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Abstract: The rapid advancement of computational infrastructure has led to unprecedented growth
in machine learning, deep learning, and computer vision, fundamentally transforming the analysis
of retinal images. By utilizing a wide array of visual cues extracted from retinal fundus images,
sophisticated artificial intelligence models have been developed to diagnose various retinal disorders.
This paper concentrates on the detection of Age-Related Macular Degeneration (AMD), a signifi-
cant retinal condition, by offering an exhaustive examination of recent machine learning and deep
learning methodologies. Additionally, it discusses potential obstacles and constraints associated
with implementing this technology in the field of ophthalmology. Through a systematic review, this
research aims to assess the efficacy of machine learning and deep learning techniques in discerning
AMD from different modalities as they have shown promise in the field of AMD and retinal disorders
diagnosis. Organized around prevalent datasets and imaging techniques, the paper initially outlines
assessment criteria, image preprocessing methodologies, and learning frameworks before conducting
a thorough investigation of diverse approaches for AMD detection. Drawing insights from the
analysis of more than 30 selected studies, the conclusion underscores current research trajectories,
major challenges, and future prospects in AMD diagnosis, providing a valuable resource for both
scholars and practitioners in the domain.

Keywords: age-related macular degeneration (AMD); deep learning (DL); machine learning (ML);
retinal segmentation; retinal disease diagnosis

1. Introduction

The initial definition of age-related macular degeneration (AMD), described as sym-
metric central chorioretinopathy in the elderly, was in 1874. AMD is a chronic ocular
disease that impairs the eye’s central vision. The macula, the core region of the retina
responsible for sharp, clear vision, is degenerating [1,2]. AMD now accounts for 8.7%
of blindness worldwide and is one of the leading causes of permanent vision loss in the
elderly (>50 years old). In Europe, approximately 1% of people have advanced AMD. It is
projected that 288 million people worldwide will suffer from AMD by 2040. In addition to
aging, hereditary and environmental variables are the primary causes of AMD [3,4].

Eye diseases are a major health concern for the elderly. People who have eye disorders
usually do not realize their symptoms are slowly getting worse. Routine eye exams are,
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therefore, necessary for an early diagnosis. For prompt intervention, AMD must be accu-
rately diagnosed and detected as early as possible. Typically, a slit-lamp examination is
used by an ophthalmologist to diagnose eye conditions [5]. Due to variations in the ophthal-
mologist’s analytical abilities, irregularities in the analysis of eye disorders, and problems
with record keeping, slit-lamp interpretations are insufficient. Fundus images, captured
through retinal imaging, provide valuable information about the structural changes in the
macula associated with AMD [6].

Analyzing images from Optical Coherence Tomography (OCT), OCT Angiography,
and fluorescein angiography (FA), or fundus cameras is known as retinal image analysis.
These predominant non-invasive methods for capturing alterations in retinal structure,
encompassing changes in the optic disc, blood vessels, macula, and fovea, are fundoscopy
and OCT imaging. Analyzing these images assists in identifying various conditions such as
diabetic retinopathy (DR), cataracts, glaucoma, AMD, myopia, and high blood pressure [7].

AMD fundus image classification into distinct categories plays a vital role in under-
standing the disease progression and determining appropriate treatment plans. As shown
in Table 1, Four phases are commonly used to classify AMD: normal, early, intermediate,
and advanced. No or early-stage AMD is diagnosed when there are either no Drusen
or only a few small Drusen (macular yellow deposits) present in the eye. In early AMD,
Drusen are considered small to medium in size. Intermediate AMD is characterized by
numerous medium-sized Drusen or at least one large Drusen, sometimes accompanied
by pigmentary changes. Advanced AMD can manifest in either dry or wet forms. Dry
AMD occurs when the retinal pigment epithelium near the macula degenerates, leading to
Geographic Atrophy (GA). This atrophic area gradually progresses toward the center of
the macula, resulting in permanent vision loss if it involves the central region. On the other
hand, wet AMD progresses rapidly with a sudden onset. It is caused by abnormal growth
of blood vessels behind the retina, which can rupture or leak, causing swift deterioration of
vision [8].

Table 1. Tabular depiction of AMD fundus image stages showcasing a comparison along with
visual samples.

No AMD (Normal) Early Intermediate AMD Advanced Dry AMD Advanced Wet AMD

Refers to images showing no
signs of AMD-related changes,
often depicting individuals
without clinical evidence of
AMD or those in early stages
of the disease with mini-
mal abnormalities, such as a
small number (5–15) of small
(<63 µm) or absent Drusen
without pigment alterations.

Early AMD clinically presents
with Drusen and abnormali-
ties in the retinal pigment ep-
ithelium (RPE). It may involve
one or both eyes, showing pig-
mentary changes, a few small
Drusen, and/or intermediate-
sized (63–124 µm) Drusen.

Intermediate AMD lies be-
tween early and advanced
stages, characterized by pig-
mentary changes and Drusen,
small yellow deposits beneath
the retina. It may include one
large druse (>125 µm), one
extensive intermediate-sized
druse (20 soft or 65 hard with-
out any soft), and/or GA ex-
cluding the macula in one or
both eyes.

GA is marked by the grad-
ual loss of RPE cells in spe-
cific macular areas, forming
well-defined atrophic patches.
It results in progressive cen-
tral vision loss and is a major
cause of significant visual im-
pairment in AMD patients.

Wet AMD is an advanced and
severe form of the disease,
characterized by the growth
of abnormal blood vessels be-
neath the retina. These vessels
can leak fluid or blood, caus-
ing retinal damage and rapid
vision loss if untreated. It com-
monly results in sudden and
severe central vision impair-
ment.

Computer-aided diagnostic (CAD) systems leverage advancements in machine learn-
ing (ML) and computer vision to diagnose conditions like DR and AMD. ML techniques
exhibit significant potential in accurately categorizing AMD by identifying subtle charac-
teristics indicative of various disease stages [9]. These methods automate the classification
process, ensuring consistent and objective assessments while reducing variability among
observers and facilitating timely diagnoses [10,11]. Despite the challenges involved, such



Bioengineering 2024, 11, 711 3 of 46

as the need for extensive effort in feature extraction, analysis, and engineering, as well
as a deep understanding of disease-specific traits, ML-inspired approaches have shown
promising outcomes [12]. Furthermore, the emergence of deep learning (DL) as a subfield
of ML has shown promise in detecting specific retinal illnesses. DL techniques have signif-
icantly advanced the identification and classification of ocular diseases such as Diabetic
Macular Edema (DME), AMD, and DR. Transformer networks, initially popularized in
natural language processing, are being adapted for computer vision tasks, particularly
in retinal disease diagnosis [13,14]. The development of a reliable system for classifying
Optical Coherence Tomography and fundus images holds great promise for clinical appli-
cation. Such a system could assist ophthalmologists in guiding patients toward appropriate
treatment plans [15].

In medicine, artificial intelligence (AI) has been extensively used in a variety of settings
Figure 1. Particularly in the field of ophthalmology, partnerships between medical imaging
and AI disciplines have shown to be particularly fruitful. Professional ophthalmologists
currently cannot afford to do such a high volume of AMD screening, particularly in
impoverished nations and areas. Three areas of AI technology for AMD diagnosis exist
(1) Disease/no disease, (2) wet/dry/no disease, and (3) AMD severity. With AI’s help,
AMD may reduce the time it takes to diagnose and treat patients, enhance the effectiveness
of diagnosis and therapy, and delay the onset of AMD blindness, which addresses a flaw in
many medical businesses [16].

Figure 1. AI workflow in ophthalmology usually includes model building, training, validation,
testing, and implementation in addition to data gathering and preprocessing. It is intended to use
deep learning and machine learning methods to diagnose, treat, and manage eye conditions [17].

The primary goal of the proposed review is to give a thorough analysis of the different
ML and DL techniques that have been recently used for AMD using different modalities.
The proposed review discusses the methodology employed, encompassing data collection,
pre-processing techniques, feature extraction methods, and the selection of ML algorithms.
The contributions can be summarized as follows:

- It discusses the findings, challenges, advantages, disadvantages, and limitations of
ML and DL-based AMD classification systems, offering insights for future research
directions in AI-based AMD diagnosis.
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- It utilizes the DL process pipeline technique for AMD retinal disease diagnosis, eval-
uating recent papers on AMD and providing information on DL backbone models,
assessment measures, and image pre-processing methods.

- It includes a tabulated analysis of comparative performances of various DL implemen-
tations, a thorough literature study, a discussion on the utilization of public and private
datasets, and outlines current avenues of research, contributing to the advancement of
computer-aided diagnosis of AMD and enhancing patient care and outcomes.

The structure of this review is organized as follows: Section 2 presents prevalent
imaging modalities. Section 3 outlines the AMD diagnosing framework with its internal
three main components: AMD Datasets Acquisition, Pre-Processing Techniques, and Deep
and Machine Learning Techniques for AMD Segmentation and Diagnoses. Section 4
presents the Discussion and Summary of this research. Section 5 presents the future
research directions. Finally, Section 6 concludes the review.

2. Prevalent Imaging Modalities

In exploring the complexities of the human eye, various imaging methods have been
developed such as Color Fundus Photographs (CFP), OCT, OCT Angiography (OCTA),
Fluorescein Angiography (FA), and Indocyanine Green Angiography (ICG), each with its
unique role in understanding ocular health, in addition, each imaging modality is better
suited for the type of disease that doctors are dealing with and to interpret the findings [18].

This section discusses various imaging methods used in AMD and retinal disorders
diagnosis and focuses on the different modalities techniques that have demonstrated
potential in treating AMD and retinal diseases diagnostics because they are helpful in the
identification, monitoring, counseling, diagnosis, and prognosis of several ocular illnesses
according to [2,10,19–23], including glaucoma, DR, ARMD, and retinal vascular disorders.

CFP provides detailed images of the back of the eye, capturing the retina, optic nerve,
and blood vessels, aiding in the diagnosis and monitoring of various eye conditions such
as macular degeneration and diabetic retinopathy. OCT utilizes light waves to produce
high-resolution cross-sectional images of the retina, allowing for precise assessment of
its layers and identifying abnormalities like macular edema and retinal thinning. OCTA
enhances OCT by visualizing blood flow within the retina and choroid without the need
for dye injection, facilitating the detection of vascular irregularities like neovascularization
and microaneurysms. FA involves injecting a fluorescent dye into the bloodstream to
capture detailed images of the retinal vasculature, helping diagnose conditions such as
macular edema, retinal vein occlusion, and choroidal neovascularization (CNV). ICG
employs a different dye and longer wavelength light to visualize deeper choroidal vessels,
aiding in the assessment of conditions like choroidal tumors, polyps, and inflammatory
disorders. Each imaging modality offers unique insights into ocular health, allowing for
comprehensive evaluation and management of retinal diseases. Sample from each modality
is presented in Figure 2 [18,24–30].

2.1. Color Fundus Photographs (CFP) Modality

Numerous imaging methods have been created over the years to study the human
eye; among them, “Fundus Imaging” has become more well-known because it is non-
invasive and reasonably priced. When screening for retinal abnormalities, color fundus
photography is the most economical imaging technique to use. The technique of utilizing
a monocular camera to project the fundus, or the back of an eye, onto a two-dimensional
plane is known as fundus photography. Many ocular structures and biomarkers, including
various abnormalities, can be identified from a recorded 2D fundus image. Numerous
of these visual indicators are crucial in the diagnosis of retinal disorders [31]. Figure 3
displays a fundus image with pathologies.
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Color Fundus 
Photographs (CFP)

Optical Coherence 
Tomography (OCT)

Optical Coherence Tomography 
Angiography (OCTA)

Fluorescein 
Angiography (FA)

Indocyanine Green 
Angiography (ICG)

Figure 2. Samples from the prevalent imaging modalities: Color Fundus Photographs (CFP), Optical
Coherence Tomography (OCT), OCT Angiography (OCTA), Fluorescein Angiography (FA), and
Indocyanine Green Angiography (ICG) [26–30].

Optic Cup

Optic Disc

Retinal Vessel

Microaneurysms

Fovea

Macula

Soft Exudate

Hemorrhages

Figure 3. A fundus image with pathologies that presents the microaneurysms, hemorrhages, and fovea.

The fundus image, which is often captured by image sensors in three colors, is a
reflection of the eye’s inside surface. It contains details on the biological features something
the unaided eye can see, such as the macula, optic disc, retinal vasculature, and retinal
surface. Because blue light is absorbed by the posterior retinal pigment layer and blood
vessels, their spectral range makes the anterior retinal layers more visible. Concurrently,
the pigmentation of the retina reflects the green spectrum, enabling its filters to improve
the retinal layer’s visibility and providing more data from underneath the retinal surface.
Content about choroidal melanomas, choroidal nevi, choroidal ruptures, and pigmentary
abnormalities is found in the red spectrum, which is exclusive to the choroidal layer under
the pigmented epithelium [32,33].

A few of CFP’s drawbacks are its inconsistent pigmentation and Drusen look, its
inability to resolve fundus depth, and its dearth of comprehensive quantitative data. The
microscopic alterations inside the retina that are indicative of the disease’s early stages
cannot be observed in FP. Therefore, OCT image interpretation may be used to acquire
it [34]. In addition to the costly equipment, the spherical form of the globe results in image
distortion, artifacts from eyelashes, and misleading conclusions from insufficient color
representation. For fundus imaging, normal 30° fundus photography continues to be the



Bioengineering 2024, 11, 711 6 of 46

best option. It takes a long time to acquire stereo images, and patients have to endure
twice as many light flashes. To fuse the image stereoscopically and produce depth, image
interpretation takes time and specific goggles or optical viewers. Large-scale clinical studies
and ordinary clinics can still use CFP, despite these drawbacks and the introduction of
newer imaging technologies [35].

2.2. Optical Coherence Tomography (OCT) Modality

OCT has developed into a potent imaging technique for the non-invasive evaluation
of a variety of retinal disorders, including helping to diagnose DME, DRUSEN (AMD),
and CNV, as shown in Figure 4. OCT is a high-resolution imaging, micron-level, and
non-invasive method that provides real-time retinal imaging by utilizing infrared light
with a wavelength range of 800–840 nm. The Michelson interferometry principle is the
foundation of OCT. A light beam is split into two channels, one from the reference mirror
and the other from the targeted tissue. The beams are then bounced back and combined
again using semitransparent mirrors to create an interference pattern [36].

Since the method was first described in 1991, OCT imaging has quickly become com-
mercially available, with advancements in technology enabling faster and higher-resolution
imaging. The slower and more antiquated time domain OCT has mostly been superseded
by Fourier- or spectral-domain OCT technology (SD-OCT). The technique’s main advan-
tages include a much deeper tissue penetration, a much better ability to penetrate opaque
media than SD-OCT, and a wider imaging depth that allows for high-quality imaging of
the choroid and sclera at a collection rate that is at least four times faster (100,000 scans/s).
Retinal thickness has been frequently measured by OCT for the assessment of ME resulting
from conditions such as hereditary retinal degenerations, DR, AMD, ERM, cataract surgery,
following RVO and uveitis [37]. OCT has several drawbacks. OCT uses light waves, hence
medium opacities can impede the best possible imaging. Consequently, in the presence of
vitreous hemorrhage, thick cataracts, or corneal opacities, the OCT will be restricted. The
cost of OCT equipment is high. The quality of the image is influenced by the operator’s
skill and may suffer when there is media opacity. Age, gender, and race-specific normative
data are few, making it difficult to compare eyes with retinal illness [38].

Figure 4. Representative OCT images. The lesion sites were denoted by asterisks and arrows. CNV:
choroidal neovascularization; DME: diabetic macular edema, DRUSEN (AMD) and Normal [39].

2.3. Optical Coherence Tomography Angiography (OCTA) Modality

In recent years, OCT Angiography (OCTA) has been developed. It is an imaging
method based on OCT that makes it possible to see the eye’s functioning blood vessels.
This method is especially useful for the detection of microvascular alterations in the retina
and choroid, which are indicative of illnesses that proceed slowly, including AMD, as
was covered in [40–44]. The idea behind OCTA is to image blood flow by using the
contrast mechanism created by moving particles, including red blood cells, which generate
variations in the OCT signal. OCTA can identify erythrocyte mobility. It is quick, which
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gives it a significant benefit over other techniques for assessing patients who need to see
you often.

Unlike the two-dimensional images of FA and ICGA, it is three-dimensional, making
it possible to see the precise location and size of a lesion. Since foreign dyes are not needed
for OCTA, it is non-invasive and safer than standard angiography. It enables direct in
vivo visualization of the retinal and choroidal vasculature without staining or dye leakage,
which might potentially hide the boundaries and morphology of diseases. Additionally,
there is a distinction between the two primary OCTA technologies: spectral-domain (SD)-
OCTA and swept-source (SS)-OCTA. The majority of commercial SD-OCTA devices employ
a lower wavelength, about 840 nm, which is significantly attenuated by the RPE. Sub-RPE
tissue attenuation may have a more significant role in Drusen or RPE thickening because
the RPE functions as a significant hyperreflective barrier, obstructing light transmission.
SS-OCTA employs a longer wavelength—roughly 1050 nm and can reach deeper into the
choroid as presented in Figure 5 [45,46].

Figure 5. A patient with intermediate AMD was imaged using retinal imaging. Deep vascular
complex OCTA (bottom right), superficial vascular complex OCTA (bottom left). Images captured
with Heidelberg Engineering Ltd.’s Spectralis OCTA Module at Hemel Hempstead, UK [47].

2.4. Fluorescein Angiography (FA) Modality

In the 1960s, Novotny and Alvis introduced fluorescein angiography (FA) to the field
of ophthalmology. While FA is still highly helpful in certain situations, OCT is now more
commonly employed to assess the response to therapy. One of the most important methods
for identifying and categorizing CNV and its activity in eyes with neovascular AMD is
FA. It is a diagnostic process that is intrusive and facilitates the evaluation of retinal and
choroidal circulation pathology. It assists in the identification of several ocular illnesses,
including AMD as discussed in [48,49].

It aids in the planning of decisions related to the management of ocular pathology.
The formation of aberrant blood vessels under the retina’s RPE layer, known as CNV,
is a defining feature of both dry and wet types of macular degeneration. These blood
vessels have the potential to bleed, which may eventually lead to macular scarring and a
significant loss of central vision (i.e., disciform scar). A specialized fundus camera with
barrier and excitation filters is necessary for FA. Antecubital veins are typically used to
provide fluorescein dye intravenously quickly enough to get high contrast early phase
angiogram images. A blue excitation filter is applied to white light coming from a flash.

Following their absorption by free fluorescein molecules, blue light (wavelength
465–490 nm) is converted to green light (520–530 nm), which has a larger wavelength.
To capture just the light released by the fluorescein in the photographs, a barrier filter
eliminates any reflected light. After injection, images are taken right away, and they stay
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that way for fifteen minutes, depending on the pathology being examined. The images are
taken either on 35mm film or digitally as shown in Figure 6 [50].

Figure 6. The FA imaging of the classic choroidal neovascular membrane in AMD shows early hyper
fluorescence that increases in intensity over subsequent images, encircled by hypofluorescence from
subretinal hemorrhage occlusion [51].

2.5. Indocyanine Green Angiography (ICG) Modality

Initially introduced in 1973 to investigate the choroidal circulation in ophthalmology,
ICG angiography gained widespread usage in the early 1990s. For the identification of
several retinal and choroidal disorders Including AMD as described in [52], ICG is a well-
established method. With a molecular weight of 775, indocyanine green is a tricarbocyanine
dye that is soluble in water. When it comes to the therapeutic usefulness of choroidal
circulation visualization, two characteristics of ICG are significant. ICG first absorbs in
serum between 790 and 805 nm, peaking at 835 nm. Secondly, ICG is a dye that is 98%
attached to proteins and has a restricted diffusion via the choriocapillaris’s tiny fenestrations.
The near-infrared spectrum is where both the excited and emitted light are found, which
enables deeper penetration into the retina and easier passage of the emitted light through
blood, lipid deposits, pigment, and moderate opacities (i.e., cataracts) to produce images.

Moreover, the dye typically stays inside the fenestrated walls of the choriocapillaris,
as opposed to fluoresce, which leaks freely from these vessels, because it has a much
higher molecular weight and a larger percentage of molecules stay bound to proteins in the
bloodstream than fluorescein. Because of this characteristic, ICG is a perfect method for
depicting the choroidal veins’ architecture and hemodynamics. High-definition images are
produced by scanning laser ophthalmoscopes used for ICG angiography. ICG filters are
also included in ultrawide field systems, which can produce ICG images with a 200-degree
field of view as shown in Figure 7 [53,54].
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Figure 7. Bilateral wide field indocyanine green angiography [54].

Table 2 compares between the different imaging modalities: Color Fundus Pho-
tographs (CFP), Optical Coherence Tomography (OCT), Optical Coherence Tomography
Angiography (OCTA), Fluorescein Angiography (FA), and Indocyanine Green Angiogra-
phy (ICG).

Table 2. Tabular comparison between the different imaging modalities.

Modality When to Use Cost Pros. Cons.

Color Fundus Pho-
tographs (CFP)

Screening for retinal
abnormalities

Low cost Detailed images of the back of the eye. Inconsistent pigmentation, inability to
resolve fundus depth.

Optical Coherence To-
mography (OCT)

Evaluation of retinal
disorders

High cost High-resolution cross-sectional im-
ages of the retina.

Limited by medium opacities, opera-
tor skill required.

Optical Coherence To-
mography Angiogra-
phy (OCTA)

Detection of microvas-
cular alterations

Moderate cost Non-invasive, three-dimensional
imaging of blood vessels.

Limited normative data, affected by
media opacity.

Fluorescein Angiogra-
phy (FA)

Identifying and catego-
rizing CNV

Moderate cost Evaluation of retinal and choroidal cir-
culation pathology.

Invasive, requires dye injection, lim-
ited to 2D imaging.

Indocyanine Green
Angiography (ICG)

Visualization of
choroidal circulation

Moderate cost Deeper penetration into the retina,
clearer images of choroidal veins.

Invasive, limited diffusion, requires
skilled interpretation.

3. AMD Diagnosing Framework

The AMD diagnosing Framework encompasses three main components: AMD Datasets
Acquisition, Pre-Processing Techniques, and Deep and Machine Learning Techniques for
AMD Segmentation and Diagnoses. The section on AMD Datasets Acquisition highlights
both public and private databases crucial for research in AMD, such as STARE, DRIVE,
and the AREDS database, each offering unique advantages and insights. Pre-processing
techniques are then discussed, focusing on optimizing image quality, noise removal, con-
trast enhancement, and segmentation masking to prepare fundus images and OCT scans
for analysis using ML/DL approaches. Lastly, Deep and Machine Learning Techniques for
AMD Diagnoses utilize the rich landscape of methodologies harnessing AI, particularly DL,
to enhance diagnostic capabilities. Techniques like CNNs, RNNs, and ensemble learning
are explored, along with studies employing transfer learning and handcrafted features
for classification. The performance evaluation metrics section concludes the framework,
highlighting fundamental criteria such as accuracy, specificity, and sensitivity essential for
assessing algorithm effectiveness and reliability in fundus image analysis. This comprehen-
sive framework, as presented in Figure 8, provides a roadmap for advancing research and
innovation in AMD diagnosis.
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Cumulative 
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Augmentation
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AREDS
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Optretina
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NEH Database
KMC Database

Deep and Machine Learning Techniques for AMD Diagnoses

Figure 8. Graphical visualization of the AMD diagnosing framework that encompasses three main
components: AMD Datasets Acquisition, Pre-Processing Techniques, and Deep and Machine Learning
Techniques for AMD Diagnoses.

3.1. AMD Datasets Acquisition

This section provides a comprehensive overview of major public and private image
databases integral to recent literature. The majority of public databases were produced
with OCT and FP images [55]. The landscape of data repositories for advancing research in
AMD is diverse, ranging from public resources such as DRIVE and STARE to proprietary
datasets designed for specific investigations. They are summarized in Table 3.

3.1.1. Public Databases

Research groups have been compelled to establish and make public their datasets due
to the growing necessity of validating or training models. Due to their better fundus image
resolutions, the open-access databases STARE and DRIVE are two of the most popular
retinal databases [56].

AREDS Age-Related Eye Disease Study (AREDS): a 12-year investigation, AREDS
was conducted. The AMD situations of numerous patients were monitored during this
time in the study. Cases of GA, cases of Neovascular AMD, and control patients were
added to the study. For the length of the trial, retinal images of each patient’s left and
right sides were obtained. The AMD severity of the images was rated by several ocular
doctors. During the study, several individuals who had previously experienced moderate
AMD symptoms progressed to more severe AMD stages. This database’s test, validation,
and training sets consist of 86,770, 21,867, and 12,019 images of color fundus photography
(CFP), respectively [57].

ARIA (Automatic Retinal Image Analysis): There are 450 images in the JPEG format
ARIA database. Three groups of photographs are identified: one with AMD, one with DR,
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and one with a healthy control group. It took two skilled ophthalmologists to annotate the
images [58].

STARE (Structured Analysis of the Retina): Out of the 400 retinal images in STARE,
40 have manually segmented blood vessels and labeled veins/arteries. Experts have
labeled each image. The PPM format was used to compress the image data. Also included
are algorithms for the identification of the optic nerve head (ONH). Thirteen distinct
abnormalities were linked to a total of 44 diseases that were identified [59].

ODIR Dataset Ocular Disease Intelligence Recognition (ODIR): The structured dataset
known as ODIR consists of 5000 patients from the Peking University National Institute
of Health Sciences. Eight retinal diseases (i.e., Diabetes, AMD, myopia, glaucoma, hyper-
tension, cataract, normal, and others) are represented by the various label annotations in
it. The JPEG format saves images in various sizes. The following is the distribution of
the labels for the image classes: Typical: 3098, Glaucoma: 224 Diabetes: 1406, 265 is the
cataract—242 Pathological Myopia, Hypertension: 107, AMD: 293, and Additional diseases:
791. The annotating exercise involved ophthalmologists with expertise [60].

DHU Dataset: 45 OCT collections from Duke University, Harvard University, and the
University of Michigan are included in a publicly accessible dataset. This dataset includes
15 participants for each of the three classes (i.e., normal, DME, and dry AMD) consisting of
volumetric scans using non-unique procedures [20].

Optretina Dataset: Since 2013, Optretina has conducted telemedicine screening pro-
grams in optical centers, and since 2017, it has expanded to include commercial businesses
and workplaces. The 306,302 retinal images that make up the labeled dataset from Op-
tretina serve as the basis for this investigation and are tagged with quality, laterality, and
diagnostic. All of these images have been assessed by ophthalmologists, who are all spe-
cialists in retinal diseases; 20% of the data set has abnormal retinas, whereas the remaining
80% have normal ones. It is anonymized and based on real-world instances rather than
clinical trials. Images are obtained using OCT and NMC (color fundus and red-free). The
collection contains images taken with many brands and models of cameras. The collection
contains additional non-medical images intended to trick the AI, as well as retinal nerve
fiber layer OCTs (RNFL), macular OCTs, and CFP [61].

iChallenge-AMD: The AMD reference standard existence derived from the medical
records takes into account Visual Field, OCT, and other information in addition to fundus
images alone. The image folder contains AMD and non-AMD labels (also known as the
reference standard) that are utilized for training data [62].

UMN: The University of Minnesota Ophthalmology Clinic collected 600 OCT B-scan
images from 24 individuals who were diagnosed with exudative AMD, and this dataset
is freely accessible. Every patient received about 100 B-scans, which is how the Spectrally
technology took the images. Twenty-five of the images with the biggest fluid area were
chosen to serve as the samples. Two ophthalmologists annotated and validated the retinal
fluid, SRF, IRF, and PED. This database is utilized for the segmentation process [63].

OPTIMA: Through the cyst segmentation challenge at the Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2015 conference, the OPTIMA dataset
was made publicly available, and it has subsequently gained popularity as a resource for
IRF Fluid/Cyst segmentation in OCT. Thirty volumes of patient data from different OCT
equipment, such as Spectralis, Topcon, Cirrus, and Nidek, make up the dataset. Every
retinal OCT volume is centered on the macula and is around 6 × 6 × 2 mm3. In order to
better represent the wide variety of scans seen in clinical settings as well as the various
appearances and distributions of IRF, the dataset has been further split into 15 training and
15 testing volumes. Two medical University of Vienna expert graders annotated the IRF in
the training data. This database is utilized for the segmentation process [64].

RETOUCH: The RETOUCH dataset was obtained from the 2017 MICCAI conference’s
retinal OCT fluid challenge, in which the OCT images were labeled with the following
retinal fluid (fluid/cyst) labels: IRF, SRF, and PED. Seventy OCT volumes obtained from
individuals diagnosed with macular edema related to AMD or RVO comprise the dataset.
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Twenty-four of these volumes came from the Spectralis OCT system, twenty-two from the
Triton OCT system, and twenty-four from the Cirrus OCT system. Under the guidance of
retina specialists from the Medical University of Vienna and Radboud University Medical
Centre in the Netherlands, human graders annotated the images. There are 128, 128, and
49 B-scan images total that were obtained by the Cirrus, Triton, and Spectralis OCT systems,
respectively. The resolution of each image varies. Much pertinent research on this subject
has been based on the RETOUCH dataset, which is frequently used as a benchmark for
assessing the effectiveness of retinal cyst/fluid segmentation algorithms [65].

VRC: The Vienna Reading Centre offers top-notch imaging services for ophthalmology-
related clinical, pharmacological, and scholarly research. Established in 2005 as the world’s
first entirely digital image analysis platform, the VRC is a division of the Medical University
of Vienna’s Department of Ophthalmology, which is among the biggest medical schools in
Europe. Their group’s main area of interest is the creation of computational image analysis
techniques. Close cooperation with the Department of Ophthalmology’s independent
research unit, the Christian Doppler Laboratory for Ophthalmic Image Analysis (OPTIMA),
fosters this effort comprising 1200 full OCT volume scans of the eyes of patients afflicted
with AMD, DME, and RVO, the three main disorders known to cause macular fluid. This
database is utilized for the segmentation process [66].

3.1.2. Private Databases

Using private databases, researchers have also evaluated algorithm performance in
the AMD detection area. Images are anonymized in compliance with ethical standards
and subject to privacy protection before being used for model design and performance
assessment. In certain instances, the medical facilities and authors that own the data or
funded the study may be able to access certain private databases upon request.

NEH Database: The Noor Eye Hospital in Tehran is the source of the NEH dataset,
which is made up of 48 dry AMD, 50 DME, and 50 normal OCTs. The axial resolution in
this dataset is 3.5 µm, and the scan dimension is 8.9 × 7.4 mm2. However, not all patients
have the same lateral and azimuthal resolutions. Consequently, the number of A-scans
varies from 512 to 768 scans, while different patients provide 19, 25, 31, and 61 B-scans per
volume. The dataset is available for access at http://www.biosigdata.com (accessed on
8 July 2024) [20].

KMC Database: Ophthalmology Department of Kasturba Medical College (KMC),
Manipal, India from Kasturba Medical Hospital. There are 402 eyes in the fundus image
dataset that are normal, 125 retinal images that show wet AMD, and 583 early, intermediate,
or GA AMD retinal images. Featuring a pixel resolution of 2588 × 1958, the Zeiss FF450
plus mydriatic fundus camera was used to capture the images [1].

KSH Database: The database consists of 775 high-resolution color fundus images from
patients with early AMD from the Department of Ophthalmology at Kangbuk Samsung
Hospital, taken between 2007 and 2018, are included in the collection. Nonmydriatic fundus
cameras from many manufacturers were used to capture fundus images: Topcon, Japan
made the TRC NW300, TRC-510X, NW200, and NW8, Canon, Japan made the CR6-45NM
and CR-415NM, and Zeiss, USA made the VISUCAM 224. The fundus images’ digital
images were examined using an image archiving communication system (INFINITT, Seoul,
Republic of Korea) [67].

An overview of the retinal image databases that were previously addressed can be
found in Table 3, which also includes information on the number of images, resolutions,
cameras, and purposes for which the databases were made.

http://www.biosigdata.com
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Table 3. Tabular summary of public and private available AMD datasets.

Dataset Description Images Purpose Resolution Annotation Availability Modality

AREDS [57] Longitudinal study monitoring
AMD progression

86,770 Classification Various Graded by
ocular experts

Public CFP

ARIA [58] 450 JPEG images with AMD, DR, and
healthy controls

450 Classification Various Annotated by
ophthalmologists

Public CFP

STARE [59] 400 retinal images with manually seg-
mented blood vessels

400 Classification,
Segmentation

(700 × 605) Expert-labelled
abnormalities

Public CFP

ODIR [60] Contains 8 retinal diseases (i.e., Diabetes,
AMD, myopia, glaucoma, hypertension,
cataract, normal, and others) from the
Peking University National Institute of
Health Sciences

5000 Classification Various Annotations by
ophthalmologists

Public CFP

DHU Dataset [20] 45 OCT volumes with normal, DME,
and dry AMD from Duke University,
Harvard University, and the University
of Michigan

45 Classification Various Expert-
labelled classes

Public OCT

Optretina [61] labeled retinal images from telemedicine
screening programs.

306,302 Classification Various Annotated by
ophthalmologists

Public CFP, OCT

iChallenge-AMD [62] Fundus image dataset with AMD and
non-AMD labels

- Classification Various Reference standard
derived from
medical records

Public CFP, OCT

UMN Database [63] 600 OCT B-scan images from the Univer-
sity of Minnesota Ophthalmology Clinic

600 Segmentation Various Ophthalmologists Public OCT

OPTIMA Database [64] Cyst segmentation challenge at the MIC-
CAI 2015 conference

15 training,
15 testing
volumes

Segmentation Various Medical University
of Vienna experts

Public OCT

RETOUCH Database [65] Retinal fluid (fluid/cyst) labels: IRF, SRF,
and PED from the 2017 MICCAI confer-
ence’s retinal OCT fluid challenge

70 volumes Segmentation Various Retina specialists Public OCT

VRC Database [65] Eyes of patients afflicted with AMD,
DME, and RVO, three disorders known
to cause macular fluid from Medi-
cal University of Vienna’s Department
of Ophthalmology

1200 volume Segmentation Various Retina specialists Public OCT

NEH Database [20] OCT dataset from Noor Eye
Hospital, Tehran

148 Classification 3.5 µm
axial resolution

Anonymized
annotations

Private OCT

KMC Database [1] Fundus image dataset from Kasturba
Medical College

1110 Classification 2588 × 1958 Expert annotations Private CFP

KSH Database [67] High-resolution images from patients
with early AMD from Department
of Ophthalmology at Kangbuk Sam-
sung Hospital

775 Classification Various Expert annotations Private CFP

3.2. Pre-Processing Techniques

Pre-processing of fundus images and OCT scans is crucial for optimizing image qual-
ity, removing noise, and preparing them for analysis with ML/DL approaches. This step
ensures the development of robust prediction models for challenges such as uneven illumi-
nation, noise, artifacts, and other imperfections that could affect the analysis process [31,68].

Various techniques enhance DL model performance in analyzing fundus images
and OCT scans. Color Space Transformation selectively uses a single color channel, often
eliminating the green channel to avoid interference with analysis, especially in high-contrast
images. The Cumulative Distribution Function (CDF) helps understand pixel intensity
distribution, providing insights into image characteristics [69].

Noise Removal methods, such as non-local means denoising and median filters, ensure
cleaner and more accurate analysis results. Contrast Enhancement, particularly through
methods like Contrast Limited Adaptive Histogram Equalization (CLAHE), improves the
visibility of small lesions like microaneurysms. Segmentation Masking isolates regions
of interest (ROIs) within fundus images, enhancing diagnostic accuracy by focusing on
specific areas for analysis. Contour Analysis refines ROIs and identifies object boundaries,
aiding in modifying ROIs and determining object attributes [70].

Augmentation techniques, such as rotation and flipping, balance image datasets,
ensuring robustness in DL models. Cropping and Extracting Regions of Interest (ROI)
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isolate areas containing significant information, reducing unnecessary learning effort [71].
Histogram Equalization enhances contrast, improving image clarity, while resizing images
to standard dimensions maintains consistency across the dataset. Lastly, Enhancing Image
Contrast reduces noise and enhances visual clarity for more accurate analysis [72]. Table 4
summarizes these frequently employed pre-processing techniques for fundus images
utilized in diagnosing retinal diseases.

Table 4. Summarization of the pre-processing techniques for fundus images utilized in diagnosing
retinal disease [31,69,70,72].

Pre-Processing
Technique

Description Complexity Effectiveness Robustness Ease of Imple-
mentation

Color
Space Transformation

Enhances DL model performance by selectively utilizing a
single color channel from the RGB Channels, often remov-
ing the green channel to eliminate visually rich information,
particularly in high contrast images

Low Moderate High High

Cumulative Distribu-
tion Function (CDF)

Simplifies understanding of image features and pixel inten-
sity distribution through a cumulative probability distribu-
tion, aiding in identifying areas of interest

Low High Moderate Moderate

Noise Removal Eliminates unwanted noise using various denoising algo-
rithms such as non-local means denoising, median filters,
and Gaussian filters

Moderate High High Moderate

Contrast Enhancement
(CLAHE)

Widely used approach for enhancing contrast and addressing
over-amplified contrast in certain pixel portions, improving
the quality of fundus images for analysis

Moderate High High High

Segmentation Mask Utilizes binary masks to isolate regions of interest (ROIs)
within fundus images, improving diagnostic accuracy by
selecting specific regions for analysis while excluding back-
ground noise

Moderate High High Moderate

Contour Analysis Essential for fine-tuning ROIs and locating object bound-
aries in images, providing attributes like centroid, area, and
perimeter for object modification and determination

Moderate High Moderate Moderate

Augmentation Balances image datasets through techniques like rotation,
translation, flipping, and rescaling, enhancing model robust-
ness and performance

Low High High High

Cropping and Extract-
ing ROI

Isolates significant areas within images for analysis, reducing
unnecessary learning effort during model training

Low Moderate High High

Histogram
Equalization

Enhances overall contrast in fundus images, making back-
ground pixels stand out and improving image clarity.

Low Moderate Moderate High

Resized Image Maintains consistency across the dataset by resizing images
to standard dimensions

Low Low High High

Enhanced Image (Im-
proving Contrast)

Lowers noise and enhances contrast in images, improving
overall image quality

Moderate High Moderate High

3.3. Deep and Machine Learning Techniques for AMD Segmentation

Image segmentation is necessary for a quantitative assessment of the lesion area [73].
Researchers have been concentrating more and more on using DL and standard ML tech-
niques to automate the segmentation of retinal cysts and fluid in recent years. A fluid-filled
pocket in the retina known as a retinal cyst or fluid is a pathological result of several
common eye conditions, such as AMD. Ophthalmologists can benefit greatly from the
automated procedures by using them to better interpret and quantify retinal characteristics,
which can lead to more precise diagnosis and well-informed treatment options for retinal
illnesses. AMD may be diagnosed with the aid of Drusen, the primary disease manifes-
tation. The aberrant deposition of metabolites from RPE cells is the cause of them. The
process of Drusen segmentation faces four primary obstacles: Their color is comparable
to that of the fundus image and OD, with a yellowish-white hue; they frequently have
irregular forms and indistinct borders, as well as uneven brightness and interference from
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other indicators like blood vessels. Several Drusen segmentation technologies are available
in the field of image study in ophthalmology.

Yan et al. [74] suggested a deep random walk technique for effectively Drusen seg-
mentation from fundus images. There are three primary components to the suggested
architecture. First, fundus images are sent into a deep feature extraction module, which
is divided into two branches: a low-level feature-capturing three-layer CNN and a deep
semantic feature-capturing SegNet-like network. Subsequently, the acquired data are
combined and sent into a designated affinity learning module to derive pixel-by-pixel
affinities for creating the random walk’s transition matrix. Lastly, manual labels are propa-
gated using a deep random walk module. On the STARE and DRIVE datasets, this model
demonstrated state-of-the-art performance with accuracies of 97.13, sensitivity of 92.02,
and specificity of 97.30. The acquired deep characteristics can assist in managing Drusen
variations in size and form as well as color resemblance to different tissues. Furthermore,
accurate segmentation is achieved at hazy Drusen borders via the random walk approach.

Contributions : A deep random walk method for Drusen segmentation from fundus
pictures is presented in this research. The technique’s strength lies in the random walk
process driving the learning algorithms for pixel-pixel affinities and deep picture repre-
sentations. Compared to other cutting-edge methods, their network is more capable of
handling the difficulties associated with Drusen segmentation because of its ability to
handle Drusen fluctuations in size and form as well as color resemblance to other tissues
thanks to its learned deep characteristics. Furthermore, accurate segmentation is achieved
at hazy Drusen borders via the random walk approach.

Another work was proposed, based on Drusen segmentation for AMD detection,
by Pham et al. [67] since there were far more non-Drusen pixels than Drusen pixels,
they attempted to address the issue of data imbalance by employing a multi-scale deep
learning model. Other studies attempted to analyze cropped images, which may lose
global information, in an attempt to tackle the high-resolution image problem. Other than
cropping the central image to eliminate unnecessary background areas, they do not use any
particular pre-processing procedures. The associated approach consists of two networks:
a patch-level network that makes final predictions based on related patch images and
associated probability maps, and an image-level network that generates Drusen probability
maps using a Deeplabv3+ base architecture. The U-Net-based segmentation is used by the
Patch level network. For training, a total of 775 fundus photographs from the Samsung
Hospital in Kangbuk were utilized. The STARE dataset was used to assess the model’s
performance as well. Using data from Kangbuk Samsung Hospital, this model produced
an accuracy of 0.995, sensitivity of 0.662, specificity of 0.997, and dice score of 0.625. Using
the STARE dataset, this model produced results with an accuracy of 0.981, sensitivity of
0.588, specificity of 0.991, and dice score of 0.542.

• Contributions: Their approach predicts more accurate Drusen segmentation masks
by integrating local and global data. Furthermore, they can enhance the accuracy of
Drusen detection in the early stages of AMD by utilizing the pre-trained model and a
mix of several loss functions. They attempted to address the issue of data imbalance
by employing a multi-scale deep learning model.

• Limitations: There are many restrictions on the model. Binary segmentation may be
done with the present configuration. In multi-class segmentation, the Patch-Level
Network’s input channel count grows in proportion to the number of classes. It may
result in issues with computational complexity and scalability. Furthermore, their
approach has to forecast many patches for every high-resolution fundus image to get
the Drusen prediction. As a result, their model may require a longer inference time
than the others.

Several CNN and FCN designs have been put out since 2017 to segment the cyst/fluid
area in OCT images. Assigning a label to every pixel in an image is the goal of semantic
segmentation tasks, which are especially suited for FCNs, a subset of CNNs. FCNs have a
structure akin to CNNs, but they use a distinct design that preserves the image’s spatial
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information across the network. Using CNNs for image identification tasks has several
benefits, including the ability to handle high-dimensional data, like images, automatically
learn and extract features from data, and generalize well to new data. In addition to using
CNN’s advantages, FCN can handle complex prediction jobs like semantic segmentation.

Chen et al. [75] suggested a quicker R-CNN-based deep learning-based segmentation
method to segment various retinal fluids, such as the pigment epithelium detachment (PED)
areas, sub-retinal fluid (SRF), and intra-retinal fluid (IRF). To prevent overfitting, they first
segmented the IRF areas and then enlarged the regions to segment the SFT. The PED areas
were then divided using the RPE layer. Three distinct forms of retinal SD-OCT volumes
from various equipment, Cirrus, Spectralis, and Topcon, are used for the research. Using a
general approach to separate different types of illnesses was challenging. As a result, they
created various segmentation strategies for various illnesses. The segmentation of IRF was
done using a quicker R-CNN-based approach, the segmentation of SRF was done using a
3D region growing-based method, and the segmentation of PED was conducted using an
RPE layer segmentation-based method. Three approaches provide passable outcomes. For
lesion locations, this approach almost attains an overlapping ratio of 60%.

• Contributions: This research presented a quicker R-CNN-based deep learning-based
segmentation method to segment various retinal fluids. They created various segmen-
tation strategies for various illnesses. Three approaches provide passable outcomes.

• Limitations: The highest overlapping ratio for three types of lesion areas is close to 0.7.
The reason is that it is hard to detect lesion areas whose boundary is not obvious and
the area is very small. Also, SRF and PEDs interfere with each other seriously.

On the other hand, Schlegl et al. [66] developed an eight-layer FCN for end-to-end
segmentation using a dataset made up of 1200 OCT scans from AMD, DME, or RVO
patients. A deep learning-based technique was created to automatically identify and
measure subretinal fluid (SRF) and intraretinal cystoid fluid (IRC). The Medical University
of Vienna’s Ethics Committee acquired the dataset. With a (AUC) of 0.94, a mean precision
of 0.91, and a mean recall of 0.84, they were able to obtain excellent accuracy for the
identification and measurement of IRC for all three retinal diseases. With an AUC of 0.92, a
mean precision of 0.61, and a mean recall of 0.81, the identification and measurement of
SRF were likewise quite accurate. This was especially true for neovascular AMD and RVO,
which performed better than DME, which was not frequently seen in the population under
study. Between automated and manual fluid localization and quantification, a high linear
correlation was verified, resulting in an average Pearson’s correlation coefficient of 0.90 for
IRC and 0.96 for SRF.

• Contributions: They created and validated a completely automated technique to
identify, classify, and measure macular fluid in standard OCT scans. For all three
retinal diseases, the newly developed, totally automated diagnostic approach based
on deep learning obtained excellent accuracy for IRC identification and quantifica-
tion. Moreover, fluid quantification obtains a high degree of agreement with expert
manual evaluation.

• Limitations: There is room for improvement based on the SRF detection performance
in DME eyes. The decreased performance can be attributed to the fact that DME
eyes often have a lower prevalence and less SRF than neovascular AMD or RVO.
As a result, the model is unable to adjust for the various class label distributions
when the approach is trained only on AMD and RVO instances and then applied
to DME situations. However, because of the limited number of target labels, the
approach would not be able to obtain a satisfactory representation for SRF when it
was directly trained on DME examples. Simultaneous training on AMD, RVO, and
DME instances would result in reduced test performance on DME because of changes
in label distributions. A significant number of ground truth situations should be
available to get around this restriction.
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Also, ASPP contributed to Sappa’s work on RetFluidNet, Sappa et al. [76] demon-
strated the use of RetFluidNet, an enhanced convolutional neural network (CNN)-based
architecture, to separate three different kinds of fluid abnormalities from SD-OCT images.
The RetFluidNet design could segment three types of retinal fluids: IRF, SRF, and PED.
The RetFluidNet did that by integrating skip-connect techniques with ASPP, the author
additionally looked at the effects of hyperparameters and skip-connect approaches on fluid
segmentation. B-scans from 124 patients were used for training and testing RetFluidNet
and all the comparison techniques. A Cirrus SD-OCT machine (Carl Zeiss Meditec, Inc.,
Dublin, CA) provided the B-sans. For IRF, PED, and SRF, RetFluidNet obtained accuracy
values of 80.05%, 92.74%, and 95.53%, correspondingly. When compared to competing
efforts, RetFluidNet showed a notable improvement in clinical applicability, respectable
accuracy, and time efficiency.

• Contributions: A completely automated technique called RetFluidNet helps to sepa-
rate three different kinds of fluid abnormalities from SD-OCT images and this leads to
AMD early identification and follow-up.

• Limitations: They did not investigate the impact of downsampling on the tiny fluid
areas. Given that there could be tiny fluid pockets, particularly for IRF, it might be wise
to look at the effects of downsampling in the future and develop a different method for
scaling images. The primary obstacle faced by the work was the complex optimization
procedure that resulted from the numerous hyperparameters and their interdepen-
dencies. It takes time to examine the impact of changing the hyperparameters, which
makes hyperparameter tuning laborious and thorough.

Kang et al. [77] designed a two-phase neural network for fluid-filled areas segmenta-
tion such as pigment epithelial detachment (PED), subretinal fluid (SRF), and intraretinal
fluid (IRF) in retinal OCT images. Using the RETOUCH challenge, a satellite event of
the MICCAI 2017 conference. The first network’s objective was to identify and divide
fluid areas, while the second network enhanced the first one’s resilience. To prevent over-
fitting during training, the network used a U-net design with a classification layer and
max-out and dropout activation. The loss function of the neural network was altered for
the U-Net design.

Contributions: In this study, a deep learning approach for fluid segmentation and
image identification from OCT images was developed. They created the two-step network
to increase the network’s resilience. The suggested approach performs similarly for every
data set, even though the three suppliers’ images have distinct qualities.

To enhance the segmentation performance, changes to the loss functions have also been
taken into consideration in addition to changes to the network topologies. Liu et al. [78]
prevented nearby areas from being recognized as a single entity and addressed the problem
of tiny fluid area detection using an uncertainty-aware semi-supervised framework. The
RETOUCH dataset was used to assess this approach. The framework was made up of
two networks: one for teachers and the other for students. Both networks used the same
architecture and three decoders to forecast the probability, contour, and distance maps of
the image, which allowed for segmentation. The teacher network could direct students
toward the acquisition of more trustworthy information by restricting consistency loss.

• Contributions: Suggested a semi-supervised, uncertainty-aware architecture for seg-
menting retinal fluid. These networks have decoders that can predict the probability,
contour, and distance maps at the same time. Their approach can enhance the net-
work’s prediction power on the fluid’s boundary while reducing the instability of the
nearby fluid regions that are merging.

• Limitations: Some IRF areas are merged by ALNet. ASDNet can segment certain tiny
fluid areas and separate some near-fluid regions in comparison to ALNet. Certain false
positive areas can be rejected by RFCUNet. Some fluid zones did, however, continue
to combine.
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Deep learning research in segmentation utilizes the U-Net architecture, a popular type
of Fully Convolutional Network (FCN) widely applied in medical image segmentation.
The U-Net’s design features a contracting path and an expanding path, enabling precise
feature localization and effective network training. This architecture has proven effective in
various biomarker segmentation studies. For instance, Tennakoon et al. [79] introduced
a method based on U-Net architecture trained with a mixed loss function incorporating
dice, adversarial loss terms, and cross-entropy. The inclusion of adversarial loss enhances
the encoding of higher-order pixel correlations, eliminating the need for separate post-
processing in segmentation tasks. Their approach focused on voxel-level segmentation
of three types of fluid lesions (IRF, SRF, and PED) in OCT images from the ReTOUCH
challenge, demonstrating the efficacy of deep neural networks with integrated adversarial
learning for accurate medical image segmentation.

Contributions: They suggested a deep learning-based approach to the segmentation
and categorization of retinal fluid in OCT images. The suggested approach is predicated
on a modified U-Net architecture that was trained with a mixed loss function that included
an adversarial loss term. The suggested technique has demonstrated efficacy in predict-
ing the existence and voxel-level segmentation of retinal fluids, according to validation
data. Retinal fluid segmentation has improved as a result of the network design and loss
functions employed.

Diao et al. [80] developed a complementary mask-guided CNN (CM-CNN) as part
of a deep learning framework to perform the classification of OCT B-scans with Drusen
or CNV from normal ones. The auxiliary segmentation task generated the guiding mask
for the CNN. Second, utilizing the CAM output from the CM-CNN, a class activation map
guided UNet (CAM-UNet) was presented to achieve the segmentation of Drusen and CNV
lesions. The suggested dual guidance network outperformed five classification networks,
four segmentation networks, and three multi-task networks in terms of both classification
and segmentation accuracy when tested on a portion of the public UCSD dataset. The
segmentation Dice coefficient was 77.51%, and the classification accuracy was 96.93%. The
suggested model’s generalizability was further demonstrated by the results obtained by
segmenting retinal fluids and detecting macular edema on an additional dataset.

Contributions: To classify OCT pictures, a complementary mask-guided CNN is sug-
gested. An auxiliary job of lesion segmentation is added, and the segmentation mask that
is produced is employed in a complementary form to guide the extraction of classification
features. To accomplish autonomous AMD lesion segmentation, a class activation map
guided UNet is suggested. The segmentation job is directed by the CAM from classification,
which is fused into the features at each layer.

Table 5 summarizes the discussed machine and deep learning segmentation approaches.

Table 5. Summary of the machine and deep learning segmentation approaches.

Study Method Dataset Segmentation Type Performance Modality

Yan et al. [74] Encoder-decoder Network STARE, DRIVE Drusen segmentation Accuracy: 97.13%, Sensitivity: 92.02%,
Specificity: 97.30%

CFP

Pham et al. [67] DeeplabV3,U-Net Kangbuk Samsung
hospital, STARE

Drusen segmentation Accuracy: 0.99, 0.981%, Sensitiv-
ity: 0.662, 0.588%, Specificity: 0.997,
0.991% Dice Score: 0.625, 0.542

CFP

Chen et al. [75] Faster R-CNN RETOUCH Cysts/fluid Accuracy: 0.665%, Dice Score: 0.997 OCT

Schlegl et al. [66] FCN 1200 volumes OCT Cysts/fluid Sensitivity: IRC 0.84, SRF 0.81%, Pre-
cision: IRC 0.91, SRF 0.61, Area under
the curve (AUC): IRC 0.94, SRF 0.92

OCT

Sappa et al. [76] RetFluidNet 124 volumes OCT Cysts/fluid Accuracy: IRF 80.05, PED 92.74, SRF
95.53%, Dice Score: 0.885

OCT

Kang et al. [77] U-Net RETOUCH Cysts/fluid Accuracy: 0.968%, Dice Score: 0.9 OCT
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Table 5. Cont.

Study Method Dataset Segmentation Type Performance Modality

Liu et al. [78] FCN RETOUCH Cysts/fluid Dice Score: 0.744 OCT

Tennakoon et al. [79] U-Net RETOUCH Cysts/fluid Dice Score: 0.737 OCT

Diao et al. [80] CM-CNN, (CAM-UNet) Heidelberg Engineer-
ing, Germany

Drusen and CNV le-
sions

Dice Score: 77.51% OCT

3.4. Deep and Machine Learning Techniques for AMD Diagnoses

Exploring DL/ML Techniques for AMD diagnoses reveals a landscape rich in method-
ologies harnessing AI to enhance diagnostic capabilities. These techniques, particularly DL,
analyze vast datasets with complex algorithms and neural networks, unveiling patterns
beyond human capacity and automating AMD detection and classification. CNNs, inspired
by human visual processing [81], excel in recognizing subtle features in retinal images,
aiding early and accurate diagnoses of AMD [82,83]. Recurrent neural networks (RNNs)
and Long Short-Term Memory Networks (LSTMs) analyze sequential data like OCT scans
over time, crucial for tracking AMD progression [84].

Ensemble learning combines predictions from multiple models, enhancing diagnostic
accuracy and generalizability across datasets. Transfer learning utilizes pre-trained models
on large datasets to optimize efficiency, especially when annotated data are limited in
medical imaging. This amalgamation of DL/ML techniques propels AMD diagnostics
into a new era of precision. From CNNs to ensemble learning, these methodologies
collectively redefine AMD assessment, promising a more efficient and accurate diagnostic
landscape [85,86].

3.4.1. Deep Learning Techniques

Recent advancements in DL for AMD classification are discussed in this section, show-
ing promising results in categorizing retinal fundus images for different AMD stages.
Studies have explored network depth and transfer learning, indicating that training net-
works from scratch with sufficient data can lead to higher accuracy than using pre-trained
models [87,88]. However, addressing model limitations, such as generalizability to diverse
datasets and matching attention maps with underlying vision transformer (ViT0 sickness,
requires further research. In diagnosing retinal diseases, DL tasks mainly involve segmen-
tation and classification. Classification directly categorizes input images into illness groups,
while segmentation tasks reveal detailed information about retinal disorders from fundus
images, including critical lesions and biomarkers [7,89–91].

Several studies have examined categorizing AMD modalities, using different tech-
niques and methodologies. For example, Karri et al. [19] proposed a transfer learning
method based on the Inception network, utilizing the DHU database to classify dry AMD,
DME, or normal using a pre-trained CNN and GoogLeNet. Initially, saturated pixels were
replaced with pixels of intensity 10. Following RPE estimation, smoothing, and retinal
flattening, the RPE lower contour was relocated to a fixed position 71% of the height). The
image was resized to 224× 224 and filtered using the BM3D filter. Three BM3D filter results
were replicated, each treated as channel information. The proposed method utilized flat-
tened and filtered images to classify retinal OCT images as normal, DME, or AMD. Across
all validations (N1, N2, and N3), the average prediction accuracy for normal, DME, and
AMD was 99%, 86%, and 89%, respectively, with the best model achieving 94% accuracy.

Philippe et al. [92] utilized DL techniques, including transfer learning and universal
features trained on fundus images, along with input from a clinical grader, to develop
automated methods for AMD detection from fundus images. Their approach aimed to
classify images into disease-free/early stages and referable intermediate/advanced stages
using the AREDS database. The deep CNN achieved an accuracy ranging from 88.4% to
91.6% and an AUC between 0.94 and 0.96.
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Li et al. [21] utilized the VGG16 to classify CNV and normal AMD using a private
retinal OCT image database. They employed image normalization but did not incorporate
image denoising to avoid overfitting and enhance generalization. To address variations in
image intensities, they normalized and resized OCT volumes to ensure uniform dimensions
for processing with VGG16. They developed a normalization technique to adjust eye
curvature, normalize volume intensities, and align BM layers achieving 100% AUC, 98.6%
accuracy, 97.8% sensitivity, and 99.4% specificity.

Bulut et al. [93] proposed a DL method for identifying retinal defects using color
fundus images. They employed the Xception model and transfer learning technique,
training on images from the eye diseases department of Akdeniz University Hospital,
and additional open-access fundus datasets for testing. The study explored 50 potential
parameter combinations of the Xception model to optimize performance. The fourth model
achieved the highest accuracy of 91.39% for the training set, while the zeroth model attained
the best accuracy of 82.5% for the validation set.

Xu et al. [94] devised a DL approach using a ResNet50 model on a private database
from Peking Union Medical College Hospital. They also constructed alternative machine-
learning models with random forest classifiers for comparison. Three retinal specialists
independently diagnosed the same testing dataset for a human-machine comparison, with
participant photographs presented in a single partition subset. Utilizing fundus and OCT
image pairs, their dual deep CNN model classified polypoidal choroidal vasculopathy
(PCV) and AMD. Transfer learning involved initially applying ResNet-50 weights to two
separate models handling fundus and OCT images, refining weights on new data, and
then transferring them to corresponding convolutional blocks. The final FC layer classified
input pairs into four categories: PCV, Wet AMD, Dry AMD, and AMD. The bimodal
DCNN outperformed the top expert (Human1, Cohen’s κ 0.810) with 87.4% accuracy,
88.8% sensitivity, 95.6% specificity, and full agreement with the diagnostic gold standard
(Cohen’s κ 0.828).

• Contributions: Studies [19,21,92–94] showed the effectiveness of fine-tuning models
trained on medical/non-medical images for improved disease recognition compared
to traditional methods. It also highlighted the feasibility of utilizing pre-trained
models for faster convergence with less data. Some studies compared their method
with alternative machine-learning models, such as random forest classifiers.

• Limitations: Studies [19,21,92–94] encountered challenges such as overfitting, reliance
on a private database, gradient disappearance or explosion and slight class imbalance
in the number of fundus images during training were encountered. Additionally,
some studies relied only on accuracy. Furthermore, some studies relied solely on the
AREDS dataset for evaluation, lacking validation on independent clinical datasets
such as MESSIDOR. Additionally, the reliance on transfer learning and a single model
architecture may limit the generalizability of the approach to different datasets or
clinical settings, suggesting the need for further validation and exploration of alterna-
tive methodologies.

Rasti et al. [20] developed a CAD system using public OCT images (NEH dataset;
DHU dataset) to differentiate between dry AMD, DME, and normal retina. Their approach
utilized a multi-scale convolutional mixture of expert (MCME) ensemble model, a data-
driven neural structure employing a cost function for discriminative and fast learning of
image attributes. Image preparation involved normalization, retinal flattening, cropping,
ROI selection, VOI creation, and augmentation. On the DHU dataset, the model achieved
accuracy, recall, and AUC of 98.33%, 97.78%, and 99.90% for N1, N2, and N3, respectively,
while on the NEH dataset, it achieved total precision, total recall, and total AUC of 99.39%,
99.36%, and 0.998.

• Contributions: The study introduced a CAD system employing the MCME ensemble
model for classifying OCT images into dry AMD, DME, or normal retina categories.
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By incorporating a mixture model, the study achieved high accuracy, recall, and AUC,
demonstrating the effectiveness of CNNs on multiple-scale sub-images.

• Limitations: The study lacked occlusion testing and qualitative assessment of model
predictions. Additionally, it did not include image denoising, complete retinal layer
segmentation, or lesion detection algorithms, which are essential for comprehensive
analysis in clinical settings.

Thakoor et al. [41] developed a custom-built 3D CNN with two dense layers, four 3D
convolutional layers, and a final SoftMax classification. They discuss 3D–2D hybrid CNNs.
Patients who were 18 years of age or older who were treated by collaborating vitreoretinal
faculty at Columbia University Medical Centre provided the data utilized in this study.
Patients with non-neovascular AMD, patients with no significant vascular pathology on
OCTA (non-AMD), and patients with neovascular AMD who have actionable CNV based
on patient diagnosis make up the three patient groups for CNN training. They achieve a
93.4% testing accuracy in the binary categorization of neovascular AMD vs. non-AMD by
using stacked 2D OCTA images of the retinal layers with 97 healthy, 80 neovascular AMD
(NV-AMD) and 160 non-neovascular AMD (non-NV-AMD).

• Contributions: The findings demonstrate the superiority of models with various
imaging modalities concatenated into one, such as OCT volumes with b-scan images
and OCTA, over models with a single input image modality. By using dataset balance,
the models’ performance was improved. GradCAM visualization at each layer of the
3D input volumes indicates that model performance may be enhanced by including
a high-resolution b-scan cube across the retina. Very modest angiographic results,
particularly in early types of AMD, need to be confirmed by high-resolution b-scans.

• Limitations: Imbalanced settings and data-limited are the study’s limitations.

Tan et al. [1] proposed a deep CNN for diagnosing AMD using fundus images. Their
custom-designed CNN, consisting of 14 layers, aimed to classify images into AMD (dry
and wet) and normal categories. Utilizing data from the Ophthalmology Department of
Kasturba Medical College (KMC), they employed blindfold and 10-fold cross-validation
methods, achieving high classifier accuracies of 91.17% and 95.45%, respectively.

• Contributions: The study proposed a deep CNN for diagnosing AMD using fundus
images, consisting of 14 layers, and aimed at classifying images into AMD (dry and
wet) and normal categories. The model’s portability and affordability make it suitable
for deployment in regions with limited access to ophthalmology services, facilitating
rapid screening for AMD among the elderly.

• Limitations: The study faced limitations such as the need for large amounts of labeled
ground truth data for optimal model performance. Additionally, the complexity of
the CNN model led to issues with overfitting and convergence, requiring continuous
parameter adjustments for optimal performance. Moreover, CNN model training was
laborious and time-consuming, although testing of fundus images became quick and
precise once the model was trained.

Jain et al. [95] aimed to classify retinal fundus images as diseased or healthy without
explicit segmentation or feature extraction. They developed the LCDNet system for binary
categorization using DL techniques. Two datasets were utilized: one from the ML data
repository at Friedrich-Alexander University and another from the Retinal Institute of Kar-
nataka, India. The model achieved an accuracy ranging from 96.5% to 99.7%. Notably, color
images performed worse than red-free images, aligning with medical community beliefs.

• Contributions: The study developed the LCDNet system for binary categorization of
retinal fundus images as diseased or healthy, utilizing DL techniques without explicit
segmentation or feature extraction. The study highlighted the potential of DL for
automated disease classification in retinal images, with red-free images showing better
performance compared to color images, aligning with medical community beliefs.



Bioengineering 2024, 11, 711 22 of 46

• Limitations: The study identified the need for a larger and more diverse dataset
to enhance the model’s performance for specific diseases. Additionally, the focus
on binary categorization limits the model’s ability to distinguish between different
diseases or severity levels within diseased images. Comprehensive training with
multi-class datasets would be necessary to address this limitation and improve the
model’s applicability in clinical settings.

Islam et al. [96] proposed a CNN-based method to identify eight ocular disorders
and their affected areas. After standard pre-processing, data are fed into the network for
classification. Using the ODIR dataset and a state-of-the-art GPU, the model achieved an
AUC of 80.5%, a κ score of 31%, and an F-score close to 85%.

• Contributions: This study marked the first evaluation of various eye disorders on a
real-life dataset, demonstrating strong performance across different datasets. Addi-
tionally, the model showed flawless performance when tested on alternative datasets,
highlighting its accuracy in identifying all eight categories of ocular disorders. The
user-friendly nature of the system and its practical viability in real-time testing un-
derscore its potential for revolutionizing public healthcare services through image
processing and neural networks.

• Limitations: The study did not address specific challenges or limitations encountered
during model development or evaluation. Further exploration of potential limitations,
such as computational resource requirements, dataset biases, or generalizability to
diverse populations, could provide valuable insights for future research and imple-
mentation in clinical settings.

Bhuiyan et al. [97] utilized CNNs and the AREDS dataset to classify Referable AMD
of fundus images into no, early, intermediate, or advanced AMD and predict late AMD
progression: dry or wet. They developed six automated AMD prediction algorithms based
on color fundus images by integrating DL, ML, and algorithms for AMD-specific image
parameters. These methods produced image probabilities, which were combined with
demographic and AMD-specific parameters in a machine-learning prediction model to
identify individuals at risk of progressing from intermediate to late AMD.

• Contributions: The study utilized CNNs and the AREDS dataset to develop six au-
tomated AMD prediction algorithms, classifying Referable AMD of fundus images
into various stages and predicting late AMD progression. By integrating DL, ML, and
algorithms for AMD-specific image parameters, the study produced image proba-
bilities combined with demographic and AMD-specific parameters, facilitating the
identification of individuals at risk of progressing from intermediate to late AMD. The
immediate applicability of these methods in AMD studies using color photography
could significantly reduce human labor in image classification, potentially advancing
telemedicine-based automated screening for AMD and improving patient care in the
field of public health.

• Limitations: The study faced limitations, particularly in lower prediction accuracy
when stratified according to GA and CNV. This discrepancy might be attributed to
the predominance of non-incident events compared to pure dry and wet AMD cases
during the construction of machine-learning models.

Zapata et al. [61] utilized the Optretina dataset, comprising approximately 306,302 images,
to develop a CNN-based classification algorithm for AMD Disease vs. No disease. They
designed five algorithms and involved three retinal specialists to classify all images. Three
CNN architectures were employed, two of which aimed to reduce parameters while main-
taining accuracy. The study achieved an accuracy of 0.863, an AUC of approximately 0.936,
a sensitivity of 90.2%, and a specificity of 82.5%.

• Contributions: The study utilized the Optretina dataset to develop a CNN-based
classification algorithm for AMD Disease vs. No disease, involving three retinal
specialists in image classification. The study designed five algorithms and employed
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three CNN architectures, achieving impressive performance metrics. These algorithms
demonstrated the ability to assess image quality, distinguish between left and right
eyes, and accurately identify AMD and GON with notable sensitivity, specificity,
and accuracy.

• Limitations: The study may have faced limitations such as potential biases introduced
by the involvement of retinal specialists in image classification. Additionally, the
performance metrics achieved might vary across different datasets or clinical set-
tings, warranting further validation and evaluation on diverse datasets to ensure the
generalizability and robustness of the algorithms.

Yellapragada et al. [98] developed a deep neural network with self-supervised Non-
Parametric Instance Discrimination (NPID) to predict AMD severity in four steps (none,
early, intermediate, and advanced AMD) and classify the disease as referable AMD (in-
termediate or advanced AMD) and advanced AMD (CNV or central GA). They utilized
the Age-Related Eye Disease Study (AREDS) and applied three-step, four-step, and nine-
step classification methods to evaluate the model’s performance in grading AMD severity
without labels. Using spherical k-means clustering and hierarchical learning, they stud-
ied network behavior and compared balanced and unbalanced NPID accuracies against
ophthalmologists and supervised-trained networks. NPID demonstrated flexibility in
different AMD classification schemes and achieved balanced accuracies comparable to
human ophthalmologists or supervised-trained networks in classifying advanced AMD
(82% vs. 81–92% or 89%), referable AMD (87% vs. 90–92% or 96%), and the 4-step AMD
severity scale (65% vs. 63–75% or 67%), all without the need for retraining.

• Contributions: The study introduced a deep neural network with self-supervised
NPID to predict AMD severity and classify referable AMD and advanced AMD
without the need for labeled data. By utilizing the AREDS dataset and various
classification methods, they demonstrated the flexibility of their approach in different
AMD grading schemes. The NPID algorithm achieved balanced accuracies comparable
to human ophthalmologists and supervised-trained networks in classifying AMD
severity and referable AMD, showcasing its potential for unbiased and data-driven
classification of ocular phenotypes related to AMD and other conditions.

• Limitations: The study’s reliance on a specific dataset may limit the generalizability
of the results to other populations or clinical settings. Additionally, while the NPID
algorithm demonstrated adaptability across different labeling schemes, further val-
idation on diverse datasets is necessary to assess its robustness and applicability in
real-world healthcare settings. Furthermore, the study’s emphasis on algorithmic per-
formance highlights the need for comprehensive evaluation of clinical outcomes and
patient impacts to ensure the effectiveness and safety of self-supervised learning-based
diagnostic systems in clinical practice.

Thomas et al. [99] devised an algorithm for AMD diagnosis in retinal OCT images,
employing statistical techniques, randomization, and RPE layer identification. The algo-
rithm focuses on statistically categorizing AMD by utilizing the RPE layer and baseline to
calculate Drusen height, indicative of disease severity. The methodology involves despeck-
ling, RPE estimation, baseline estimation, Drusen height detection, and categorization. The
evaluation was conducted on a publicly available dataset from Duke comprising 2130 slices
from thirty participants. The proposed approach achieved an overall accuracy of 96.66%,
surpassing comparable statistical techniques. An adaptive denoising method enhances
RPE estimation by removing stray pixels under the RPE.

• Contributions: The study developed an algorithm for diagnosing AMD in retinal OCT
images, focusing on statistically categorizing AMD severity using the RPE layer and
baseline to calculate Drusen height. Their methodology, which includes despeckling,
RPE estimation, baseline estimation, Drusen height detection, and categorization,
achieved an impressive overall accuracy of 96.66%. By utilizing statistical techniques
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and randomization, their approach surpassed comparable methods, showcasing its
potential for accurate AMD diagnosis and disease severity assessment in OCT images.

• Limitations: The study was conducted on a single publicly available dataset, which
may limit the generalizability of the results to other datasets or clinical settings. Ad-
ditionally, further validation on larger and more diverse datasets is necessary to
assess the algorithm’s robustness and applicability in real-world healthcare scenarios.
Furthermore, the study’s focus on statistical techniques may overlook potential nu-
ances in AMD diagnosis that could be addressed by incorporating additional imaging
modalities or clinical features.

Christiana et al. [100] proposed an automated AMD identification method using
fundus images using DL algorithms. Image features were extracted with an Elite U Net
model optimized with mustard sunflower optimization. Training and testing utilized the
AREDS dataset, achieving high accuracy. Comparison with existing approaches indicates
effectiveness in AMD identification. The clinical context presents challenges due to im-
age variability, but the proposed method excels in distinguishing vessel bifurcations and
crossings from AMDs with 98% accuracy and minimal error.

• Contributions: The study introduced an automated method for identifying AMD in
fundus images using DL algorithms. Their approach utilized an Elite U Net model
optimized with mustard sunflower optimization to extract image features, achieving
high accuracy on the AREDS dataset. By comparing with existing methods, they
demonstrated the effectiveness of their approach in accurately identifying AMD,
particularly excelling in distinguishing vessel bifurcations and crossings from AMDs
with 98% accuracy and minimal error.

• Limitations: The study was primarily conducted on a single dataset, which may
limit its generalizability to diverse populations or clinical settings. Additionally,
the clinical context of AMD diagnosis presents challenges due to image variability,
suggesting the need for further validation on larger and more diverse datasets to
assess the algorithm’s robustness across different imaging conditions and patient
demographics. Furthermore, the reliance on DL algorithms may require careful
consideration of computational resources and potential biases in training data to
ensure reliable performance in real-world clinical practice.

Vaiyapuri et al. [101] introduced a multi-retinal disease detection model using the
IDL-MRDD technique on fundus images. The model aims to classify images such as
Normal, Hypertensive Retinopathy, AMD, DR, Glaucoma, Pathological Myopia, and
Others. The IDL-MRDD model undergoes preprocessing, segmentation using AFA-SF,
feature extraction with SqueezeNet, and classification via SSAE. AFA-SF-based multi-level
thresholding enables accurate detection of infected zones. SqueezeNet generates feature
vectors, while SSAE serves as the classifier. Evaluation on a benchmark multi-retinal disease
dataset demonstrates superior performance with a maximum accuracy of 0.963 compared
to state-of-the-art techniques.

• Contributions: The study proposed a multi-retinal disease detection model, the IDL-
MRDD technique, for classifying fundus images into categories such as Normal,
Hypertensive Retinopathy, AMD, DR, Glaucoma, Pathological Myopia, and Oth-
ers. Their approach integrated preprocessing, segmentation using AFA-SF, feature
extraction with SqueezeNet, and classification via SSAE.

• Limitations: The study was conducted on a specific benchmark dataset, which may
limit its generalizability to other datasets or clinical scenarios. Additionally, further
validation of diverse datasets representing various populations and clinical settings
is necessary to assess the robustness and applicability of the model in real-world
healthcare environments. Moreover, the computational complexity of the proposed
technique, particularly involving multiple stages such as preprocessing, segmentation,
feature extraction, and classification, may pose challenges in deployment, requiring
consideration of computational resources and scalability for practical implementation.
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Lee et al. [102] proposed two DL models, CNN-LSTM and CNN-Transformer, to
predict the 2-year and 5-year risk of progression to late AMD by utilizing sequential
information in longitudinal CFPs. LSTM and Transformer were utilized to capture this
sequential data. The models were evaluated using data from the Age-Related Eye Disease
Study (AREDS), one of the largest longitudinal AMD cohorts with CFPs. Results showed
that the proposed models outperformed baseline models, which only considered single-
visit CFPs, in predicting the risk of late AMD (AUC of 0.879 vs. 0.868 for 2-year prediction,
and 0.879 vs. 0.862 for 5-year prediction).

• Contributions: The study proposed two DL models, CNN-LSTM and CNN-Transformer,
for predicting the 2-year and 5-year risk of progression to late AMD by utilizing sequen-
tial information in longitudinal CFPs. Utilizing LSTM and Transformer architectures
to capture sequential data, the models were evaluated using data from the AREDS,
one of the largest longitudinal AMD cohorts with CFPs.

• Limitations: The study was conducted on data from a specific cohort (AREDS), which
may limit their generalizability to other populations or clinical settings. Additionally,
the complexity of DL models may pose challenges in interpretability and computa-
tional resources, requiring careful consideration in practical implementation. Fur-
thermore, further validation on diverse datasets and external validation cohorts is
necessary to assess the robustness and generalizability of the models in real-world
clinical practice.

Fang et al. [2] utilized multiple CNN models in the ADAM challenge, including Effi-
cientNet, DenseNet, Inception-ResNet, ResNeXt, SENet, Xception, Inception-v3, ResNet50,
DenseNet101, Autoencoder with ResNet50 as backbone, ResNet-101, and EfficientNet-B4,
to detect AMD into four categories using the ODIR dataset. The objectives of the challenge
included detecting AMD, detecting and segmenting the optic disc, finding the fovea, and
detecting and segmenting lesions from fundus images. The achieved results showed high
performance with an AUC of 0.9714 and AUCs for Early AMD (0.9159), Intermediate AMD
(0.9964), Advanced AMD dry (0.9914), and Advanced AMD wet (0.9917).

• Contributions: The study utilized multiple CNN models in the ADAM challenge to
detect AMD and perform related tasks such as optic disc segmentation and fovea
localization using the ODIR dataset. Their ensemble approach, combined with the
incorporation of clinical domain information, led to high-performance outcomes. The
study highlighted the importance of ensembling methods and the inclusion of clinical
domain knowledge in enhancing DL model performance for automated solutions
in ophthalmology.

• Limitations: The study was conducted on a specific dataset (ODIR), which may limit
the generalizability of the findings to other datasets or clinical scenarios. Additionally,
the reliance on ensembling methods and clinical domain information may introduce
complexities in model interpretation and practical implementation. Furthermore, the
study emphasized the importance of including clinical domain information for tasks
such as AMD classification, but the impact of this information may vary depending
on the specific task and dataset, requiring further investigation and validation on
diverse datasets.

El-Den et al. [103] proposed an integrated model using color fundus images to scale
input images and classify retinas as normal or belonging to various grades of AMD. The
method consists of two phases: in the first phase, a custom auto-encoder-based model
resizes input images and performs preprocessing as needed. The output is then fed into
the second phase, where a pre-trained ResNet50 model classifies the images into normal
retinas, intermediate AMD, GA, and wet AMD grades. The model aims to facilitate early
identification of AMD grades for prompt treatment, potentially slowing down disease
progression and reducing severity. The dataset used for this study was gathered from the
University of Pennsylvania-sponsored Comparisons of AMD Treatments Trials (CATT).
The model comprises a CNN classification network and an auto-encoder-based network
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for scale adaptation. Through experiments, the model achieved an accuracy, sensitivity,
and specificity of 96.2%, 96.2%, and 99%, respectively, outperforming other models.

• Contributions: The study proposed an integrated model utilizing color fundus images
to scale input images and classify retinas as normal or belonging to various grades
of AMD. Through experiments, the model achieved impressive performance metrics
outperforming other models.

• Limitations: The study was conducted on a specific dataset (CATT), which may limit
the generalizability of the findings to other datasets or clinical contexts. Additionally,
the reliance on color fundus images may overlook potential complementary informa-
tion from other imaging modalities, such as OCT or angiography, which could further
improve the accuracy of AMD classification. Furthermore, while the model achieved
high accuracy, further validation on external datasets and diverse populations is
necessary to assess its robustness and generalizability in real-world clinical settings.

Kadry et al. [104] developed an automated method for distinguishing between AMD
patients and non-AMD patients using a DL scheme (VGG16 CNN) by merging deep features
(DF) and handcrafted features (HF). The database included OCT images for assessment
and fundus retinal images from the iChallenge-AMD database. The study encompassed
data processing, manual feature extraction, DF extraction with VGG16, optimum feature
selection using the Mayfly method, feature concatenation, binary classification, and val-
idation. Handcrafted features such as local binary pattern (LBP), pyramid histogram of
oriented gradients (PHOG), and discrete wavelet transform (DWT) were extracted from
test images to enhance performance, and integrated with DF. The system was evaluated
independently using CFP and OCT images. A SoftMax classifier verified detection per-
formance, followed by a comparison of VGG16’s performance with VGG19, AlexNet, and
ResNet50. In comparison to OCT images, which had accuracies ranging from 97.08% to
97.92%, the proposed VGG16 achieved an AMD detection accuracy of 97.08%, precision of
97.48%, sensitivity of 96.67%, specificity of 97.50%, and NPV of 96.69%.

• Contributions: The study developed an automated method for distinguishing between
AMD and non-AMD patients using a DL scheme. The system demonstrated improved
performance in AMD detection, especially with OCT images.

• Limitations: The study was conducted on a specific dataset, which may limit its
generalizability to other datasets or clinical settings. Additionally, the comparison
of VGG16’s performance with other DL models (VGG19, AlexNet, ResNet50) could
be further expanded to include a broader range of architectures for a comprehensive
assessment. Furthermore, the study’s emphasis on accuracy metrics may overlook
potential biases or limitations in the dataset or algorithm, highlighting the need for
further validation and evaluation in real-world clinical settings.

Kihara et al. [105] introduced a binary classification ViT method for identifying eyes
with neovascular AMD (neMNV). Using a 6 × 6 mm scan pattern from swept-source
OCT angiography (SS-OCTA), they processed 500 B-scans to generate an integrated face
prediction map. This map was used with a segmentation model to compute prediction
masks, distinguishing between Drusen and the double-layer sign (DLS) associated with
neMNV. Annotated individual B-scans were employed, and graded by human evaluators
to test the model. The algorithm achieved sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of 82%, 90%, 79%, and 91%, respectively, with
an area under the curve of 0.91. In comparison with human graders on the same set of
100 eyes, two junior graders independently identified DLSs in 24 out of 33 eyes with neMNV
and correctly identified 56 out of 67 eyes without MNV, achieving 73%, 84%, 69%, and 86%
for sensitivity, specificity, PPV, and NPV, respectively. The senior grader achieved 88%,
87%, 76%, and 94% for sensitivity, specificity, PPV, and NPV, respectively, detecting DLSs
in 29 of 33 eyes with neMNV and correctly identifying absence in 58 of 67 eyes without
MNV. The model demonstrated strong performance in detecting DLSs in eyes with late
AMD, exhibiting substantial agreement with the senior human grader (κ = 0.83, p < 0.001).
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Junior and senior human graders also showed high agreement (κ = 0.68, p < 0.001) in
their assessments.

• Contributions: For identifying neMNV, a deep learning model was created to dif-
ferentiate the DLS linked to the neMNV from Drusen. The assessment showed that
segmentation performance may significantly increase sensitivity and specificity in the
final classification job and is consistent and dependable.

• Limitations: The model should only be used with structural SS-OCT scans with AMD
because it was only evaluated on these scans. The model’s ability to identify tiny
lesions is likewise rather limited. The size of the lesion and its performance are highly
correlated. Small lesions are typically hard for the model to remove and hard to tell
apart from Drusen from DLSs. If they include more cases in the training dataset, the
performance could get better. Adding lesion size reweighting to their loss function
while the ViT segmentation model is being trained is an additional strategy.

Xu, et al. [106] proposed a hierarchical vision transformer model for distinguish
Normal AMD Dry AMD Wet AMD type-I MNV and type-II MNV using different CFP
databases including WMUEH, ODIR, ADAM, and Ichallenge databases. Mixup and
Cutmix are the two augmentation techniques they use. They employed “Center crop”
and “Random Resized Crop” to extract the most pertinent portion of an image while
resizing it to a particular size to increase the variety and unpredictability of the training
dataset. In addition, they used “Random Horizontal Flip” to flip the image horizontally
and produce a mirror image. Additionally, they included “Random Augment”, which
automatically improves images by combining arbitrary rotation, translation, scaling, and
shearing combinations. They used a technique called “Random Erasing”, which randomly
erases reticular sections of the image to further enlarge the dataset. The classification model
was motivated to concentrate on other areas and pick up more robust characteristics by
excluding specific portions of the image. The hierarchical vision transformer’s general
design was divided into four phases, each of which had a distinct function. A Swin
Transformer block and a Linear Embedding module make up the first step. The remaining
three steps, which comprised a Swin Transformer block and a patch merging module, have
the same structure.

• Contributions: A deep learning model based on CFPs was suggested for the detection
of differential AMD. Compared to ophthalmologists, DeepDrAMD is more efficient
and lowers expenses. They compare traditional deep learning models such as CNN
and MLP. The outcomes showed how well DeepDrAMD (vision transformer) worked
in AMD identification, with a high AUC of 96.47% in the external Ichallenge-AMD
cohort and 98.76% in the WMUEH test set.

• Limitations: While augmentation of data can greatly improve model performance,
there are drawbacks as well. For example, over-augmentation can lead to overfit-
ting and increase processing resource consumption. Appropriate data augmentation
techniques must be chosen and used sparingly to balance data augmentation with com-
putational resources and prevent overuse. DeepDrAMD may perform differently on
various datasets and demographics, necessitating more testing and improvement. Fur-
thermore, the model’s applicability to actual clinical situations and its incorporation
into current healthcare systems need to be carefully considered and validated.

Dominguez et al. [107] extensively studied two families of deep learning models,
CNNs and transformer architectures, for automatic diagnosis and severity grading of
referable and non-referable AMD. They evaluated various scaling techniques and ensemble
strategies to enhance the performance of convolutional architectures using fundus images
from the UpRetina database. Among the eight CNNs (EfficientNet B3, EfficientNet v2,
HRnet w32, Inception-v4, Inception-ResNetv2, ResNet50, ResnetRS50, and ResNeSt50)
and nine transformer-based architectures (BeiT, CaiT, CoaT, DeiT, PiT, Swin, TNT, ViT,
and Visformer), convolutional models consistently achieved an average AUROC of over
95%, nearly 80% mean κ value, and over 90% for other evaluation metrics. In contrast,
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transformer-based models performed less effectively, with mean κ values below 31% and
mean AUROC values below 75% for AMD diagnosis. Their ensemble model for grading
AMD severity achieved a mean accuracy (SD) of 82.55% (2.92) and a mean weighted κ
coefficient (SD) of 84.76% (2.45). For diagnosing referable AMD, the models attained a mean
F1-score (SD) of 92.60% (0.47), mean AUROC (SD) of 97.53% (0.40), and mean weighted κ
coefficient (SD) of 85.28% (0.91).

Contributions: They have thoroughly examined many deep learning architecture
families, training plans, and ensemble techniques to automatically identify AMD that
is referable or non-referable and to provide a severity rating based on retinal fundus
images. Convolutional-based designs outperform transformer-based architectures in this
situation, despite the former’s encouraging findings when working with real images. Using
a progressive scaling technique, where the models are trained with large images at first
and then with smaller images, enhanced the performance of convolutional architectures.
Binary models that are taught to grade AMD severity scales perform comparably to models
that are just trained to diagnose referable versus non-referable AMD. Lastly, they may
use test-time augmentation to further improve the performance of binary and multi-class
convolutional-based models; however, other techniques such as the use of classical model
ensembles or the cascade of models only serve to enhance the output of multi-class models.

Gholami et al. [108] utilized OCT image data from three research datasets to propose
a federated learning (FL) approach for training deep learning models such as ResNet18
and ViT to identify AMD. They addressed domain shift concerns across institutions by inte-
grating four domain adaptation algorithms. Their study demonstrated that FL techniques
enabled competitive performance similar to centralized models, even with local models
trained on subset data. The Adaptive Personalisation FL method consistently performed
well across tests. The research underscored the effectiveness of simpler architectures in im-
age classification tasks, particularly for privacy-preserving decentralized learning. Further
investigation into deeper models and FL techniques was recommended for a comprehen-
sive performance assessment. On test sets, ResNet18 achieved 94.58% ± 0.62 accuracy on
the Kermany dataset, while ViT achieved 98.18% ± 0.55 and 99.11% ± 0.39 on the Srini-
vasan and Li datasets, respectively. These findings highlight FL’s critical role in healthcare
analytics, ensuring patient privacy and enabling insights from distributed data.

• Contributions: Utilizing three different datasets, this study conducted a thorough set
of tests to compare the efficacy of deploying DL models utilizing local, centralized, and
FL approaches. Using ResNet18 and ViT encoders, the main goal was to classify OCT
images into two binary categories: Normal and AMD. In addition, they incorporated
four distinct DA techniques into the FL approach to address the widespread problem
of domain shift.

• Limitations: They used an aggregation policy based only on a weighted average and a
quite simple DL architecture throughout the training phase. Subsequent initiatives
will investigate more complex aggregation policies. Despite these limitations, their
findings enhance our understanding of FL techniques and offer priceless insights
into the relative effectiveness of simpler structures for image classification tasks. We
hope that exploring further FL techniques in future studies will provide more light
on the subtleties of these models’ functionality. Another area that warrants attention
is the distinct classification head, where amplitude normalization and intelligent
weight aggregation strategy may increase FL network efficiency. Finally, exploring
more complex multi-layer perceptron designs and extra transformer blocks in deeper
models like ResNet50, ResNet101, or ViTs may change performance dynamics and
provide new insights.

Retinal ViT is a revolutionary vision transformer design that integrates the self-
attention mechanism into the area of medical image analysis employing fundus images,
as reported by Wang et al. [109]. The last component of the proposed model was a feed-
forward network design multi-label classifier. This classifier used a Sigmoid activation
function with two layers. On the publicly available dataset ODIR-2019, the experimental
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results demonstrate that the suggested model performs better than state-of-the-art methods
like ResNet, VGG, DenseNet, and MobileNet. The proposed method also outperforms the
state-of-the-art algorithms in terms of F1 score (0.932 ± 0.06) and AUC (0.950 ± 0.03).

• Contributions: A unique vision transformer model was proposed to address the
problem of multi-label categorization of retinal images. The suggested method may
classify retinal images into a total of eight groups. This study demonstrated that
transformer-based models can outperform CNN-based models in terms of perfor-
mance. It should be noted that the suggested deep learning model’s utilized attention
mechanism, which aims to identify the global correlations between distant pixels, may
be responsible for this.

• Limitations: The unbalanced problem with the utilized dataset was not taken into
account in this investigation. The DR (D), normal (N), and other abnormalities (O)
categories in the ODIR-2019 dataset contain a much higher number of images than the
other five classifications combined. Consequently, the performance of the suggested
method may be impacted by the dataset’s unequal distribution. Second, the original
vision transformer served as the basis for the given deep model. The key change
made to the original vision transformer is located at the output layer to accommodate
the need for multi-label classification. To obtain a more precise outcome, the inner
workings of the vision transformer requirements should also be optimized. Lastly,
the tests only used one particular dataset, which may not have been sufficient to
demonstrate the generalizability of the suggested vision transformer design.

To automatically distinguish between AMD, DME, and normal eyes, Jiang et al. [13]
suggested a CAD technique that uses a vision transformer to analyze OCT images from
Duke University. The size of the images was changed in this investigation, and the results
were then normalized. Following the model pruning, the classification accuracy remained
unchanged and the recognition time reached 0.010 s. Vision Transformer after pruning
showed superior recognition ability when compared to CNN image classification models
(VGG16, Resnet50, Densenet121, and EfficientNet). The findings indicated that the vision
transformer was a better substitute for making more accurate diagnoses of retinal disor-
ders. Regarding the identification speed of each image, VGG16 and Vision Transformer
outperformed other CNN models in this regard. After pruning, the vision transformer’s
single image recognition speed was the quickest, taking only 0.010 s to complete. Its identi-
fication accuracy stays at 99.69% and it operates at a pace greater than any other model.
When it comes to identification speed and accuracy, the vision transformer after trimming
outperforms CNN models in identifying fundus OCT images.

Contributions: The study showed that vision transformers were the best at recognition
and that their capacity to recognize objects quickly and accurately was unaffected by prun-
ing, which indicates that there will be no missed diagnosis in practical applications. This
research proposes a model that can more accurately represent the CAD of retinal disorders.

Table 6 summarizes the discussed DL-related studies.

Table 6. Tabular summary of the DL-related classification approached discussed in the current review
in AMD diagnosis.

Study Method Dataset Classification Performance Modality

Karri et al. [19] Transfer learning with Incep-
tion network

DHU database Dry AMD, DME, Normal Avg. Accuracy: 99% (Normal), 86%
(DME), 89% (AMD)

OCT

Rasti et al. [20] Multi-scale Convolutional
Mixture of Expert (MCME)
ensemble model

NEH, DHU dataset Dry AMD, DME, Normal Accuracy: 98.33% (DHU),
99.39% (NEH)

OCT

Philippe et al. [92] DL with transfer learning on
fundus images

AREDS database Disease-free/early stages,
Referable intermediate/
advanced stages

Accuracy: 88.4–91.6%, AUC: 0.94–0.96,
human performance levels
(accuracy = 90.2κ = 0.800)

CFP

Thakoor et al. [41] Deep learning (CNNs) faculty at
Columbia University
Medical Centre

NV-AMD vs.non-NV-AMD vs.
healthy

Accuracy: 77.8% (NV-AMD vs. non-
NV-AMD vs. healthy), 93.4% (NV-
AMD vs. healthy),

OCTA
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Table 6. Cont.

Study Method Dataset Classification Performance Modality

Tan et al. [1] Custom-designed CNN KMC dataset Dry AMD, Wet AMD, Normal Accuracies: 91.17% (blindfold),
95.45% (ten-fold CV)

CFP

Jain et al. [95] LCDNet for
binary classification

ML data repository,
Retinal Institute dataset

Diseased or Healthy Accuracy: 96.5–99.7% CFP

Islam et al. [96] CNN-based method ODIR dataset Eight ocular disorders AUC: 80.5%, κ: 31%, F-score: 85% CFP

Li et al. [21] DL with VGG16 Private retinal OCT im-
age database

CNV, Normal AMD AUC: 100%, Accuracy: 98.6%, Sensi-
tivity: 97.8%, Specificity: 99.4%

OCT

Bhuiyan et al. [97] CNNs with AREDS dataset AREDS dataset Referable AMD classification Predictions based on
image probabilities

CFP

Zapata et al. [61] CNN-based
classification algorithm

Optretina dataset AMD Disease vs. No disease Accuracy: 86.3%, AUC: 0.936, Sensi-
tivity: 90.2%, Specificity: 82.5%

OCT, CFP

Bulut et al. [93] Xception model with
transfer learning

Akdeniz University
Hospital dataset

Retinal defects Accuracy: 82.5–91.39% OCT, CFP

Xu et al. [94] DL approach with ResNet50 Peking Union
Medical College
Hospital dataset

PCV, Wet AMD, Dry AMD,
AMD

Accuracy: 87.4%, Sensitivity: 88.8%,
Specificity: 95.6%

CFP

Yellapragada et al. [98] Deep neural network with self-
supervised NPID

AREDS dataset AMD severity, Referable
AMD, Advanced AMD

Balanced accuracies comparable to
ophthalmologists

OCT, CFP

Thomas et al. [99] Algorithm for AMD diagnosis
in retinal OCT images

Duke dataset AMD categorization Overall Accuracy: 96.66% CFP

Christiana et al. [100] Elite U Net model AREDS dataset AMD identification Accuracy: 98% OCT

Vaiyapuri et al. [101] IDL-MRDD technique with
fundus images

Benchmark multi-
retinal disease dataset

Multi-retinal disease detection Max accuracy: 96.3% CFP

Lee et al. [102] CNN-LSTM
and CNN-Transformer

AREDS dataset 2-year and 5-year risk predic-
tion of late AMD

AUC: 0.879 (2-year), 0.879 (5-year) CFP

Fang et al. [2] Multiple CNN models in
ADAM challenge

ODIR dataset AMD detection into
four categories

AUC: 0.9714, High performance in
classification tasks

CFP

El-Den et al. [103] Integrated model with auto-
encoder and ResNet50

CATT dataset Normal, Intermediate AMD,
GA, Wet AMD

Accuracy: 96.2%, Sensitivity: 96.2%,
Specificity: 99%

OCT

Kadry et al. [104] DL (VGG16 CNN) +
Handcrafted features (LBP,
PHOG, DWT)

OCT and fundus
retinal images from
iChallenge-
AMD database

AMD detection Accuracy: 97.08% CFP

Kihara et al. [105] ViT Carl Zeiss Meditec, Inc. Normal, AMD patients with
and without neMNV

Sensitivity = 82%, specificity = 90%,
PPV = 79%, and NPV = 91% ,
AUC = 0.91

OCTA

Xu et al. [106] Hierarchical vision trans-
former

WMUEH,
ODIR, ADAM

Normal AMD DryAMD
WetAMD type-I MNV
type-II MNV

AUC of 98.76%(WMUEH test set),
96.47% (iChallenge set)

CFP

Dominguez et al. [107] CNN and
transformer architectures

UpRetina database referable/non-referable AMD,
and grade AMD severity
scales (no AMD, early AMD,
intermediate AMD, and
advanced AMD).

Convolutional architectures;
AUROC > 95%, κ value = 80%. trans-
former architectures; AUROC < 75%,
and κ < 31%. For referable AMD;
F1-score = 92.60%, AUROC = 97.53%,
κ = 85.28%. For AMD severity;
accuracy = 82.55%, κ = 84.76%.

CFP

Gholami, et al. [108] Residual network and
vision transformer

Kermany dataset,
Srinivasan dataset,
Li dataset

Normal vs. AMD ResNet18 accuracy = 94.58% ± 0.62
on the first dataset, and the ViT en-
coder = 98.18% ± 0.55 second dataset,
99.11% ± 0.39 on the third Li dataset

OCT

Wang et al. [109] ViT ODIR-2019 AMD (A), cataract (C), DR (D),
glaucoma (G), hypertension
(H), myopia (M), other abnor-
malities (O), and normal (N).

F1 score = 0.932 ± 0.06,
AUC = 0.950 ± 0.03.

CFP

Jiang et al. [13] VGG16, Resnet50,
Densenet121, EfficientNet,
Vision transformer

Duke University AAMD, DME, and
normal eyes

VGG16 accuracy = 98.51%,
Resnet50 = 97.32%,
Densenet121 97.02%,
EfficientNet = 34.16% ,
Vision transformer = 99.69%,Vision
transformer after pruning = 99.69%

OCT

3.4.2. Machine Learning Techniques (Handcrafted Features)

Various ML algorithms are utilized to classify fundus images of AMD by identifying
patterns and features within the data. These algorithms fall under the umbrella of ML,
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which encompasses techniques employed across diverse sectors to address various is-
sues [10,11,110–112]. Learning algorithms can be categorized into two main domains based
on the type of knowledge they acquire. Supervised learning involves explicit information
or direct human involvement, while unsupervised or semi-supervised learning entails
the system determining target-related patterns autonomously to varying degrees [33,113].
Over the past decade, computer vision applications like image classification and object
identification have relied on handcrafted features. The complexity and quantity of these
features have increased over time to better address the tasks at hand. To assess the per-
formance of feature-based systems employing an ensemble of multiple features, various
feature-based techniques are considered [114].

Fraccaro et al. [114] developed models to diagnose AMD using interpretable white box
methods such as decision trees and logistic regression, as well as less interpretable black box
methods like AdaBoost, random forests, and support vector machines (SVM). They utilized
an Electronic Health Record (EHR) system in Genoa, Italy, collecting data during routine
visits from patients with AMD, other retinal disorders, and healthy participants to detect
AMD or other macular diseases. Patient demographics and clinical symptoms associated
with AMD were recorded, including subretinal fibrosis, subretinal fluid, macula thickness,
depigmentation area, subretinal hemorrhage, soft Drusen, retinal pigment epithelium
defects/pigment mottling, and macular scar. The study included 487 patients (912 eyes),
with SVM and decision trees performing at a mean of 0.90, and AdaBoost, logistic regression,
and random forests at a mean performance of 0.92. Age and soft Drusen were identified
as the most discriminating elements in diagnosing AMD by clinicians. They found a
potential trade-off between performance and complexity, noting that the relationship
between increased complexity and better performance is not always consistent. Even
though a single variable could not lead to successful diagnosis, decision trees (average
AUC of 90%) and logistic regression (average AUC of 92%) performed comparably to
random forests.

• Contributions: The study provided the identification of age and soft Drusen as the
most discriminating elements in diagnosing AMD and provided valuable insights
for clinicians. Furthermore, they highlighted the potential trade-off between model
performance and complexity, emphasizing that increased complexity does not always
guarantee better performance.

• Limitations: The study revealed limitations in precisely identifying all consistent
sets of diagnostic pathways, leading to occasional ambiguity in diagnostic decisions.
Nonetheless, they that an automated system incorporating longitudinal data and
new variables could help overcome these limitations, enabling the detection of dif-
ferent decision paths and facilitating timely diagnosis, particularly in distinguishing
ambiguous patient subsets.

Fundus images are utilized to differentiate between normal and AMD classes, includ-
ing Early AMD, Intermediate AMD, and Late AMD, as described by Mookiah et al. [12].
Features such as Pattern Occurrence (PO) and Linear Configuration Coefficients (CC) were
extracted from these images. These features were then inputted into various supervised
classifiers such as SVM. The features are sorted using the t-test p-value to categorize the
normal and AMD classes. The system’s performance was evaluated using ten-fold cross-
validation on Automated Retinal Image Analysis (ARIA) and Structured Analysis of the
Retina (STARE) datasets obtained from Kasturba Medical Hospital in Manipal, India. The
private dataset achieved an accuracy of 93.52%, sensitivity of 91.11%, and specificity of
95.93%, while the ARIA dataset achieved an accuracy of 91.36%, sensitivity of 92.18%, and
specificity of 90.00%. The proposed approach yielded the best results for the STARE dataset
using 22 significant features, with an average accuracy of 97.78%, specificity of 97.50%, and
sensitivity of 98.00%.

• Contributions: By extracting features and employing t-test p-value sorting, the study
achieved impressive classification accuracy. Evaluation on both ARIA and STARE



Bioengineering 2024, 11, 711 32 of 46

datasets demonstrated high performance, with the STARE dataset yielding particularly
excellent results, indicating the method’s potential for aiding clinicians in AMD
diagnosis during mass eye screening programs.

• Limitations: The study has some limitations. Firstly, while the classification accuracy
is high, the reliance on supervised classifiers like SVM may limit the model’s ability to
generalize to unseen data or populations with different characteristics. Moreover, the
study does not provide comprehensive insight into the interpretability of the extracted
features, which could hinder clinicians’ understanding and trust in the diagnostic
process. Finally, the proposed approach may require further validation and refinement
before widespread adoption in clinical settings, considering factors such as scalability,
cost-effectiveness, and integration with existing diagnostic workflows.

Phan et al. [111] proposed an automatic classification method for AMD to differentiate
between Non-AMD, Early, Moderate, and Advanced stages in a telemedicine setting,
ensuring robustness and reproducibility. Initially, a study was conducted using color,
texture, and visual context in fundus images to identify the most critical aspects for AMD
classification. The AREDS protocol was followed, employing a random forest and an SVM
to evaluate feature importance and categorize images based on different AMD stages. The
experiments utilized a database of 279 fundus photographs from a telemedicine platform.
The results showed that local binary patterns in multiresolution were the most significant for
AMD classification, irrespective of the classifier used. The technique exhibited promising
performances across various classification tasks, with areas under the ROC curve for
screening ranging from 0.739 to 0.874 and for grading from 0.469 to 0.685.

• Contributions: By utilizing color, texture, and visual context in fundus images and
following the AREDS protocol, they identified local binary patterns in multiresolution
as the most critical aspect for AMD classification, regardless of the classifier used. The
technique demonstrated promising performances across classification tasks, showing
reliability in image quality and superior discriminating power of LBP features.

• Limitations: The study’s reliance on a database of 279 fundus photographs from a
telemedicine platform raises concerns about generalizability, emphasizing the need
for further validation on a larger and more diverse sample size to fully validate their
findings. Nonetheless, their proposed method represents a significant step forward in
providing a reliable diagnostic tool for AMD in clinical settings and patient tracking.

Alfahaid et al. [40] classified OCTA images from different retinal layers as having wet
AMD or normal control using a KNN classifier using rotation-invariant uniform local binary
pattern texture characteristics calculated on 184 2D OCTA images (92 AMD, 92 healthy).
Manchester Royal Eye Hospital donated images utilized in this investigation. Both the
individual retinal layers and the collective layers underwent the categorization process. The
algorithm performed admirably, as the mean accuracy of 89% for all layers combined and
98% for the outer, 89% for superficial, 94% for deep, and 100% for choriocapillaris layers.

• Contributions: The study’s most significant finding is that employing the local texture
features based on the LBPsriu2 descriptor in the classification using OCTA images
achieved outstandingly accurate results. The algorithm achieved promising results
in processing all layers together and each layer separately. The highest accuracies
were achieved with the outer and choriocapillaris layers since the deformities of blood
vessels on these layers are very clearly observable. Four different retinal layers are
tested in this study and the main purpose of using the various layers is to identify
the layer that has the most discriminative information which describes the abnormal
blood vessel patterns in wet AMD cases.

• Limitations: The dataset that was employed was not very large. Extensive experiments
should be conducted to determine the ideal value of K neighbors, and its reliability for
use in clinical ophthalmology should be assessed. It should also be tested on a sizable
dataset to determine its efficacy and strength when a larger dataset is used, and its
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ability to determine the severity of the disease should be tested using a dataset that
includes AMD cases at different stages.

Wang et al. [10] introduced a computer-aided diagnosis (CAD) model to differentiate
between AMD, DME, and healthy macula using OCT data. The study utilized a publicly
available OCT dataset from Duke University, Harvard University, and the University of
Michigan. OCT images were analyzed using features based on linear configuration pattern
(LCP) with correlation-based feature subset (CFS) selection. Various classification algo-
rithms were employed, including neural network multi-layer perceptron (BP), quadratic
programming-based sequential minimal optimization (SMO), SVM with polynomial kernel,
logistic regression (LR), Naive Bayes, and Random Forest (RF) with J48 decision tree. The
optimal model, based on the SMO approach, achieved an accuracy of 99.3% for each of
the three sample classes. SMO surpassed BP and LR in specificity and sensitivity, ranking
second in terms of AUC performance with a slight reduction. It excelled in AMD samples
with an accuracy of 97.8% and ranked second in DME samples. LR performed well in
detecting DME samples with an overall accuracy of 94.3%.

• Contributions: Utilizing publicly available datasets from reputable institutions, the
study employed a comprehensive approach, utilizing features based on LCP with CFS
selection. The study achieved remarkable accuracy with the SMO approach leading
with impressive metrics for each of the three sample classes.

• Limitations: The high accuracy achieved may raise questions about overfitting, es-
pecially given the relatively small dataset utilized. Furthermore, while the SMO
approach excelled in specificity and sensitivity, there was a slight reduction in AUC
performance compared to other models. Additionally, while the study demonstrates
the importance of selecting relevant features and enhancing feature extraction ef-
ficiency, the generalizability of the model to diverse datasets and clinical settings
remains to be validated.

Nugroho et al. [115] compared the effectiveness of deep neural network features with
handcrafted characteristics. The study utilized OCT images from the investigation by
Kermany et al., categorizing scans into Normal, DME, Drusen (early stages of AMD), and
CNV. Feature extractors included DenseNet-169, ResNet50, Local Binary Pattern (LBP), and
Histogram of Oriented Gradient (HOG). A perceptron neural network without a hidden
layer (logistic regression) served as the evaluated classifier, adequate for benchmarking
with a linear classifier. Classifiers trained on features from deep neural networks performed
the best, achieving 89% accuracy for ResNet and 88% for DenseNet, compared to 50%
for HOG and 42% for LBP. The classifiers’ F1-score and LBP Feature Precision Recall
were 0.23 and 0.42, respectively, while HOG features yielded 0.56 and 0.50, respectively.
ResNet50 features scored 0.91, 0.89, and 0.89, and DenseNet-169 features scored 0.90, 0.88,
and 0.88. Deep neural network-based techniques also demonstrated better results for
underrepresented classes.

• Contributions: By comparing deep neural network features with handcrafted char-
acteristics, the study provided valuable insights into the performance of various
classifiers. Their outcome suggested that both deep neural network-based approaches
provide superior feature sets for OCT image classification compared to HOG and
LBP methods.

• Limitations: The study revealed limitations. While deep neural network-based meth-
ods showed superior performance, they may require larger datasets and computational
resources for training compared to handcrafted feature extraction techniques like LBP
and HOG. Additionally, despite the promising accuracy rates, further validation on
diverse datasets and clinical settings is necessary to assess the generalizability of
the findings. Moreover, the study’s focus on OCT images may limit its applicabil-
ity to other imaging modalities or multi-modal approaches, which could provide
complementary information for disease diagnosis and monitoring.
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Hussain et al. [11] proposed a classification approach for automatically identifying
individuals with DME or AMD using retinal characteristics from Spectral Domain Optical
Coherence Tomography (SD-OCT) images. SD-OCT images were obtained from four
sources: Tian et al., Duke University, New York University (NYU), and Centre for Eye
Research Australia (CERA). Retinal parameters such as retinal thickness and distinct retinal
layers, as well as the volume of diseases like Drusen and hyper-reflective intra-retinal spots,
were utilized in the classification process. Ten clinically significant retinal characteristics
were automatically extracted for classification by segmenting individual SD-OCT images.
The efficacy of the retrieved characteristics was assessed on 251 participants (59 normal,
177 AMD, and 15 DME) using various classification techniques, including Random Forest.
Fifteen-fold cross-validation tests were performed for three phenotypes—DME, AMD, and
normal cases—using these datasets. The Random Forest classification method achieved an
accuracy of over 95% for each dataset, and when trained as a two-class problem consisting
of normal and pathological eyes, the system yielded an accuracy of over 96%. Each dataset
also yielded an area under the receiver operating characteristic curve (AUC) value of 0.99.

• Contributions: Their approach utilized retinal parameters obtained from multiple
sources and utilized advanced segmentation techniques to extract ten clinically sig-
nificant retinal characteristics for classification. Their findings revealed a strong
correlation between the thicknesses of the layers and the projected diseases.

• Limitations: The approach may have limitations, particularly in cases of severe dis-
eases where even state-of-the-art segmentation techniques may miss retinal layers.
This suggests the need for further investigation and refinement, particularly in en-
hancing sensitivity to improve outcomes in such scenarios.

Li et al. [23] introduced three integration frameworks, including the innovative ribcage
network (RC Net), which effectively combines manually crafted features with deep learning
approaches such as VGG, DenseNet, and Xception. By demonstrating the effectiveness
of adding handcrafted features like Gabor and scale-invariant feature transform (SIFT)
in improving deep network classification accuracy, the study highlights the potential for
enhancing DNN performance, particularly in scenarios with limited training data. The
experimental results indicated that RC Net outperforms other integration techniques,
achieving impressive accuracy, sensitivity, and specificity metrics. Notably, the study found
that early integration techniques perform comparably to late integration methods but with
reduced computational complexity, suggesting practical advantages in terms of computing
time and model parameters. Additionally, the use of dense blocks and a sum operation
in RC Net instead of convolutional blocks and concatenation contributes to parameter
efficiency and network performance enhancement.

• Contributions: The work significantly advanced eye disease categorization by intro-
ducing integration frameworks that combine deep learning and handcrafted features,
notably proposing the RC Net for feature integration, which outperformed other tech-
niques utilizing dense blocks and a sum procedure, RC Net achieved high accuracy,
sensitivity, and specificity. The study emphasized the importance of incorporating
handcrafted features to enhance DNN performance, especially with limited training
data. Additionally, it highlighted the efficiency of early integration techniques in
reducing computing time and parameters.

• Limitations: The retrospective nature of the OCT image dataset may introduce biases,
and the generalizability of the findings to other populations or imaging modalities
needs further exploration. Moreover, while the study demonstrates the efficacy of
integrating handcrafted features, the specific selection and combination of these fea-
tures may require further validation across diverse datasets and disease categories.
Overall, Li et al.’s work provides valuable insights into the integration of deep and
handcrafted features for improved disease categorization, paving the way for further
advancements in medical image analysis.
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Govindaiah et al. [110] proposed a method to improve prediction probabilities by
combining five different ML and statistical algorithms (Random Forest, Naïve Bayes,
Logistic model tree, Simple Logistic, Multilayer Perceptron) using data from the AREDS
study, which included 566 participants, in each of the six models. Two independent
subsystems were included in each prediction model to predict the late wet AMD and late
dry AMD categories. ML models were developed to predict late AMD and category in a
single visit, in 2, 5, and 10 years, using different combinations of genetic, sociodemographic
(S-D)/clinical, and retinal imaging data. In their investigation, they employed a wide
range of factors, many of which might be challenging to find in a related study conducted
elsewhere for external validation. They used the “NAT-2” dataset from an AMD study to
test a model based on retinal images, with encouraging outcomes. The inclusion of genetic,
clinical, and sociodemographic variables during model training may enhance the overall
efficacy of late AMD prediction models. Each model’s performance was evaluated using
10-fold cross-validation due to the limited dataset. The model yielded 72.9% accuracy, with
73.8% sensitivity and 72.7% specificity.

• Contributions: The study demonstrated the potential for developing dependable
prediction systems for late AMD in real-world settings. Furthermore, the finding
that imaging alone can accurately predict late AMD for shorter timeframes without
genome sequencing is noteworthy, indicating practical implications for early detection
and intervention.

• Limitations: The dataset used for training and evaluation is relatively small, which
may affect the generalizability of the findings to broader populations. Additionally,
while the models demonstrated promising accuracy, sensitivity, and specificity, there
is room for improvement, particularly in predicting late AMD for longer durations
and in distinguishing between dry and wet forms. Moreover, the reliance on retro-
spective data from the AREDS study and the NAT-2 dataset may introduce biases
and limit the applicability of the models to more contemporary datasets. Finally, the
study acknowledges the potential for enhancing predictions with spectral-domain
optical coherence tomography (SD-OCT), suggesting avenues for future research to
incorporate advanced imaging techniques for improved accuracy and reliability.

Table 7 summarizes the discussed ML-related studies.

Table 7. Summary of the ML-related studies in AMD diagnosis.

Study Method Dataset Classification Performance Modality

Fraccaro et al. [114] White box (decision trees, logistic
regression), Black box (AdaBoost,
random forests, SVM)

EHR data from
Genoa, Italy

AMD diagnosis AUC: 0.90–0.92 OCT

Mookiah et al. [12] Feature extraction (PO, CC),
Classification (DT, k-NN, NB,
PNN, SVM)

ARIA, STARE datasets Normal vs. AMD Accuracy:
91.36–97.78%

CFP

Phan et al. [111] Color, texture, context analysis,
Random forest, SVM

Database of 279 fun-
dus photographs

AMD stage
classification

AUC: 0.739–0.874 CFP

Alfahaid et al. [40] KNN classifier using rotation-
invariant uniform local binary pat-
tern texture characteristics

Manchester Royal
Eye Hospital

AMD and healthy Accuracy: 89% (all lay-
ers) 89% (superficial)
94% (deep) 98% (outer)
100% (choriocapillaris)

OCTA

Wang et al. [10] Feature extraction (LCP), Clas-
sification (BP, SMO, SVM, LR,
NBayes, RF)

OCT dataset from mul-
tiple universities

AMD vs. DME vs.
healthy macula

Accuracy: 99.3% OCT

Nugroho et al. [115] Feature extraction (DenseNet,
ResNet50, LBP, HOG), Classifica-
tion (Logistic regression)

OCT images Normal vs. DME vs.
Drusen vs. CNV

Accuracy: 88–89% OCT

Hussain et al. [11] Feature extraction (retinal
parameters), Classification
(Random Forest)

SD-OCT images DME vs. AMD Accuracy: >95% OCT
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Table 7. Cont.

Study Method Dataset Classification Performance Modality

Li et al. [23] Feature integration (RC Net), Clas-
sification (RC Net)

OCT images Eye
disease categorization

Accuracy: 99.6% OCT

Govindaiah et al. [110] ML and statistical algorithms
(Random Forest, Naïve Bayes, Lo-
gistic model tree, etc.)

AREDS study data Late AMD prediction Accuracy: 72.9%, Sen-
sitivity: 73.8%, Speci-
ficity: 72.7%

CFP

3.4.3. Retinal Experts Classification

One of the main causes of permanent vision loss is AMD, which can be treated with
injections of anti-vascular endothelial growth factor (VEGF) medicines to treat macular
neovascularization (MNV). Several studies demonstrated the superiority of OCTA over
other imaging methods to identify MNV (macular neovascularization) in eyes with macu-
lar degeneration.

For instance, Corvi et al. [43] assessed the efficacy of OCTA in comparison to OCT,
indocyanine green angiography (ICGA), and fluorescein angiography (FA), in detecting
MNV in eyes suffering from atrophy. Multimodal imaging using FA, ICGA, structural OCT,
and OCTA was performed on eyes with MNV and atrophy (also known as macular atrophy
or MA) attributable to AMD, as well as AMD eyes with GA without MNV. Senior retina
experts used all imaging modalities to determine the existence of MNV, which was regarded
as the gold standard reference. Two professional readers then independently assessed each
unique imaging modality for the existence of MNV. On the specially designed OCTA slab,
the morphologic properties of the MNV were assessed. They enrolled 21 patients with
GA alone and 21 with MA+MNV. High specificity (95.2%) and sensitivity (95.2%) were
demonstrated by the manual segmentation on OCTA, which enabled the identification of
the MNV in 4.7% of eyes with GA and in 95.2% of eyes with MA+MNV. In 57.1%, 52.3%,
and 66.7% of eyes with MA+MNV and in 14.2%, 9.5%, and 42.8% of eyes with GA, FA,
ICGA, and OCT identified MNV. For FA, the corresponding values were 85.7% and 57.1%,
for ICGA, 90.5% and 52.4%, and for OCT, 66.7% and 57.1%. Their approach of using data
from various modalities and having this assessed by a senior specialist is a fair choice in
the lack of a histopathological reference.

• Contributions: The study demonstrated the ability of OCTA to detect MNV in eyes
with atrophy compared with fluorescein angiography (FA), ICGA, and OCT. This
study has several strengths including its prospective design, use of multiple graders,
and a masked grading process. The use of deeper penetrating SS-OCTA is also
a strength. They also evaluated the morphological features of MNV associated
with MA.

• Limitations: There are some limitations to this study. To start, the sample size is modest.
On the other hand, it might not happen very often for new MNV to grow in an eye
that has previously experienced atrophy. This study’s cohort was put together with a
50/50 mix of patients with and without MNV, which is another important drawback.
Because of this, the group is “selected” and does not represent the overall clinic
population of atrophy-affected eyes; as such, the results of the sensitivity, specificity,
PPV, and NPV should be interpreted accordingly. A further plausible constraint on the
research is the “gold” or reference standard. Histology would have been the perfect
gold standard, but that is not feasible.

A procedure to assess and harmonize a cutting-edge nomenclature for reporting
neovascular AMD data was developed by Spaide et al. [116]. For neovascular AMD,
they developed a consensus categorization. The elements of neovascular AMD were
identified and divided into groups. The effects of macular neovascularization on disease
were outlined. Three key documents were created: an explanation of AMD, a classification
of the many forms of neovascular AMD, and a framework for a consensual nomenclature
system. Creating a common set of terminology will make it easier to compare various
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patient groups and research projects. The framework that has been given is easily updated
and modified, a process that is expected to happen periodically. The development of OCT
and OCT angiography, in particular, which have allowed for extensive three-dimensional
investigation of the vascular anatomic and topographic features inside neovascular AMD
lesions, has proven essential in the suggested categorization. The standardization of AMD
investigation and reporting will be enhanced by the use of recognized categories and
nomenclature. Increased nomenclature clarity will improve AMD study reporting and
comparability. Increased terminology accuracy will improve AMD study comparability
and reporting.

• Contributions: In addition to helping to enhance standardization and communication
between researchers, doctors, and patients, the classification offers a way to group
neovascularization and other lesion components in neovascular AMD. This new
categorization makes research in the future more thorough and broadly applicable.
It also aids in bringing definitions from clinical investigators and reading centers
into harmony. The classification’s broad structure for other data to be added, such as
analyses of the definitions’ repeatability and accuracy, to further improve it.

• Limitations: This method has been criticized because cRORA and MNV are distinct
illnesses with distinct pathophysiologies, and as such, they should not be compared.
This staging system’s foundation came from a time when late AMD was associated
with an exceptionally high risk of serious visual impairment. For example, if fluores-
cein angiography revealed a neovascular lesion, the patient was usually at high risk
of significant vision loss. Predicting the risk of late disease progression rather than
visual function was the aim. Patients with MNV are likely to have stabilization or
improvement in their visual acuity with current treatment; thus, grading the disease’s
severity—an evaluation of the entire impact of the illness on an organ, including both
reversible and permanent effects—becomes necessary.

Optical coherence tomographic (OCT) angiography was used to assess eyes with AMD
and high-risk features for CNV in Palejwala et al. [117]. They demonstrated the usefulness
of OCTA for early detection of CNV and identified early CNV (type I) in their series, which
was challenging to identify using traditional FA and SD-OCT. Two (6%) of the 32 eyes
had Type 1 CNV according to OCT angiography. Neither fluid on OCT nor leakage on
fluorescein angiography was linked to the lesions. When nonexudative CNV lesions are
present, they are difficult to distinguish with fluorescein angiography and OCT. The Casey
Eye Institute’s retina clinics at Oregon Health and Science University in Portland, Oregon,
served as a source for study participants.

• Contributions: They assessed eyes with high-risk features for CNV and AMD. Nonex-
udative CNV lesions are challenging to distinguish using FA and OCT; however,
OCTA can determine their existence.

• Limitations: The data set used in this study is small, It should be tested on a sizable
dataset to determine its efficacy and strength when a larger dataset is used.

Coscas et al. [118] evaluated 80 eyes with wet AMD using OCTA scanning and found
several CNV patterns. Their group further received routine multimodal imaging, which
was based on FA, spectral domain OCT (SD-OCT), and ICGA, to see if treatment was
required. They utilized 80 exudative AMD eyes that were identified with various forms of
CNV: polyps linked to AMD, mixed Type I and II, Type I, Type II, and retinal angiomatous
proliferation. The results of the OCTA were utilized to distinguish between two distinct
patterns of CNV and the investigation was carried out at the Odeon Ophthalmology Centre
in Paris, France. The results of several multimodal imaging and OCTA analyses were
then compared to assess any potential relationships between the CNV aspect of OCTA
and the treatment choice. Conventional multimodal imaging revealed a CNV lesion in
58 eyes (72.5%) classified as Group A (requiring treatment). Fifty-nine eyes (73.7%) had
an OCTA lesion classified as Pattern I, while 21 eyes (26.3%) had a Pattern II lesion. The
Pattern I CNV on OCTA and the cases Group A on conventional multimodal imaging
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corresponded with 94.9% accuracy. Additionally, a 90.5% correlation between Group B
(non-treatment-requiring) cases on conventional multimodal imaging and Pattern II CNV
on OCTA was calculated.

• Contributions: To help patients with exudative AMD make treatment decisions, they
compared OCTA with OCT, FA, and ICG. While OCT displays fluid buildup and its
changes and fluorescein angiography is still the gold standard for detecting leakage,
OCTA provides noninvasive monitoring of the CNV and supports every treatment
decision made during the follow-up. Based on the availability of both functional and
morphological information from a single OCT scan, the study proposes that OCTA is
a valuable tool for noninvasive monitoring of the state of CNV in AMD. This kind of
observation might be useful in directing treatment choices and assessing how well
CNV responds to medication.

• Limitations: The use of a prototype device, the small number of patients, the lack of a
three-dimensional reconstruction of the CNV, and the qualitative assessment of OCTA
and multimodal imaging results are the primary limitations of this work.

In their publication, de Carlo et al. [119] detailed the features, sensitivity, and speci-
ficity of CNV detection by OCTA. Participants: 61 participants total—48 eyes of 43 people
with CNV and 24 eyes of 18 subjects without CNV. There were 72 eyes in total. New
England Eye Centre patients scanned with the OCTA system were evaluated. Patients
whose OCTA revealed CNV were assessed to determine the features of the CNV, includ-
ing appearance, size (measured using the largest linear dimension), and the existence of
intraretinal and subretinal fluid. To determine the sensitivity and specificity of OCTA in
identifying CNV using FA as ground truth, a second cohort of patients who had same-day
OCTA and fluorescein angiography (FA) for suspected CNV was also analyzed concur-
rently. Thirty-one of the 48 eyes in the group exhibited CNV linked to neovascular AMD.
When comparing OCTA to FA, the specificity of CNV detection was high (91%) while the
sensitivity was low (4/8).

• Contributions: By using OCTA, a doctor may noninvasively visualize CNV and
potentially detect and guide treatment for the condition. When compared to FA, the
specificity of CNV detection using OCTA appears to be high.

• Limitations: This study’s modest sample size and primarily cross-sectional design
are its limitations. Furthermore, in certain cases, the automated prototype program
did not allow for the segmentation to eliminate choriocapillaris since the user could
not manually modify the curvature lines designating the region of interest that was
automatically recognized.

Table 8 summarizes the discussed experts-related studies.

Table 8. Summary of the retinal experts-related studies in AMD diagnosis.

Study Method Dataset Classification Performance Modality

Corvi et al. [43] Retina specialists Heidelberg Engineering, Heidelberg,
Germany, Carl Zeiss Meditec, Dublin

MNV (AMD) Specificity = 95.2% and
sensitivity = 95.2%

OCTA, OCT, ICGA, FA

Spaide et al. [116] Ocular pathologists,
imaging and image
reading center experts,
and retina specialists.

OCTA and OCT dataset MNV (AMD) OCTA, OCT

Palejwala et al. [117] Retina specialists Casey Eye Institute’s retina clinics at
Oregon Health and Science University
in Portland

CNV (AMD) Coefficient of
variation = 9.4%,
pooled coefficient of
variation = 5.2%.

OCTA, OCT, FA

Coscas et al. [118] Retina specialists The Odeon Ophthalmology Centre in
Paris, France.

CNV (AMD) Accuracy = 94.9% OCTA, ICGA OCT, FA

de Carlo et al. [119] Retina specialists New England Eye Centre patients CNV (AMD) Specificity = 91% OCTA, FA
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3.5. Model Performance Evaluation Metrics

Three fundamental criteria are employed: accuracy, specificity, and sensitivity [120].
These metrics may also be applied in the multi-classification situation by extending the
binary class to several classes [121]. These metrics play crucial roles in evaluating the
effectiveness and reliability of algorithms and models in medical image analysis [122].
Table 9 summarizes various performance metrics commonly used in fundus image analysis.

Table 9. Summary of the performance metrics and their description [18,121].

Performance Equation Description

Accuracy TP+TN
TP+FP+FN+TN Shows the proportion of properly predicted occurrences to all of the

dataset’s instances

Specificity or FPR TN
FP+TN Measures the proportion of real negatives to all negatives

Recall or Sensitivity or TPR TP
TP+FN Measures the proportion of real positives to all true positives

Precision TP
TP+FP Measures the proportion of all expected positives to true positives.

ROC (Receiver Operating Characteristic) 1√
2

√
Sensitivity2 + Specificity2 Illustrates how the genuine positive rate (sensitivity) and false positive

rate (specificity − 1) are traded off

IOU (Jaccard similarity index) TP
TP+FN+FP Intersection Over Union (IOU) is a popular metric for comparing the

accuracy of proposed image segmentation to a recognized segmentation

F1-score 2×(Precision×Recall)
Precision+Recall A fair assessment of the model’s performance is provided by the harmonic

mean of accuracy and recall

Balanced Accuracy (BAC) (Recall×Specificity)
2 Average of sensitivity and specificity, providing an overall measure of

classification performance

AUC (Area under the ROC Curve) - AUC provides an aggregate measure of performance across all possible
classification thresholds

DSC (Dice similarity coefficient) 2TP
2TP+FP+FN Values in the range [0, 1], 0 indicating no spatial overlap, 1 indicating

complete overlap

4. Discussion and Summary

This study demonstrated that the use of ML and DL algorithms in conjunction with
the OCT or CFP imaging method, either alone or in combination, yields promising results
in the diagnosis of various stages of AMD. OCT and OCTA are more precise for many
entities viewed with these technologies and can reveal anomalies not detected by color
fundus photography or fluorescein angiography. They are not replaced by using OCT and
OCT angiography; rather, these additional imaging modalities enhance the former and
offer more information to enhance categorization options.

This study included a detailed examination of the various ML and DL approaches
that have been recently employed for AMD diagnosis, as well as a comparison of the
efficacy of fundus and OCT imaging methods. The results emphasize the importance of
CFP and OCT imaging in assessing the risk of AMD in its early, middle, and late phases.
The more than 250 million AMD patients who are expected to be diagnosed globally by
2040 would benefit greatly from improved triaging, counseling, and care because of the
use of OCT and CFP imaging in AMD diagnosis. As of right now, CFP is more common
than OCT imaging. Nevertheless, we did see a little increase in the ability to predict the
development of late AMD when utilizing both OCT imaging and CFPs, indicating that the
automatically determined risk from OCT imaging may provide some additional benefit to
CFP. As a result, combining the two approaches might still help enhance illness progression
prediction. To enhance the prognosis of AMD development, there are still more chances to
take advantage of the abundance of data on OCT imaging.

An important result of those investigations is that the phases of AMD are now well
classified. The accuracy and consistency of classifying AMD into GA, intermediate AMD,
normal, and wet AMD categories have improved via extensive testing and research. This
improved accuracy is a vital first step in enabling patient-appropriate treatment plans.
These investigations have also shed light on complex patterns and correlations seen within
fundus images. These patterns make it possible to recognize the subtle signs of various
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stages of AMD, which can help with early detection and therapy. The CAD system fa-
cilitates improved patient care by automating the AMD diagnostic process and reducing
interobserver differences.

Several existing problems in this field should be noted in this study. The CAD sys-
tem’s generalizability may be impacted by variances in image quality and demographic
representation, among other factors that impact data quantity and quality. AMD stage
labeling on fundus images may cause inter-observer variability, which might affect the
assessment and training of ML models. Furthermore, a few studies mainly concentrate
on the general classification of AMD stages, leaving out more specific subtypes. Verifying
practical usefulness in various therapeutic contexts requires external evaluation. To respon-
sibly implement the CAD system, clinical integration, regulatory permissions, and ethical
considerations must be taken into consideration. Transparency is lacking in DL models, and
clinical expertise should always be complemented by the CAD system. The accuracy of the
categorization of AMD at different stages, particularly late stages, is the topic’s largest issue.
There is not a gold standard for evaluating AMD categorization quality. We want to create
a classification model for AMD in the future and provide fixes for these issues. We have
already introduced a new promising method for AMD classification called concentrated
ML-based classification system for AMD diagnosis using fundus images [18].
The results of this survey may be summed up as follows:

- The gold criteria for diagnosing wet AMD are CFP and OCT.
- The two main techniques for identifying and tracking dry AMD are CFP and OCT

can further offer supplementary data. OCT is utilized to detect and track anomalies
associated with AMD, including pseudoDrusen, Drusen deposits, subretinal fluid,
RPE detachment, and choroid NV.

- AI components have shown an exceptional ability to aid with automated early identifi-
cation, diagnosis, and staging of AMD disorders using several medical
image modalities.

- Conventional ML techniques differ in the imaging modalities they employ, the features
they extract, and the classifiers they employ. The literature has employed fundus
imaging and OCT for AMD diagnosis, staging, and detection. OCT and fundus
imaging have been employed for AMD staging, diagnosis, and detection.

- DL techniques, such as CNNs, have been applied to achieve increased performance
and set the standard for future years in the automated diagnosis, staging, and detection
of AMD disorders. OCT and fundus imaging have been employed for AMD staging,
diagnosis, and detection.

5. Future Research Directions

In the rapidly evolving landscape of retinal image analysis, future research endeav-
ors can explore several avenues to further enhance the understanding and application of
machine learning and deep learning methodologies. One potential area of focus is the
expansion of the discussion on different modalities. Delving deeper into the integration
of various modalities beyond retinal fundus images, such as OCT scans and angiography,
can provide a comprehensive understanding of retinal pathology and improve diagnos-
tic accuracy.

Additionally, future studies could explore complementary non-AI approaches to offer
alternative perspectives and insights. Investigating traditional image processing techniques,
statistical modeling, and expert systems alongside AI-driven methodologies can contribute
to a holistic approach to retinal disorder diagnosis.

Furthermore, examining the practical implementation of AI systems in clinical settings
is crucial for their adoption and efficacy. Future research should focus on evaluating the
scalability, usability, and integration of AI models into existing healthcare infrastructure, ad-
dressing concerns related to regulatory compliance, data privacy, and clinician acceptance.

Diversifying the datasets used for training and evaluation is another crucial direction
for future research. Researchers can explore publicly available datasets, collaborate with
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healthcare institutions to acquire diverse data sources and investigate data augmentation
techniques to mitigate biases and improve model performance across different populations
and demographics.

Lastly, while AMD is a significant focus of current research, exploring the applicability
of ML and DL techniques to other retinal diseases, such as glaucoma, can broaden the
scope of impact in ophthalmology. Investigating disease-specific features, biomarkers, and
diagnostic algorithms can aid in early detection and personalized treatment strategies for a
wider range of ocular conditions.

6. Conclusions

Automated techniques for diagnosing eye-related disorders are increasingly essen-
tial, particularly considering the shortage of doctors compared to the growing patient
population. With the abundance of OCT and color fundus images containing a plethora
of eye-related conditions, there is immense potential for medical image analysis studies.
The utilization of various ML/DL models for automated disease diagnosis is a promising
avenue. This review has provided a systematic approach to understanding the latest ML
and DL techniques in ocular disease diagnosis, focusing on AMD. The significance of
the training dataset cannot be overstated, as it significantly impacts the performance of
DL models. Therefore, a comprehensive description of publicly available fundus image
datasets has been provided, acknowledging the variability in image quality and environ-
mental conditions across different datasets. While some datasets offer high-quality images
captured under controlled conditions, others encompass images taken in diverse environ-
mental settings. It is crucial to curate datasets that reflect real-world scenarios to develop
reliable models applicable in clinical settings. Moreover, preprocessing techniques such as
contrast enhancement, color space transformation, and image augmentation have proven
beneficial in improving the performance of ML and DL models by facilitating the extraction
of disease-relevant features during training. Recent studies have explored various back-
bone models, including Inception, VGG, ResNet, and Basic CNN, for AMD classification
tasks. However, these models have typically served as foundational frameworks, with
additional learning paradigms like active learning, multitask learning, transfer learning,
and group learning being investigated to further enhance model performance and provide
precise diagnoses.
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