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Abstract: Antimicrobial resistance is a global threat that requires urgent attention to slow the spread
of resistant pathogens. The United States Centers for Disease Control and Prevention (CDC) has
emphasized clinician-driven antimicrobial stewardship approaches including the reporting and
proper documentation of antimicrobial usage and resistance. Additional efforts have targeted the
development of new antimicrobial agents, but narrow profit margins have hindered manufacturers
from investing in novel antimicrobials for clinical use and therefore the production of new antibiotics
has decreased. In order to combat this, both antimicrobial drug discovery processes and healthcare re-
imbursement programs must be improved. Without action, this poses a high probability to culminate
in a deadly post-antibiotic era. This review will highlight some of the global health challenges faced
both today and in the future. Furthermore, the new Infectious Diseases Society of America (IDSA)
guidelines for resistant Gram-negative pathogens will be discussed. This includes new antimicrobial
agents which have gained or are likely to gain FDA approval. Emphasis will be placed on which
human pathogens each of these agents cover, as well as how these new agents could be utilized in
clinical practice.

Keywords: antimicrobial resistance; antimicrobial stewardship; infectious diseases; multi-drug
resistance; global health; antibiotics

1. Introduction

In 2010, the Infectious Diseases Society of America (IDSA) developed the “10 × 20”
initiative to prompt pharmaceutical companies to develop 10 new antibiotics by 2020 [1].
As a result, over 14 new antibiotics have since gained Food and Drug Administration (FDA)
approval [1–3]. Despite these advances, a growing concern for resistant pathogens remains
an epidemiological focal point both domestically and internationally [4]. In 2019, the United
States Centers for Disease Control and Prevention (CDC) issued an Antibiotic Resistance
Threats Report that highlighted growing resistance in numerous fungal and bacterial
pathogens [1]. Featured within this document, carbapenem-resistant Enterobacterales (CRE)
and carbapenem-resistant Acinetobacter (CRAB) were classified as urgent threats, which
are the highest-level global threats. In light of the growing concern for antimicrobial
resistance, focus has been placed on the development of new anti-infective agents that
cover extended-spectrum beta-lactamases (ESBL), CRE, CRAB, and Ambler class B beta-
lactamase-producing bacteria (MBL) [2,4–6].

Requirements have been established by the CDC, Centers for Medicaid and Medicare
Services (CMS), and The Joint Commission (TJC) to combat the global antimicrobial resis-
tance (AMR) pandemic [7–9]. All hospitals within the United States (U.S.) are now required
to report both antimicrobial use (AU) and AMR data to the National Healthcare Safety
Network (NHSN). Additionally, the CDC now mandates that all U.S. hospital systems
have a designated individual(s) (i.e., medical provider, pharmacist, or both) to lead all
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antimicrobial stewardship (AMS) efforts within the institution. These efforts should consist
of developing and implementing AMS treatment guidelines/protocols, communicating and
collaborating with medical staff, and providing competency-based training and education.
Lastly, the CDC recommends that hospital systems provide adequate funding to AMS
efforts to ensure all TJC and CMS standards are met [7–9].

As multi-drug-resistant (MDR) infection rates rise, the rapid diagnosis and treatment
of resistant infectious processes are vital to ensure a higher probability of clinical suc-
cess [10–17]. Historically, diagnostic workup and treatment of patients included medical
examination by a licensed provider and determination to use antibiotics was informed
solely by culture-driven selection of an antimicrobial agent [18]. However, today, antibiotic
selection has become increasingly convoluted due to the widespread use of extended-
spectrum Gram-negative agents [19,20]. For example, pathogens such as CRAB have
extremely limited treatment options, with some being associated with dose-limiting toxici-
ties [21–23]. To further complicate matters, not all institutions have rapid diagnostic tools
at their disposal. Without the capability for internal rapid diagnostic testing, outside micro-
biological testing must be utilized therefore significantly delaying the time to diagnosis,
and ultimately the time to targeted treatment [14,16,24–28]. Lastly, diagnostic stewardship
has become a major focus in combating the increasing AMR crisis. Data have shown that
inappropriate diagnostic testing can leading to both the unnecessary prescribing of antibi-
otics and delays in appropriate antibiotic therapy. Therefore, it is imperative that clinicians
utilize the correct test in the appropriate clinical scenarios in order to avoid inappropriate
prescribing of antibiotics and/or delays in targeted therapy [29–32].

This review will highlight the global AMR pandemic and will discuss the current
IDSA MDR guidance documents as well as potential antimicrobial agents on the horizon.

2. New Guidance Documents Have Been Established

In 2023, the ISDA published updated guidance documents for the treatment of
antimicrobial-resistant Gram-negative infections [23]. The major pathogens highlighted in this
document were ESBL-producing Enterobacterales (ESBL-E), AmpC-producing Enterobacterales
(Amp-C-E), CRE, Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P), CRAB,
and Stenotrophomonas maltophilia (S. maltophilia). The treatment recommendations from the
guidance documents will briefly be discussed further for ESBL-E, CRE, and CRAB.

2.1. ESBL-E

Oxyimino cephalosporins were introduced to the market in the early 1980s, and by
the late 1980s/early 1990s, reports of ESBL-E began to emerge [33]. Once considered a
healthcare-acquired infection, ESBL-E is now commonly seen in the community setting [34].
This shift has led to the global rise of infections involving ESBL-E, and genetic mobilization
of resistance patterns has become a major focal point in epidemiological and global health
programs. Without a solution to slow the rapid global dispersion of ESBL-E isolates, rates
of infections involving these pathogens will continue to rise [17,33,35].

In 2007, Melzer and colleagues prospectively collected clinical and microbiological
data on adult patients with Escherichia coli (E. coli) bacteremia. These authors determined
that patients with E. coli bacteremia had increased mortality rates. They concluded that
delays in the initiation of appropriate antibiotic therapy in these patients were associated
with worse clinical outcomes including death [36]. This study highlights the importance
of early recognition of infections involving ESBL-E, although this idea has been recently
challenged without mirrored results [37]. Regardless of mortality risk, limitations such as
inaccessibility to rapid diagnostics, continue to be a challenge for many healthcare systems
globally. Therefore, many clinicians are left to rely on the use of common susceptibility
patterns (carbapenem and cephamycin susceptibility generally remain intact) rather than
highly specific genotypic data to guide therapy. Consequently, this practice may result
in prolonged durations of non-targeted or inappropriately targeted antimicrobial ther-



Antibiotics 2024, 13, 648 3 of 26

apy [12,38]. Due to growing rates of AMR, the implementation of rapid diagnostics and
their potential benefit will remain a focal point in clinical practice [28,39–43].

Treatment of ESBL-E is dependent on the source of infection. Treatment approaches for
cystitis can range from oral options such as fosfomycin to one-time doses of an aminoglyco-
side. Treatment options for infections outside of the bladder are limited, and most clinicians
favor carbapenems, particularly for bacteremia. However, there is still debate among
providers regarding the usage of fluoroquinolones and/or trimethoprim-sulfamethoxazole
(TMP-SMX) to prevent carbapenem exposure [23]. For more details on ESBL-E, refer to
Table 1.

Table 1. IDSA Pathogen and Drug Summary.

ESBL-E CRE CRAB DTR Pseudomonas

Common Pathogens
Harboring
Beta-lactamase

Escherichia coli,
Klebsiella pneumoniae,
Klebsiella oxytoca,
Proteus mirabilis

Klebsiella pneumoniae,
Escherichia coli,
Proteus mirabilis

Acinetobacter
baumannii

Pseudomonas aeruginosa

CDC Threat Level Serious Urgent Urgent Serious

Common Phenotype Resistant to
ceftriaxone

Resistant to
meropenem or
ertapenem

Resistant to
carbapenems

Resistant to Psa
covering cephalosporins
and/or carbapenems

Common Genotype
(Ambler Class)

CTX-M-15, GES-1,
SHV-2
(A)

KPC-2, IMI-1, SME-1
(A/D)

OXA-48, OXA-51,
OXA-23/24
(A/C/D)

AmpC, OXA-10, VIM, GES
(A/B/C/D)

Cystitis Treatment
(mild infection)

Oral (PO)
1. Nitrofurantoin
2. TMP-SMX
3. FQ (ciprofloxacin,

levofloxacin)
4. Fosfomycin

(E. coli only)

Intravenous (IV)
1. Carbapenem

(ertapenem,
meropenem,
imipenem-
cilastatin)

2. Single dose of
aminoglycoside
(tobramycin or
gentamicin)

Oral (PO)
1. Nitrofurantoin
2. TMP-SMX
3. FQ (ciprofloxacin,

levofloxacin)

Intravenous (IV)
1. Single dose of

aminoglycoside
(tobramycin or
gentamicin)
(CR/MDR
infection)

2. Ceftazidime-
avibactam
(CR infection)

3. Meropenem-
vaborbactam
(CR infection)

4. Imipenem-
cilastatin-
relebactam
(CR infection)

5. Cefiderocol
(CR/MBL/MDR
infection)

6. Colistin/
polymyxin B
(MDR infection)

Intravenous (IV)
1. High dose

ampicillin-
sulbactam (up
to 27 g/day)

2. Sulbactam-
durlobactam

3. Cefiderocol
(MDR/MBL)

Oral (PO)
1. FQ (ciprofloxacin,

levofloxacin)

Intravenous (IV)
1. Cefepime (not CR)
2. Piperacillin-

tazobactam (not CR)
3. Ceftazidime (not CR)
4. Carbapenem

(meropenem,
imipenem-cilastatin)

5. Aztreonam
(not CR/combination
for MBL with
avibactam)

6. Aminoglycoside
(tobramycin,
amikacin)

7. Ceftolozane-
tazobactam
(CR infection)

8. Ceftazidime-
avibactam
(CR infection)

9. Imipenem-cilastatin-
relebactam
(CR infection)

10. Cefiderocol
(CR/MBL/MDR
infection)

11. Colistin/polymyxin
B (MDR infection)
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Table 1. Cont.

ESBL-E CRE CRAB DTR Pseudomonas

Non-Cystitis
Treatment
(moderate-severe
infection)

Oral (PO)
1. TMP-SMX
2. FQ (ciprofloxacin,

levofloxacin)

Intravenous (IV)
1. Carbapenem

(meropenem,
imipenem-
cilastatin,
ertapenem)

2. Aminoglycoside
(tobramycin,
gentamicin,
amikacin)
(CR/MDR
infection)

3. Ceftolozane-
tazobactam
(CR infection)

4. Ceftazidime-
avibactam
(CR infection)

5. Imipenem-
cilastatin-
relebactam
(CR infection)

6. Cefiderocol
(CR/MBL/MDR
infection)

7. Eravacycline
(cIAI)

8. Colistin/
polymyxin B
(MDR infection)

Oral (PO)
1. TMP-SMX
2. FQ (ciprofloxacin,

levofloxacin)

Intravenous (IV)
1. Ceftazidime-

avibactam
(CR infection)

2. Meropenem-
vaborbactam
(CR infection)

3. Imipenem-
cilastatin
(CR infection)

4. Cefiderocol
(CR/MBL/MDR)
infection)

5. Aminoglycosides
(tobramycin,
gentamicin, or
amikacin)
(CR/MDR
infection)

Intravenous (IV)
1. High dose

ampicillin-
sulbactam (up
to 27 g/day) in
combination
with another
active agent

2. (cefiderocol,
polymyxin B,
minocycline,
tigecycline)

3. Sulbactam-
durlobactam

Oral (PO)
1. FQ (ciprofloxacin,

levofloxacin)

Intravenous (IV)
1. Carbapenem

(meropenem,
imipenem-cilastatin)

2. Aztreonam
(not CR/MBL in
combination with
avibactam)

3. Aminoglycoside
(tobramycin,
amikacin)

4. Ceftolozane-
tazobactam
(CR infection)

5. Ceftazidime-
avibactam
(CR infection)

6. Imipenem-cilastatin-
relebactam
(CR infection)

7. Cefiderocol
(CR/MBL/MDR
infection)

8. Colistin/polymyxin
B (MDR infection)

Abbreviations: ESBL-E (extended-spectrum beta-lactamase-producing Enterobacterales); cIAI (complicated intra-
abdominal infection); CR (carbapenem-resistant); CRAB (carbapenem-resistant Acinetobacter baumannii); CRE
(carbapenem-resistant Enterobacterales); CTX-M (cefotaxime-hydrolyzing beta-lactamase isolated in Munich);
DTR (difficult-to-treat resistance); g/day (grams per day); GES (Guiana-Extended-Spectrum); IMI (imipenem-
hydrolyzing beta-lactamase); IV (intravenously); KPC (Klebsiella pneumoniae carbapenemase); MBL (metallo-β-
lactamase); MDR (multi-drug resistant); OXA (oxacillinase); PO (by mouth); Psa (Pseudomonas); SHV (sulfhydryl
reagent variable); SME (Serratia marcescens enzymes); TMP-SMX (trimethoprim-sulfamethoxazole); VIM (verona
integron-encoded metallo-β-lactamase).

2.2. CRE

CRE is classically defined by the CDC as an isolate demonstrating resistance to at
least one of the carbapenem antibiotics (ertapenem, meropenem, doripenem, and/or
imipenem) or producing a carbapenemase [44]. The discovery of CRE dates back to
1996, the year in which meropenem gained FDA approval for complicated skin and
skin structure infections [45]. Numerous enzymes have emerged that elicit carbapenem
resistance; however, Klebsiella pneumoniae carbapenemase (KPC) remains the major en-
zyme responsible for CRE in the U.S. [5,45]. Treatment of CRE has gained global at-
tention for drug development and numerous agents have come to the market targeting
CRE, including ceftazidime-avibactam (CTZ-AVI), meropenem-vaborbactam (MV), and
imipenem/cilastatin/relebactam (ICR) [23,44]. However, Gram-negative coverage gaps
remain as many of these newer agents failed to fill a niche clinical role [46]. Addition-
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ally, resistance to newer Gram-negative broad-spectrum antibiotics, such as CTZ-AVI, is
increasing and few options are currently available to treat these resistant pathogens [47,48].

Detection of CRE presents many challenges, with the greatest being the lack of rapid
antimicrobial susceptibility testing (AST) in many national institutions [49–52]. Given the
delays in microbiological results in organizations without rapid AST, many patients are
empirically placed on broad-spectrum antibiotics until susceptibility reports are obtained.
This may be problematic as patients who do not presently have an infection involving an
MDR pathogen can have both alterations in their gut microbiota and an increased risk of
future MDR infections [53–55]. Conversely, patients with an acute infection involving an
MDR pathogen (i.e., CRE) will have major delays in therapy which can result in worse
clinical outcomes for the patient [12,56,57].

CRE treatment, like ESBL-E, is dependent on the source of infection. The treatment for
cystitis can range from oral options such as TMP-SMX, fluoroquinolones, and fosfomycin.
A one-time parenteral dose of an aminoglycoside is also an alternative option for cystitis.
Treatment beyond cystitis has limited options, and most clinicians favor newer antimicrobial
agents such as CTZ-AVI or MV, although fluoroquinolones and TMP-SMX may have clinical
roles as well depending on the source of infection [23]. For more details on CRE, refer to
Table 1.

2.3. CRAB

CRAB has historically been considered a low-virulence pathogen; however, over
the last two decades, it has emerged as a major global threat, predominantly due to its
increasing drug resistance [58,59]. The decision to treat CRAB is often centered around
colonization versus contributing pathogen [59]. If treatment is warranted, limited options
are available, most of which have dose-limiting toxicities [59,60]. The recent attention on
CRAB treatment has led to the FDA approval of sulbactam-durlobactam for the treatment
of pneumonia involving CRAB [61].

Detection of CRAB is often straightforward and commonly involves both culture and
AST [23,62–65]. Once identified, additional susceptibility reports are often needed for
agents not routinely tested via AST (i.e., cefiderocol, sulbactam-durlobactam, minocycline).
The treatment of CRAB is dependent on the level of illness severity, with severely ill pa-
tients likely needing two or more agents with susceptibility to the CRAB isolate [23]. For
respiratory tract infections, a high dose (27 g/day) of ampicillin-sulbactam and tetracy-
clines remain the focal point of therapy [23,60]. Additional options for respiratory tract
infections include aminoglycosides, cefiderocol, polymyxin-B, sulbactam-durlobactam,
and possibly fluoroquinolones. Of these options, cefiderocol and sulbactam-durlobactam
have gained favor in clinical practice. This likely stems from their favorable side effect
profile compared to the other agents listed [23,60,61,66]. However, clinical trials comparing
sulbactam-durlobactam vs. cefiderocol for the treatment of CRAB have not been com-
pleted. Nonetheless, it is debatable if cefiderocol should be utilized as a first line agent
for CRAB as data has surfaced demonstrating the development of cefiderocol resistance
during treatment for infections involving CRAB [67–69]. Additionally, initial data from the
CREDIBLE-CR trial was not in support of using cefiderocol over best available therapy
(BAT), although subsequent data, including a meta-analysis involving the CREDIBLE-CR
trial, has argued against this conclusion [70,71]. With sulbactam-durlobactam gaining favor
as a first-line therapy in moderate to severe infections involving CRAB, the future usage of
cefiderocol for this indication should be reserved for MDR infections [66,72].

For chronic wound infections, treatment options mirror those seen in respiratory tract
infections, and shorter durations of therapy are preferred in most clinical scenarios [73].
However, as previously mentioned, colonization vs. true pathogen is often discussed in
clinical practice, especially for non-sterile sites of infection [60,73]. For more details on
CRAB, refer to Table 1.
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3. Epidemiology of Bacterial Resistance in the U.S. and Globally
3.1. Ambler Classification

In order to understand the landscape of resistance, it is crucial to grasp the major
mechanisms bacteria use to gain resistance. Mechanisms of resistance can be broadly
placed into four categories: enzymatic inactivation, porin channel loss, target modification,
and efflux pumps [74–76]. Although all four mechanisms are important, this review will
primarily focus upon enzymatic reactions, specifically beta-lactamases.

Enzymatic inactivation, caused by beta-lactamases, can be functionally categorized
via either the Ambler classification system or the Bush-Jacoby-Medeiros classification
system [77–81]. For the purpose of simplification, the Ambler class will be discussed. The
Ambler class is broken into four major classes: A–D. Beta-lactamases are divided into these
four main classes based on their amino acid sequences and functional characteristics. Each
class encompasses distinct mechanisms of resistance, substrate specificities, and clinical
implications [78,80,81]. A summary table of the Ambler classification system can be seen in
Table 2.

Table 2. Ambler Classification System.

Class Catalytic
Center

Examples
(Enzymes)

Substrate
(Target)

Inhibited by
(Treatment)

A Serine TEM-1, SHV-1
(penicillinases) Penicillins

• Amoxicillin-clavulanic acid
• Ampicillin-sulbactam
• Most cephalosporins

CTX-M
(ESBL) Cephalosporins

• Piperacillin-tazobactam (cystitis)
• Cefepime (cystitis)
• Carbapenems
• Fluroquinolones

KPC
(Carbapenemases) Carbapenems

• Ceftazidime-avibactam
• Meropenem-vaborbactam
• Imipenem-cilastatin-relebactam
• Cefiderocol
• Fluoroquinolones

B Zinc IMP, VIM, NDM All beta-lactam antibiotics
(not aztreonam)

• Aztreonam + avibactam
• Cefiderocol
• Cefepime-taniborbactam

(not FDA approved)
• Xeruborbactam (not FDA

approved)

C Serine AmpC Penicillins and most
cephalosporins

• Cefepime
• Carbapenems
• Fluroquinolones

D Serine OXA
Penicillins, cephalosporins,

and carbapenems
(depends on OXA subtype)

• Amoxicillin-clavulanic acid
• Ampicillin-sulbactam
• Piperacillin-tazobactam
• Ceftazidime-avibactam (OXA-48)
• Cefiderocol (OXA-48)
• Fluoroquinolones

Abbreviations: CTX-M (cefotaxime-hydrolyzing beta-lactamase isolated in Munich), IMP (active on imipenem)
(imipenem-hydrolyzing beta-lactamase); KPC (Klebsiella pneumoniae carbapenemase); NDM (New Delhi metallo-
beta-lactamase); OXA (oxacillinase), SHV (Sulfhydryl reagent variable); TEM (Temoneira); VIM (Verona integron-
encoded metal-beta-lactamase).

Class A beta-lactamases are often referred to as “penicillinases” and are commonly
found in Gram-negative bacteria such as E. coli and Klebsiella pneumoniae. These enzymes
predominantly hydrolyze penicillins and cephalosporins and are inhibited by clavulanic
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acid. Notable examples include the widely studied temoneria (TEM) and sulfhydryl reagent
variable (SHV) enzymes, which played a significant role in the development of resistance
to beta-lactam antibiotics [23,78,80,82].

Class B beta-lactamases, also known as metallo-beta-lactamases (MBLs), require
divalent metal ions, specifically zinc, for their catalytic activity. Unlike other classes,
class B enzymes are inhibited by metal chelators such as ethylenediaminetetraacetic acid
(EDTA). MBLs are commonly associated with MDR Gram-negative pathogens, includ-
ing P. aeruginosa and Acinetobacter baumannii (A. baumannii). Their ability to hydrolyze a
broad range of beta-lactam antibiotics, including carbapenems, poses a serious therapeutic
challenge in clinical settings [23,78,80,82–84].

Class C beta-lactamases, or cephalosporinases, exhibit a broad substrate profile, hy-
drolyzing cephalosporins and penicillins. These enzymes are often chromosomally en-
coded and contribute to resistance in Enterobacteriaceae such as Enterobacter cloacae and
Citrobacter freundii. Additionally, some penicillins and cephalosporins are strong inducers
of Class C beta-lactamases, specifically AmpC, and can lead to phenotypic changes post-
exposure. Due to this inducible nature, beta-lactams that are both strong inducers of AmpC
and strong substrates are often avoided in practice to prevent phenotypic changes that can
render certain beta-lactams ineffective. Lastly, class C beta-lactamases are not inhibited
by clavulanic acid but can be inhibited by certain BLIs such as tazobactam. However, in
clinical practice, cefepime, carbapenems, and fluoroquinolones have become mainstays of
treatment for pathogens thought to harbor AmpC [23,78,80,82,85,86].

Class D beta-lactamases, also known as oxacillinases (OXA), primarily hydrolyze
oxacillin and cloxacillin, conferring resistance to penicillins and cephalosporins. They are
commonly found in Gram-negative pathogens like Acinetobacter spp. and Pseudomonas
aeruginosa (P. aeruginosa). Class D enzymes are often associated with intrinsic resistance
in these organisms and contribute to the challenge of treating infections caused by MDR
strains. Furthermore, in the United States, OXA-48 has become a major concern for the
development of CRE, and few treatment options are currently available that specifically
target OXA-48 [23,80,87,88].

3.2. How Does Global Resistance Occur and Spread

The burden of AMR has brought upon the need for global One Health perspec-
tives [89,90]. The concept of One Heath involves human health, animal health and environ-
mental determinants at the local, national, and global levels to understand the complex
interactions between them. By understanding these complex relationships, and their in-
terdependency, approaches can be taken to optimize the health of people, animals, and
ecosystems [90]. This tactic is vital when evaluating opportunities to slow the spread of
MDR pathogens as AMR is a multifaceted process involving human medicine, wildlife
health, environmental health, and health economics [1,90,91]. Data have demonstrated that
AMR is a complex issue that involves overprescribing and overutilization of antibiotics in
both humans and animals, and without a long-term shift towards eliminating unnecessary
antibiotic usage in both, AMR rates will continue to rise globally [92,93].

To illuminate the influence of antibiotic use upon the global bacterial resistome, the
animal–human–environment interface is crucial to investigate [92,93]. Notably, antimicro-
bials have a wide array of uses within plants and animals (i.e., domestic pets, livestock, fish
hatcheries, and bee hives) in addition to human applications [93,94]. Many antimicrobial
drug classes used for human populations are also prescribed for animals, which includes
important human medicinal classes such as fluoroquinolones or broad-spectrum beta-
lactams [92]. Additionally, persistence of antibiotic residues may be seen in wastewater
treatment plants, livestock or wildlife waste, coastal waters, soil, and other environmental
sources [95–97]. This has created a high-pressure system and ultimately the selection of
bacterial resistance [94].

A myriad of pathways exist for the environmental conferral of AMR genes [75,91,92,98,99].
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These pathways range from resistant zoonotic bacteria in soil infecting fruits, vegeta-
bles, and plants to agricultural antimicrobial applications transmitting antibiotic-resistant
fungi to humans [94]. Additionally, compromise of aquaculture water sources may lead to
residual antimicrobial compounds via fish products or excreta of fish, culminating in rapid
spread leading to selective pressure for AMR genes [94,100,101]. Regardless of the source,
it is imperative that environmental origins of resistance be identified so solutions can be
created and mandated to slow the spread of AMR. This will likely require cumulative col-
laborative efforts among multiple experts including veterinarians, physicians, allied health
professionals, and laboratorians. Additionally, tackling this global human health crisis will
require establishing strong strategic partnerships between all nation-states with a targeted
approach to prevent and control zoonotic and emerging infectious diseases [89,90,92–94].

3.3. The Burden of Global Resistance

Based on predictive statistical modeling across 204 countries and territories in 2019,
an estimated 4.95 million deaths were associated with bacterial AMR [17]. Specifically,
approximately 1.27 million deaths were directly attributable to bacterial AMR [17]. Within
high-income countries (HICs) using the U.S. as an example, 60,813 (95% UI: 32,520–102,231)
deaths were associated with bacterial AMR, and 14,987 (95% UI: 7712–25,156) deaths
were attributable to AMR in 2019 [102]. Staphylococcus aureus (S. aureus) and E. coli were
incriminated for most of these deaths with a high degree of resistance found among
multiple antibiotic classes (up to 50% resistance associated with macrolides; 38% attributed
to fluoroquinolones) [102]. Within low-income countries (LMICs), using Mali as an example,
7100 deaths were attributable to AMR with 29,700 deaths associated with AMR in 2019 [103].
Notably, mortality from AMR in Mali is higher than deaths from nutritional deficiencies,
enteric infections, tuberculosis and respiratory infections, neglected tropical diseases and
malaria, and cardiovascular diseases [104].

Both HICs and LMICs contribute to the global antibiotic resistance profile among
bacterial populations colonizing humans, pets, livestock, and/or wildlife in various
ways [105,106]. Additionally, AMR comes with negative implications and multiple
studies have reported on the increased morbidity and mortality related to bacterial
AMR within HICs and LMICs [107–109]. Moreover, specific bacterial species have been
implicated as frequently causing pathology in humans—these are termed ‘ESKAPE’
pathogens (i.e., Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and
Enterobacter spp.) [110–112]. Particularly concerning within LMICs are ‘MDR-ESKAPE’
pathogens. These pathogens have been cited as the primary source of morbidity and
mortality among bloodstream infections in hospital settings [113]. Lastly, AMR bacteria,
particularly MDR-ESKAPE pathogens, have been identified as high-risk indicators for
increased economic costs among both LMICs and HICs [113]. This was emphasized in 2017
when The World Bank models estimated that a high burden of AMR could raise heath cost
over one trillion dollars, highlighting the potential economic shortcomings that could arise
if AMR rates are not slowed dramatically [114].

In 2024, the World Health Organization (WHO) released a bacterial priority pathogen
report highlighting resistant trends for specific pathogens. Results from this report mirror
those above. Specifically, carbapenem-resistant (CR) Klebsiella pneumonia and third gen-
eration cephalosporin-resistant (3GCR) Escherichia coli were both labeled as a level five
threat, which is the highest level given for global resistant dispersion trends. Addition-
ally, global resistance levels were highest for Klebsiella pneumonia, with over 30% of the
isolates globally being labeled as CRE. Similar results were seen for CR Escherichia coli
and 3GCR Klebsiella pneumonia, although overall resistance percentage levels were lower.
Lastly, resistant pathogens per million people was highest with 3GCR Escherichia coli
(>10,000 cases); however, the number of cases per million people for CR Escherichia coli and
3GCR Klebsiella pneumonia were above 5000. Together, these results illustrate the growing
global AMR crisis [115].
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3.4. Future Global Challenges with AMR

The global epidemiology of AMR presents a complex and evolving challenge to public
health systems worldwide [17,116,117]. As previously discussed, the overuse and/or mis-
use of antimicrobial agents in human health, animal agriculture, and the environment have
fueled the emergence and spread of resistant pathogens [91,118,119]. This phenomenon
is exacerbated by factors such as inadequate infection prevention and control measures,
poor access to clean water and sanitation facilities, and the globalization of travel and
trade [91,118]. Consequently, AMR has become a pressing concern across diverse ge-
ographic regions and socioeconomic settings threatening the effectiveness of currently
employed antibiotics [117].

Several key trends characterize the global epidemiology of AMR. To begin with, MDR
pathogens, which exhibit resistance to multiple classes of antimicrobial agents, are increas-
ingly prevalent and pose a significant clinical challenge [4,17]. Examples include MDR
strains of Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA),
CRE, CRAB, and MBL-producing pathogens [17]. Secondly, AMR disproportionately af-
fects vulnerable populations (i.e., children, the elderly, and individuals with underlying
health conditions) leading to higher rates of morbidity, mortality, and healthcare-associated
infections [17,105,106,117,120–122]. Lastly, the emergence of extensively drug-resistant
(XDR) and pan drug-resistant (PDR) strains represents a critical threat to global public
health preparedness and response efforts [123,124].

Moving forward, targeted efforts to combat AMR should include supporting pro-
grams involved in the implementation of comprehensive AMS programs to promote
the judicious use of antibiotics in healthcare settings, enhancing surveillance systems to
monitor the spread of resistant pathogens and the identification of emerging resistance
patterns, and investing in research and development of new antimicrobial agents and
alternative treatment modalities [10,42,91,117,118,124–133]. Additionally, strengthening
healthcare infrastructure, improving access to vaccines and basic healthcare services, and
promoting interdisciplinary collaboration and international cooperation are essential to
mitigate the impact of AMR and safeguard the effectiveness of antimicrobial therapy
for future generations [106,127,132,134–136]. Likewise, enhancing awareness on envi-
ronmental factors driving AMR is critical, and every effort should be made to decrease
unnecessary antibiotic usage to help prevent both the acquisition and spread of resistant
pathogens [98,132,137,138].

4. The Future of Drug Development

The need for novel antibiotics has never been greater, but outdated research and
design methods, scarce governmental incentives for antibiotic development, and drug
manufacturers’ inability to meet profit margins for newly launched antibiotics have stunted
the manufacturing of new antibiotics [125,126,128,131,139–146]. To further compound these
issues, hospital reimbursement measures often fail to account for the cost of treating MDR
pathogens [145,147–149]. This places strain on the hospital administration as a balance
between the cost of therapy and patient care must be delicately weighed. Governmental
standards have also placed a great emphasis on controlling the spread of resistant pathogens
by requiring strict infection prevention and AMS practices in all hospital systems in the
U.S. [9,150,151]. Countries outside the U.S. have also placed value in AMS practices, plac-
ing focus on antibiotic usage both environmentally and in clinical practice [118,152–154].
Ultimately, to combat both AMR and the lack of novel antibiotic development, the fractured
relationships between pharmaceutical industry and hospital administration must become a
discussion point among key decision makers. Without reimbursement reform, improved
drug and research development, and adequately funded global health programs which fo-
cus on the prevention of global dispersion of MDR pathogens, the future of novel antibiotic
development and utilization will become further jeopardized [91,93,130,145,155–159].

Discussed below are the recent antibiotics under development and/or recently FDA-
approved for usage in clinical practice. Their coverage, major clinical trials, and potential
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scenarios for utilization in clinical practice will be discussed in detail. A review of the
major phase III clinical trial data can be seen in Table 3 for many of the agents discussed.
Additionally, a review of the spectrum of activity for most agents can be seen in Table 4.

Table 3. Phase III trials of New Antimicrobial Agents.

Drug Trial Name Intervention Source of
Infection

Primary
Endpoint Results Conclusion

CEF-TANI CERTAIN-1

CEF-TANI
(2 g + 0.5 g) or

meropenem
(1 g) q8h

cUTI

Microbiologic
and clinical

success on trial
days 19 to 23 in

the microITT
population

70.6% in the
CEF-TANI group and

58.0% in the
meropenem group

(treatment difference,
12.6 percentage

points; 95% CI, 3.1 to
22.2; p = 0.009)

CEF-TANI was
superior to

meropenem for the
treatment of cUTI

CEF-TANI CERTAIN-2

CEF-TANI
(2 g + 0.5 g) or

meropenem
(1 g) q8h

HAP/VAP
28-day all-cause
mortality in the
ITT population

Pending Pending

CEF-EM ALLIUM

CEF-EM
(2 g + 0.5 g) or 4.5 g

piperacillin-
tazobactam q8h

cUTI or AP

Overall treatment
success (clinical
cure combined

with
microbiological
eradication of

infection)

79.1% in the CEF-EM
group and 58.9% in

the piperacillin-
tazobactam group,

(treatment difference,
21.2 percentage
points; 95% CI,

14.3 to 27.9)

CEF-EM was
non-inferior to

piperacillin-
tazobactam for the
treatment of cUTI

or AP

CEF-ZIDE NCT04979806
CEF-ZIDE 3 g

(2 g + 1 g) q8h or
meropenem 1 g q8h

cUTI or AP
TOC for cUTI or

AP at day
17 +/− 2 days

Pending Pending

SUL-DUR ATTACK

SUL-DUR
(1 g each

component) q6h
or colistin

2.5 mg/kg q12h
All patients

received imipenem-
cilastatin 1 g each
component q6h

HAP/VAP,
or BSI

28-day all-cause
mortality the

mMITT
population

NI margin was
set at upper

bound 95% CI of
less than 20%

19% in the sul-dur
group and 32% in the

colistin group,
(treatment difference
of −13.2 percentage

points; 95% CI,
−30.0 to 3.5)

SUL-DUR was
non-inferior to

colistin, when each
are given in

combination with
imipenem-cilastatin
for the treatment of
HAP, VAP, or BSI

Sulopenem

SURE 1

Sulopenem
500 mg/probenecid

500 mg PO twice
daily for 5 days or

ciprofloxacin
250 mg PO
twice daily

Uncomplicated
UTI

Combined
clinical and

microbiological
response at

day 12 in the
mMITT

population

65.6% in the
sulopenem group and

67.9% in the
ciprofloxacin group,
(treatment difference

−2.3 percentage
points; 95% CI,
−7.9 to 3.3)

Sulopenem was
non-inferior to

ciprofloxacin for the
treatment of

uncomplicated UTI

SURE 2

Sulopenem 1000 mg
IV once daily

followed by oral
sulopenem

500 mg/probenecid
500 mg or

ertapenem 1000 mg
IV once daily

followed by oral
ciprofloxacin

500 mg or
amox/clav 875 mg

twice daily

cUTI

Composite
clinical and

microbiologic
outcomes at TOC

in the mMITT
population

67.8% in the
sulopenem group and

73.9% in the
ertapenem group,

(treatment difference
of −6.1 percentage

points; 95% CI,
−12 to −0.1)

Non-inferiority was
not achieved by the

sulopenem group for
the treatment of cUTI
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Table 3. Cont.

Drug Trial Name Intervention Source of
Infection

Primary
Endpoint Results Conclusion

AZT-AVI

REVISIT

AZT-AVI (loading,
extended loading
and maintenance

doses) ± MTZ
500 mg IV q 8 h vs.

meropenem 1 g
q 8 h ± colistin
9 million IU IV
loading dose,
followed by

9 million IU given
IV daily in 2 or
3 divided doses

cIAI or
HAP/VAP

due to
Gram-negative

bacteria,
including MBL-

producing
organisms

Clinical cure at
TOC visit in ITT

and clinically
evaluable

analysis sets

ITT: 68.4% in the
AZT-AVI ± MTZ
group and 65.7%

in the
meropenem ± colistin
Clinically evaluable

analysis set:
77% in the AZT-AVI
± MTZ group and

74.3% in the
meropenem ± colistin

group

AZT-AVI ± MTZ
displayed similar

efficacy compared to
meropenem ± colistin

for the treatment of
cIAI and HAP/VAP

ASSEMBLE

AZT-AVI (loading,
extended loading
and maintenance

doses) ± MTZ
500 mg IV q 8 h

or BAT

cIAI,
HAP/VAP,
cUTI or BSI
with MBL

Gram-negative
bacteria

isolated within
7 days prior to

screening

Clinical cure at
TOC in Micro-ITT

analysis set at
day 28

41.7% in the
AZT-AVI ± MTZ

group and 0% in the
BAT group

Enrollment
terminated early due
to limited numbers of

MBL associated
infections (n = 15), no

conclusions drawn
from study results

Abbreviations: Amox/clav (amoxicillin/clavulanic acid); AP (acute pyelonephritis); AZT-AVI (Aztreonam-
avibactam); BAT (best available therapy); BSI (bloodstream infection); CEM-EM (cefepime-enmetazobactam); CEF-
TANI (cefepime–taniborbactam); CEF-ZIDE (cefepime-zidebactam); CI (confidence interval); cIAI (complicated
intra-abdominal infection); cUTI (complicated urinary tract infection); HAP (hospital-acquired pneumonia); ITT
(intention-to-treat); IU (international units); IV (intravenous); MBL (metallo-β-lactamase); Micro-ITT (microbiology
intention-to-treat); MITT (modified intention-to-treat); mMITT (microbiologically modified intention-to-treat);
MTZ (metronidazole); NI (non-inferiority); PO (by mouth); q (every); qh (every hour); SUL-DUR (sulbactam-
durlobactam); TOC (test-of-cure); UTI (urinary tract infection); VAP (ventilator-associated pneumonia).

Table 4. Spectrum of Activity.

Ambler Class CEF-TANI CEF-EM CEF-ZIDE SUL-DUR Sulopenem AZT-AVI

Class A:
CTX-M ✓ ✓ ✓ ✓ ✓ ✓

KPC ✓ ✓ ✓ ✓ — ✓

Class B:
NDM ✓ — ✓ — — ✓
VIM ✓ — ✓ — — ✓
IMP — — ✓ — — ✓

Class C:
AmpC ✓ ✓ ✓ ✓ ✓ ✓

Class D:
OXA-48 ✓ ✓ ✓ ✓ — ✓

Pathogens of Interest

CRE ✓ ✓ ✓ — — ✓
DTR

Pseudomonas ✓ ✓ ✓ — — ✓

CRAB — — — ✓ — —
Stenotrophomonas — — — — — ✓

Abbreviations: AZT-AVI (Aztreonam-avibactam); CEF-EM (cefepime-enmetazobactam); CEF-TANI (cefepime–
taniborbactam); CEF-ZIDE (cefepime-zidebactam); CRAB (carbapenem-resistant Acinetobacter baumannii); CRE
(carbapenem-resistant Enterobacterales); CTX-M (cefotaxime-hydrolyzing beta-lactamase isolated in Munich),
DTR (difficult-to-treat resistance); IMP (active on imipenem) (imipenem-hydrolyzing beta-lactamase); KPC
(Klebsiella pneumoniae carbapenemase); NDM (New Delhi metallo-beta-lactamase); OXA (oxacillinase), SUL-DUR
(sulbactam-durlobactam); VIM (Verona integron-encoded metal-beta-lactamase).
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4.1. Cefepime-Taniborbactam

Taniborbactam is a boric acid beta-lactamase inhibitor (BLI) that is structurally similar
to vaborbactam but has a wider spectrum of inhibition due to enhanced pharmacokinetic
(PK) parameters and unique side chain structure compared to vaborbactam [160]. Tani-
borbactam, unlike avibactam, has in vitro activity against all four Ambler classes of beta-
lactamases, making it one of the broadest Gram-negative covering BLI to date [80,160,161].
Specifically, taniborbactam provides coverage against ESBL, CRE, MDR Pseudomonas, and
MBL-producing pathogens, making taniborbactam one of the few BLI with activity against
Ambler class B enzymes [80,160–164].

In 2024, Wagenlehner et al. published a phase III clinical trial (CERTAIN-1) evalu-
ating the efficacy and safety of cefepime-taniborbactam in the treatment of complicated
urinary tract infections (cUTIs) [165]. This trial demonstrated both non-inferiority and
superiority of cefepime-taniborbactam compared to meropenem in terms of clinical cure
rates and microbiological eradication of pathogens. Additionally, cefepime-taniborbactam
had a favorable safety profile, with adverse events comparable to those observed with
other antibiotics.

Cefepime-taniborbactam is a promising therapeutic option for the treatment of MDR
Gram-negative bacterial infections. With favorable PK and pharmacodynamic (PD) char-
acteristics, a well-defined dosing regimen, and demonstrated efficacy and safety in phase
III clinical trials, cefepime-taniborbactam holds great promise for addressing the growing
threat of antibiotic resistance in healthcare settings [166,167]. However, potential heterore-
sistance is a concern. In 2023, Abbott et al. highlighted a high occurrence of heteroresistance
to cefepime-taniborbactam in 34 MBL-producing Enterobacteriaceae isolates [168]. This find-
ing was concerning on two fronts. One, heteroresistance is difficult to detect with traditional
AST, and two, heteroresistance is likely more widespread than initially believed and may
contribute to “induced” selection of cefepime-taniborbactam resistance. Nonetheless, the
broad Gram-negative coverage of cefepime-taniborbactam is highly appealing, particularly
in locations with a high prevalence of a specific MBL, the New Delhi MBL (NDM).

In February 2024, the FDA rejected the new drug application (NDA) for cefepime-
taniborbactam citing the need for additional manufacturing information. With an unknown
timeline for approval, the race for the first FDA-approved beta-lactam-BLI combination to
cover all four Ambler class enzymes continues.

4.2. Cefepime-Enmetazobactam

Enmetazobactam is a novel penicillanic acid sulfone BLI similar to the BLI tazobactam.
The difference is the addition of a methyl group to the triazole moiety making enmeta-
zobactam an extended-spectrum BLI with the ability to increase the potency of cefepime
and restore its activity against Ambler Classes A, C, and D [169]. Further analysis of the
in vitro activity of cefepime-enmetazobactam revealed that its activity against Ambler
Classes C and D only seemed to improve when Enterobacterales isolates co-produced ES-
BLs [170]. This suggested that the expression of Class C and D beta-lactamases was severely
downregulated by the ESBL gene, resulting in the phenotypic appearance of an ESBL alone.

The phase III, randomized, double-blind, active controlled trial (ALLIUM) evaluated
the efficacy of cefepime-enmetazobactam for the treatment of cUTIs or acute pyelonephri-
tis in adult patients. Patients were randomized to either cefepime-enmetazobactam or
piperacillin-tazobactam for up to 14 days. Results from the study determined that among
patients with cUTI or acute pyelonephritis caused by Gram-negative pathogens, cefepime-
enmetazobactam was superior to piperacillin/tazobactam with respect to both clinical cure
and microbiological eradication [171]. Additionally, cefepime-enmetazobactam was found
to be highly tolerable among patients.

Cefepime-enmetazobactam was manufactured to serve as a carbapenem-sparing agent
against organisms harboring ESBLs [172]. With cost being a driving factor for many hospital
systems, especially those with limited formularies, along with the fact that cefepime-
enmetazobactam offers little coverage against MBL and CRE pathogens, it is difficult
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to imagine a clinical scenario where cefepime-enmetazobactam will be preferred over
current therapeutic options, at least initially. Despite this, cefepime-enmetazobactam is an
alternative treatment for pathogens co-producing both ESBL and OXA-48.

In February 2024, the FDA approved the usage of cefepime-enmatazobactam for cUTI
in adults based off the data from the ALLIUM trial.

4.3. Cefepime-Zidebactam

Zidebactam belongs to the bicyclo-acyl-hydrazide class of beta-lactam enhancers,
which is a derivative and a newer generation of the diazabicyclooctane (DBO) BLIs [173,174].
These newer generation DBO are considered dual-acting beta-lactam inhibitors and en-
hancers due to their ability to inhibit penicillin binding proteins (PBPs), enhancing the
activity of an associated beta-lactam antibiotic that works on different PBPs, while also
inhibiting activity against serine class A, C, and D beta-lactamases [173–175]. Zidebactam
is a non-beta-lactam and thus, is not degraded by beta-lactamases. It has enhanced PBP2
binding in Gram-negative organisms, including P. aeruginosa and A. baumanii, and its en-
hancer effect is most demonstrated when combined with an agent targeted against PBP3
(i.e., cefepime) [173,176]. Cefepime-zidebactam has demonstrated in vitro activity against
carbapenem-resistant Enterobacterales, P. aeruginosa, and some A. baumanii. Zidebactam
alone has no activity against MBLs; however, when combined with cefepime, studies have
demonstrated strong in vitro activity against these organisms [175,177–180]. Additionally,
potential resistance mechanisms against cefepime-zidebactam are not fully described. How-
ever, based on in vitro data among the Enterobacterales, K. pneumoniae ST14 co-producing
NDM and OXA-48-type carbapenemases were often found to be resistant. For P. aeruginosa,
in vitro data suggest that resistance may be due to overexpression of efflux pumps; how-
ever, the extent of efflux pump activity was more pronounced with cefepime alone vs. in
combination with zidebactam suggesting that zidebactam is not readily effluxed [176].

A phase III, non-inferiority clinical trial (NCT04979806) is currently underway evalu-
ating the clinical efficacy and safety of cefepime-zidebactam for the treatment of cUTIs and
pyelonephritis compared to meropenem. Until results of this trial are released, it is difficult
to speculate about the potential role of zidebactam in clinical practice. However, the combi-
nation of cefepime and zidebactam has demonstrated activity against carbapenem-resistant
Gram-negative organisms and is a potential option in the setting of MDR Gram-negative
infections. Most notably, there have been two case reports highlighting the successful com-
passionate use of cefepime-zidebactam. In both case reports, cefepime-zidebactam was used
as salvage therapy against NDM-producing P. aeruginosa in the setting of intra-abdominal
infection and disseminated infection complicated by necrotizing ecthyma gangrenosum
and respiratory infection [181,182].

4.4. Sulopenem

Like all beta-lactam antibiotics, sulopenem inhibits cell wall synthesis through binding
to PBPs and inhibiting the final transpeptidation step of peptidoglycan synthesis. Specifi-
cally, sulopenem binds to the following PBPs with an order for affinity being greatest to
least: PBP2, PBP1A, PBP1B, PBP4, PBP3, and PBP5 or 6 [183,184]. Structurally, sulopenem
shares similarities and is often confused with carbapenems; however, carbapenems con-
tain a proline ring while penems contain a thiazoline ring that produces a smaller bond
angle, reducing stress on the beta-lactam ring, and protects against enzymatic degradation.
Sulopenem has been shown to have in vitro activity against ESBL and AmpC-producing
Enterobacterales [185]. Additionally, its Gram-positive and anaerobic activity seems to mimic
other carbapenems such as meropenem and imipenem, including minimal activity against
Enterococcus faecalis [186]. Sulopenem is unaffected by many beta-lactamases with a few
exceptions. MBLs and carbapenemase-producing organisms are resistant to sulopenem.
Furthermore, sulopenem is ineffective against other resistance mechanisms such as efflux
pumps and porin channel changes [187].
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Sulopenem has been developed in both intravenous and oral formulations. The
PK properties of intravenous sulopenem are similar to that of other carbapenems. Early
studies showed that the oral prodrug formulation of sulopenem had variable bioavailability
ranging from 20–34% [188]. Further studies revealed that bioavailability increases by 23.6%
when given with food alone and up to 62% when administered with food and 500 mg of
probenecid. It was noted that the effects of probenecid on bioavailability were greater when
given with food. There was a difference of a 7.3% increase when sulopenem/probenecid
were given alone and a 40.7% increase when both medications were given in combination
with food [189].

Two major trials for sulopenem have been completed to date. The first trial, SURE-1,
evaluated sulopenem as a treatment option for uncomplicated UTIs caused by Gram-
negative bacteria [190,191]. In the second trial, SURE-2, evaluated sulopenem as a treatment
option for cUTIs and acute pyelonephritis caused by Gram-negative bacteria [192,193].
The results of these trials demonstrated that sulopenem was non-inferior to standard
antibiotics in treating both uncomplicated and complicated UTIs, indicating its potential
as an alternative treatment option. In addition, sulopenem demonstrated a favorable
safety profile with few adverse effects reported, including no increases in the incidence of
Clostridioides difficile (C. difficile) colitis.

4.5. Aztreonam-Avibactam

Aztreonam is a monobactam, working similarly to others in its class by binding to
PBPs and inhibiting cell wall synthesis. Aztreonam can withstand hydrolyzation from
MBLs, unlike other beta-lactam antibiotics. Despite its activity against MBL producers,
these isolates often co-produce serine-beta-lactamases (AmpC beta-lactamases, ESBLs, and
KPCs) which can hydrolyze it. Avibactam is a DBO non-beta-lactam BLI with activity
against Ambler class A, C, and some class D beta- lactamases [194]. In combination with
avibactam, the degradation of aztreonam is prevented as the avibactam component inhibits
these co-produced beta-lactamase enzymes. Previous studies have cited the combina-
tion of CTZ-AVI and aztreonam as a treatment option for serious infections involving
MBL producers [195,196]. Therefore, a combination product of aztreonam-avibactam
proves to be a promising antimicrobial agent. Aztreonam/avibactam’s spectrum activity
includes coverage against carbapenemase-producing Enterobacterales including those pro-
ducing KPCs, VIM, IMP, NDM, and OXA-48. Additionally, the combination has activity
against Pseudomonas aeruginosa and S. maltophilia. Aztreonam/avibactam lacks activity
against A. baumanii due to OXA-type enzymes [197–199]. Pseudomonal resistance to aztre-
onam/avibactam has been attributed to production of Pseudomonas-derived cephalospori-
nase 1 (PDC), OXA enzymes (not including OXA-48), loss of porins, and overexpression
of efflux pumps [197]. Resistance to Enterobacterales is suspected to be attributed to amino
acid insertion in the PBP3 determinants, reducing aztreonam’s ability to bind [197].

The phase IIa open-label, multicenter study REJUVENATE studied the PK profile,
safety, and efficacy of aztreonam/avibactam in patients with complicated intra-abdominal
infections (cIAIs). The study supported the use of aztreonam/avibactam 500/167 mg
loading dose infused over 30 min followed by 1500/500 mg every six hours maintenance
regimen with doses infused over three hours. Dosing was determined for patients with an
estimated creatinine clearance > 50 mL/min [200]. The REJUVENATE trial cited the most
common adverse reaction to be an increase in hepatic enzymes, occurring in 26.5% of pa-
tients, most of which were asymptomatic and recovered upon discontinuation of treatment.
Diarrhea was listed as the second most common adverse event, but none associated with
C. difficile [200].

In clinical practice, aztreonam-avibactam holds promise as a combination therapy with
coverage against all four Ambler beta-lactamase classes. Specifically, this combination may
prove to be useful in combating pathogens co-harboring both MBL and class A/D enzymes.



Antibiotics 2024, 13, 648 15 of 26

4.6. Sulbactam-Durlobactam

Sulbactam is a well-known BLI with antibacterial activity against A. baumannii [23,201,202].
However, resistance to ampicillin/sulbactam is growing, leaving a major coverage gap
in clinical practice for CRAB [17,203–205]. To combat this, sulbactam was commercially
launched with durlobactam, which is a DBO BLI with activity against class A, C, and
D beta-lactamases [206–208]. With structural similarities to avibactam, its endocyclic
double bond and methyl substituent enhance the potency of durlobactam as a BLI and
allow the inhibition of a wide range of Class D beta-lactamases commonly produced by
A. baumannii [209]. Of note, durlobactam has been reported to have intrinsic activity against
some species of Enterobacteriaceae through inhibition of PBP2, but it does not have intrinsic
activity against A. baumannii when given on its own; however, both in vivo and in vitro
activity have been achieved when given in combination with sulbactam [210,211].

In 2023, the ATTACK trial was published evaluating the usage of sulbactam-durlobactam
in patients with either hospital-acquired pneumonia (HAP), ventilator-associated pneu-
monia (VAP), and/or bacteremia caused by Acinetobacter baumannii-calcoaceticus com-
plex (ABC). Sulbactam-durlobactam was compared to colistin, and all patients received
imipenem-cilastatin as background therapy. Results from this trial demonstrated that
sulbactam-durlobactam was non-inferior to colistin for the primary endpoint of all-cause
28-day mortality. Additionally, sulbactam-durlobactam was less nephrotoxic compared to
colistin [206].

Results from the ATTACK trial led to the FDA approval of sulbactam-durlobactam for
HAP/VAP caused by susceptible isolates of ABC in 2023. Given the rise in incidence of
CRAB cases in the U.S., sulbactam/durlobactam has potential for use in other MDR CRAB
infections outside of the respiratory tract, including those resistant to other salvage therapy
options [212].

5. Other BLI/BL/BLI Combinations
5.1. Xeruborbactam

Xeruborbactam (QPX7728) is a cyclic boronate inhibitor that is active against all
four Ambler beta-lactamase classes. Xeruborbactam has shown in vitro activity against
MBL isolates not inhibited by taniborbactam, specifically IMP and NDM-9 [213–215].
Additionally, xeruborbactam has demonstrated the ability, in vitro, to recover meropenem
susceptibilities [213,215,216]. In a study by Lomovskaya et al., xeruborbactam was able
to increase potency against meropenem-resistant KPC-producing strains of K. pneumoniae,
NDM-1-producing strain of E. coli, and VIM-1-producing strain of K. pneumoniae [214].
Together, these results suggest xeruborbactam may have a role as both a recovery agent for
certain beta-lactam antibiotics and a treatment option for MBL-producing bacteria.

Current phase III studies are lacking for xeruborbactam. However, multiple phase I trials
have been completed. These trials demonstrated a favorable safety and PK profile for xerubor-
bactam [217,218]. Additional clinical data are needed to determine the role of xeruborbactam
in clinical practice, but in vitro data favor further exploration of xeruborbactam.

5.2. Nacubactam

Nacubactam (OP0595, RG6080) is a DBO BLI with a distinctive dual mechanism of ac-
tion compared to its sister compound avibactam [219–221]. It demonstrates activity against
a broad spectrum of beta-lactamases, including class A, C, and some class D enzymes.
Additionally, nacubactam is also an inhibitor of PBP2 in the cell wall of Enterobacteriaceae,
which enhances the activity of co-administered beta-lactams. Together, this broad spectrum
of activity suggests potential efficacy against a wide range of MDR bacteria, including those
producing ESBLs and CRE [219–222].

While there is limited published clinical trial data available, there are ongoing studies
evaluating the efficacy and safety of nacubactam in combination with various beta-lactam
antibiotics. A phase II trial published in Clinical Infectious Diseases in 2020, evaluated the
efficacy of nacubactam in combination with meropenem for the treatment of cUTIs and
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cIAIs caused by CRE [219]. The results demonstrated favorable clinical outcomes and
tolerability, suggesting the potential utility of nacubactam in this patient population. Two
other phase III trials are actively recruiting to evaluate the efficacy of cefepime-nacubactam
and aztreonam-nacubactam for cUTIs and infections involving CRE (Integral-1 and Integral-
2 trials).

6. Conclusions

In 1928, Alexander Fleming discovered that Penicillium notatum inhibited Staphylococcus
spp. within a Petri dish, and by the early 1950s, penicillin became a mainstay of treatment
for numerous infections [223,224]. Unfortunately, upon its utilization in clinical practice,
a biological time clock started for the global dispersion of penicillin-resistant pathogens.
Fast-forward to today, and that same biological clock continues to tick for antibiotics
deployed in clinical practice. Traditionally, researchers and clinicians have strived for the
development of newer antimicrobial agents that have the potential to overcome emerging
resistant mechanisms of commonly encountered pathogens, but this retrospective approach
is not sustainable [146,225,226]. As AMR continues to emerge, and few novel antibiotics are
on the horizon, the focus must shift to preventive measures to slow the spread of resistant
pathogens [227–229]. These measures should consist of a combination of standardized AMS
programs that are adequately funded, guideline and culture-driven antibiotic prescribing
practices, especially in the outpatient setting, properly funded global health programs,
and strict infection prevention policies that focus on the importance of hand hygiene and
personal protective equipment [8,93,227,229–232]. Ultimately, without drastic changes
in healthcare reimbursement, global awareness of AMR, and antibiotic research drug
development, preventive and supportive measures will become the standard of practice for
infections caused by resistant bacterial pathogens that were once susceptible to employed
antibiotics. This generated environment will likely become the largest global pandemic in
modern time.
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