulation suggests that HIF-1α activation
promotes the expression of steroid hormone synthase in oocytes, potentially enhancing
oocyte maturation, fertilization capability, and subsequent development. Conversely, LW6
had the opposite effect. Vijay et al. discovered that HIF1-driven transcriptional activity in
bovine granulosa cells plays a role in regulating steroidogenesis and proliferation, aligning
with our own research [46]. These findings underscore the regulatory influence of HIF-1α
on the reproductive physiology of yaks at high altitudes. Given their unique adaptation
to plateau environments, the reproductive system’s adaptive regulation in yaks is crucial
for reproductive success. In high-altitude settings, hypoxia is common, and HIF-1α, as a
key responder to hypoxia, may regulate CYP450s as a fundamental biological mechanism
for yak adaptation [47]. Through the promotion of steroid hormone synthase expression,
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HIF-1α activation could enhance the synthesis of hormones like estrogen and progesterone
in oocytes, thus optimizing the oocyte maturation environment and improving fertilization
potential and early embryonic development. This hormonal environment optimization
is crucial for enhancing the reproductive efficiency of seasonal estrus yaks. Intriguingly,
our research also revealed that decreased autophagy activity was associated with reduced
CYP450 levels. Zhang et al. discovered that inhibiting autophagy levels with 3-MA
leads to a decrease in steroid hormone synthase in yak granulosa cells, supporting our
perspective [48,49].

Cumulus spreading factors, including HAS2, PTGS2, PTX3, and TNFAIP6, are crucial
for oocyte maturation and ovulation [50]. This study demonstrates that HIF-1α influences
the cumulus structure and function by modulating the expression of these factors, thereby
promoting oocyte maturation and ovulation. These findings align with previous research
in goats and humans [51–53]. The experiment manipulated HIF-1α expression using the
inducer DFOM and the inhibitor LW6. Increasing HIF-1α activity significantly enhanced
the expression of cumulus diffusion factors. Specifically, DFOM treatment boosted mRNA
and protein levels of HAS2, PTGS2, PTX3, and TNFAIP6, leading to cumulus expansion
and oocyte maturation. Conversely, LW6 application suppressed the expression of these
diffusion factors, potentially impacting oocyte development and ovulation efficiency. The
impact of HIF-1α on oocyte development was confirmed through measurements of the
cumulus expansion area. DFOM treatment notably increased the cumulus diffusion area
and the rate of first polar body extrusion in oocytes, which is indicative of improved mature
oocyte quality. Furthermore, co-treatment with DFOM and 3-MA resulted in the decreased
developmental potential of oocytes, CYP450s, and cumulus diffusion factors. This decrease
in autophagy levels counteracted the upregulation effect of HIF-1α on cells, highlighting
the role of HIF-1α in modulating oocyte maturation through autophagy regulation.

HIF-1α plays a crucial role in regulating both autophagy during oocyte maturation
and the development of preimplantation embryos. Research has demonstrated that HIF-1α
assists embryos in adapting to potential hypoxic conditions by controlling nutrient ab-
sorption, energy metabolism, and antioxidant defense mechanisms [54,55]. Additionally,
HIF-1α influences embryonic cell apoptosis by modulating the expression of apoptosis-
related genes like Bax and Bcl-2. By promoting glycolysis and enhancing energy supply,
HIF-1α can impact mitochondrial function and regulate cellular energy levels, which is
essential for maintaining oocyte and early embryo viability. The regulation of HIF-1α ex-
tends beyond enhancing survival and inhibiting apoptosis during blastocyst development;
it also significantly influences the differentiation of inner cell mass (ICM) and trophoblast
(TE) cells in the blastocyst stage. Immunofluorescence staining with specific cell markers
revealed that DFOM treatment increased the proportion of ICM cells and preserved the
health of TE cells, suggesting that the proper activation of HIF-1α can optimize embryo
structure and enhance preimplantation development quality and implantation efficiency.
He et al. demonstrated that HIF-1α has the ability to improve preimplantation embryo
development and influence the cell fate of blastocysts, aligning with our own research
results [56]. Similarly, reducing autophagy levels in early embryos led to increased apop-
tosis at each stage, decreased total blastocyst cell numbers, and a notable decrease in the
ICM/TE ratio. These findings underscore the role of HIF-1α in modulating preimplantation
embryo development through the autophagy pathway, influencing blastocyst cell fate and
apoptosis.

Yaks live in the plateau environment for a long time and are seasonal estrus livestock.
Compared to other livestock species, yaks have relatively low reproductive capacity. En-
hancing reproductive regulation technology for yaks is a key focus for efficient breeding
practices, with a particular emphasis on developing a high-quality oocyte production strat-
egy [57]. While our research highlights the significance of HIF-1α in yak oocyte maturation,
it is important to acknowledge the limitations of our study. The primary constraint lies in
the in vitro approach, which, despite its informative value, may not completely mirror the
intricate in vivo conditions. Subsequent investigations should prioritize translating these
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results into real-world scenarios, assessing the feasibility and effectiveness of employing
HIF-1α modulators in yak breeding initiatives. The findings of this study highlight the
potential for optimizing the in vitro maturation of yak oocytes through the regulation of
HIF-1α activity to modulate autophagy. This approach holds significant importance in
enhancing breeding techniques, improving embryo quality, and increasing the success rate
of yak reproduction.

5. Conclusions

This study highlights the significant role of HIF-1α in yak reproductive biology, partic-
ularly its impact on various aspects of oocyte quality, such as spreading area, first polar
body efflux rate, mitochondrial and actin levels, ROS and early apoptosis levels, CYP450s
enzymes, and oocyte mound spreading factor expression. These effects are mediated
through the regulation of autophagy to improve the in vitro maturation of yak oocytes
and early embryonic development (Figure 14). This discovery holds great significance in
enhancing our understanding of the reproductive adaptability mechanism of plateau ani-
mals and offers new insights and strategies for the future development of yak reproductive
technology. Further research is essential to uncover the underlying regulatory mechanisms
and implement more effective measures to enhance the reproductive efficiency and success
of livestock in alpine regions.
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