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Simple Summary: This study addresses the significance of animal sounds as valuable indicators of
both behavior and health in animals, emphasizing the challenges involved in collecting datasets for
deep learning models. Particularly, in the context of classifying pig vocalization and non-vocalization,
it is identified as laborious and time-consuming when relying on human efforts. In response to these
challenges, the research proposes a new approach utilizing a deep learning model to automatically
classify pig vocalization and non-vocalization with high accuracy. The success of this method not only
provides an efficient means of collecting pig sound datasets but also presents a promising avenue
for improving the classification of pig vocalization and non-vocalization in deep learning models,
thereby contributing to advancements in animal behavior research and health monitoring.

Abstract: Since pig vocalization is an important indicator of monitoring pig conditions, pig vocal-
ization detection and recognition using deep learning play a crucial role in the management and
welfare of modern pig livestock farming. However, collecting pig sound data for deep learning
model training takes time and effort. Acknowledging the challenges of collecting pig sound data
for model training, this study introduces a deep convolutional neural network (DCNN) architecture
for pig vocalization and non-vocalization classification with a real pig farm dataset. Various audio
feature extraction methods were evaluated individually to compare the performance differences,
including Mel-frequency cepstral coefficients (MFCC), Mel-spectrogram, Chroma, and Tonnetz. This
study proposes a novel feature extraction method called Mixed-MMCT to improve the classification
accuracy by integrating MFCC, Mel-spectrogram, Chroma, and Tonnetz features. These feature
extraction methods were applied to extract relevant features from the pig sound dataset for input
into a deep learning network. For the experiment, three datasets were collected from three actual pig
farms: Nias, Gimje, and Jeongeup. Each dataset consists of 4000 WAV files (2000 pig vocalization
and 2000 pig non-vocalization) with a duration of three seconds. Various audio data augmentation
techniques are utilized in the training set to improve the model performance and generalization,
including pitch-shifting, time-shifting, time-stretching, and background-noising. In this study, the
performance of the predictive deep learning model was assessed using the k-fold cross-validation
(k = 5) technique on each dataset. By conducting rigorous experiments, Mixed-MMCT showed supe-
rior accuracy on Nias, Gimje, and Jeongeup, with rates of 99.50%, 99.56%, and 99.67%, respectively.
Robustness experiments were performed to prove the effectiveness of the model by using two farm
datasets as a training set and a farm as a testing set. The average performance of the Mixed-MMCT in
terms of accuracy, precision, recall, and F1-score reached rates of 95.67%, 96.25%, 95.68%, and 95.96%,
respectively. All results demonstrate that the proposed Mixed-MMCT feature extraction method
outperforms other methods regarding pig vocalization and non-vocalization classification in real pig
livestock farming.

Keywords: audio classification; audio feature extraction; pig vocalization; smart farming; audio data
augmentation; machine learning; deep learning model; convolutional neural networks (CNNs); smart
livestock farming; environmental animal
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1. Introduction

Pork holds significant economic importance and has been a vital source of human
nutrition [1]. It has remained the most widely consumed meat globally for an extended
period, and hundreds of millions of individuals from all corners of the world continue to
favor it [2]. China occupies a notable position as a leading producer and consumer of pork
worldwide [3]. In 2021, pork production in China reached approximately 52.96 million tons,
representing over 58.9% of total meat production [4]. According to the USDA (United
States Department of Agriculture) reports, China is expected to remain the largest pork
consumer, holding nearly 46% globally. The European Union and United States will have
14% and 8.4% shares, respectively. Southeast Asia anticipates the highest growth in pork
consumption at 20.8% of the world share by 2031 [5]. The enormous pork demand has
driven the rapid expansion of industrial-scale pig farming operations, which has created a
need for precision livestock farming (PLF) technologies instead of traditional methods to
meet increasingly stringent standards [6,7].

PLF enables the expansion of the livestock sector towards sustainable production by
integrating production and animal health considerations, facilitating optimal animal stock-
ing densities and prompt disease management, and establishing more efficient production
models [8]. Because large-scale breeding facilities have high feeding densities, the health
status of pigs becomes a high-priority problem for farmers [9]. Therefore, farmers require
assistance in properly caring for each pig and quickly identifying anomalies using modern
technologies [10]. Currently, PLF plays a crucial role in managing the welfare of modern
group-pig livestock [11]. Many researchers have investigated the efficiency of the PLF to
address how PLF enhances the welfare management of animal farms [12–14]. There are
PLF systems used in pig farms to monitor pig health and welfare, such as pig identifi-
cation, pig automated weight detection, pig behavior, and vocalization monitoring [15].
Pig vocalization is essential for delivering real-time health information, improving the
assessment of sick pigs, controlling the environment, and encouraging effective and healthy
breeding methods.

More than twenty years ago, research on pig vocalization was conducted to investigate
the welfare of piglets [16,17]. Many scholars regard pig vocalization as an effective tool
for assessing the well-being and health of pigs [18–20]. Hillmann et al. [21] used pig
vocalization to analyze pig behavioral adaptation to ambient temperatures. The authors
used a video recorder and an external microphone to collect data only during nighttime to
avoid management activities during the daytime. Guarino et al. [22] proposed an algorithm
for detecting pig coughing and defining the condition of the health of the pig. This study
used the manpower to collect the coughing sound by standing next to the pigs. Many
researchers have applied deep learning models based on DCNN to address the health
condition using pig sound datasets. Research about pig coughing recognition based on
DCNN was introduced by Yanling Yin et al. [23]. The audio dataset was collected from
the pig pen and converted to spectrogram images. The authors proposed an algorithm
using spectrogram images as the input into a pre-trained deep learning model. Weizheng
Shen et al. proposed two different feature fusion methods in their two published papers
using deep feature information extracted from the CNN network to recognize the pig
coughing [24,25]. Wang et al. [26] introduced a lightweight CNN model for recognizing the
estrous sound of the sows. They collected an audio dataset by holding a digital recorder
to record sow sounds in the pig barn. The challenges in collecting pig sound data using
recording devices include distinguishing vocalization from non-vocalization sound within
the recorded audio files, requiring significant time and manpower. On the other hand,
some farms restrict human access due to animal safety concerns. Obtaining permission
to collect sound data and navigate these restrictions may pose a barrier to researchers or
data collectors.

The observations of this study indicate that deep learning methods have played an
important role in the study of pig vocalizations. However, enormous amounts of data are
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required to build a high-efficiency deep learning model, and gathering these data is still
traditional and time-consuming.

The main contributions are summarized as follows:

• Design a new pig vocalization and non-vocalization classification model using deep
learning network architecture and audio feature extraction methods.

• Implement various audio feature extraction methods and compare the classification
performance results using a deep learning model.

• Propose a novel feature extraction method to enrich the input information that
can improve the classification accuracy of the model. This proposed method is
robust enough to classify pig vocalization and non-vocalization in different data
collection environments.

• Create datasets of pig vocalization and non-vocalization to handle the problem of
insufficient data.

• Compare the performance of the various audio feature extraction methods. The
proposed method improves the classification performance and efficiently classifies pig
vocalization and non-vocalization.

2. Materials and Methods
2.1. Data Acquisition

Three collections of pig audio datasets named Nias, Gimje, and Jeongeup were system-
atically collected from three domestic pig farms in Jeonju City, Gimje City, and Jeongeup
City, respectively. These three cities are located in Jeonbuk-do Province, Republic of Korea.
A high-quality PLM-Q5 noise reduction microphone with a frequency range of 20 Hz
to 20 kHz was strategically positioned at a height of 150 cm above the ground, with an
average of 12 pigs per pen. The recording sample rate was 44,100 Hz, with a resolution of
16 bits. The recording apparatus utilized for this study was the Raspberry Pi 4 Model B
Rev 1.5, enabling continuous recording for 24 h. Each recording file was saved at hourly
intervals. These comprehensive datasets provide detailed auditory profiles of the pig farms,
capturing ambient sounds and pig vocalization. Figure 1 shows the installation of the
devices for pig audio data collection in a pig farm.
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2.2. Data Preprocessing

As mentioned in Section 2.1, during the dataset collection period, continuous record-
ings were conducted for a duration of 24 h, with each recording file saved at one-hour
intervals. To enhance the precision of the dataset for model training, the audio recordings
were further processed by trimming them into 3 s intervals. In a pig farm, the acoustic
environment is complex, featuring a wide range of sounds, including various pig vocal-
ization and background noises. To categorize these sounds, the trimmed pig audios were
classified by manually annotating them, a process carried out in collaboration with animal
science researchers. The audio files were classified into two sets based on the presence
of pig sounds: the pig vocalization set included all files containing pig sounds, while the



Animals 2024, 14, 2029 4 of 16

pig non-vocalization set included those without pig sounds. Audio files with noises from
human activities such as human voices and cleaning activities were discarded. Human
evaluators conducted the selection process to ensure a representative and diverse set of
audio samples, providing a comprehensive dataset encompassing various aspects of the
pig farm environment. Following this step, a curated selection of 4000 WAV audio files in
each farm was meticulously chosen and labeled, with a balanced distribution of 2000 files
containing pig vocalizations and 2000 files containing non-vocalization. The datasets con-
tain different background noise and sound loudness. The amplitude levels of the dataset
are measured using decibels relative to the full-scale (dBFS) unit. All collections of pig
audio datasets and dBFS measurements are listed in Table 1.

Table 1. Summary of the pig audio dataset used for model training and evaluation.

Dataset Type Growth Stage Amount Min dBFS Max dBFS Average dBFS

Nias
Vocalization Growing fattening

(30–110 kg)
2000 −36.56 −6.98 −24.86

Non-Vocalization 2000 −37.97 −24.01 −28.58

Gimje Vocalization Weaning
(5–30 kg)

2000 −35.74 −9.03 −26.07
Non-Vocalization 2000 −39.26 −21.08 −29.30

Jeongeup Vocalization Fattening
(60–110 kg)

2000 −23.60 −5.96 −18.99
Non-Vocalization 2000 −24.72 −18.98 −22.69

2.3. Audio Data Augmentation

Acquiring a large and diverse pig dataset to train a deep learning model is challenging.
In this study, data augmentation is utilized to increase the size of the training set and the
diversity of the dataset artificially [27]. This technique improves deep learning models
and makes them more robust and generalizable to variations in real-world data. This
study experiments with four audio data augmentation techniques: pitch-shifting, time-
shifting, time-stretching, and background noise. Each technique generates 3200 new audio
samples to the original training set. In total, the training set contains 16,000 samples for
model training.

• Pitch-shifting is a digital signal processing technique that alters the pitch of an audio
signal without changing its duration [28]. Each audio sample was pitch-shifted by
random values from 0 to 4 and 12 bins per octave.

• Time-shifting involves displacing audio to the left or right by a randomly determined
duration. When shifting audio to the left (forward) by x seconds, the initial x seconds
were designated 0. Conversely, when shifting audio to the right (backward) by x
seconds, the last x seconds were designated 0.

• Time-stretching involves adjusting the speed of the audio sample, either slowing it
down or speeding it up without affecting the pitch of the sound. In this study, each
sample underwent time stretching using a stretch factor of 1.0.

• Background-noising is an intentional addition of background noise to an audio sample.
In this study, each audio sample was added with white noise. Each background-
noising z was calculated using z = x + w·y, where x represents the audio signal of the
original sample, y denotes the signal with the background scene, and w serves as a
weighting parameter. Notably, the weighting parameter w has been selected from a
uniform distribution randomly in the range of [0.0, 1.0].

Samples of the audio augmentation datasets are visualized in Figure 2.
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2.4. Audio Feature Extraction

Raw audio signals are complex and high-dimensional, making it difficult for deep
learning networks to process them directly. Audio feature extraction is essential when
working with deep learning network models. It condenses raw audio data into a lower-
dimensional representation that captures important characteristics from an audio signal,
allowing the network to learn more efficiently. Recently, audio feature extraction methods
have been widely used to extract useful features from audio signals. Rezapour Mash-
hadi et al. [29] used these various types of audio feature extraction methods in their research
on speech emotion recognition. The authors mentioned that these methods are useful for
extracting various speech signal characteristics for their model. Gupta Saurabh et al. [30]
studied animal speech emotion recognition using a deep learning model. They employed
the MFCC and Chroma methods to extract the major features from animal sounds. The
authors stressed that these feature extraction methods provide useful feature relationships
from audio signals that benefit model classification. Another current study about depres-
sion detection also utilized MFCC to extract speech audio for their model [31]. By observing
the significance of these methods, this study introduces four feature extraction methods:
MFCC, Mel-spectrogram, Chroma, and Tonnetz. In addition, a novel audio feature ex-
traction method called Mixed-MMCT is proposed in this research work to enhance the
performance of the classification accuracy of the model. The details of each method are
described in the next section.

2.4.1. MFCC (Mel-Frequency Cepstral Coefficients)

MFCC is a widely used audio feature extraction technique in speech and audio clas-
sification [30,32,33]. It captures the essential characteristics of the audio signal, making it
particularly useful for audio classification. The processing of MFCC includes segmenting
the audio signal into short frames and applying the window function to each frame. It
is followed by performing the fast Fourier transform (FFT) on each audio signal, taking
the logarithm of the magnitude of the FFT. The resulting energy is then passed through
a Mel filter to obtain Mel filter energy. As a result, 20-dimensional MFCC coefficients are
obtained after calculating the discrete cosine transform (DCT) to the log Mel filter energy.

2.4.2. Mel-Spectrogram

The Mel-spectrogram represents the short-term power spectrum of an audio signal as
it evolves over time, converted to the Mel-frequency scale [34]. Converting a raw audio



Animals 2024, 14, 2029 6 of 16

signal into a Mel-spectrogram involves several crucial steps. First, a pre-emphasis filter
is applied to enhance high-frequency components, achieved by subtracting a fraction of
the previous sample from the current one. The pre-emphasized signal is then divided into
short, overlapping frames through farming, followed by applying a Hamming window
function to mitigate spectral leakage. Within a sample window input of three seconds long,
the sampling rate is 22,050 Hz, the fast Fourier transform (FFT) window size is 2048, and
the hop length is 512 each time. The FFT calculates the discrete Fourier transform (DFT)
for each window frame, transitioning the signal from the time domain to the frequency
domain. Subsequently, the Mel-filterbank is applied to the power spectrum obtained from
the FFT, transforming the signal into the equal Mel-frequency scale with 128 Mel bands.
Finally, a logarithmic transformation, emulating human auditory perception, is performed
by taking the logarithm of the filterbank energies.

2.4.3. Chroma

Chroma audio feature extraction focuses on capturing the pitch content or tonal
information of an audio signal [35]. Many researchers utilize chroma features as the input
for deep learning models to address audio detection and recognition problems [36–38]. The
chroma feature represents the distribution of pitch classes that are typically manifested as a
12-element feature vector that illustrates the presence of energy for each pitch class in the
signal [39]. The Short-Term Fourier Transform (STFT) is applied to convert the raw audio
signal into the frequency domain, slicing it into short, overlapping frames. Within each slice,
chroma calculates the strength of each pitch class, essentially summing the energy within
the specific frequency ranges corresponding to each pitch class. Following this, to account
for differences in overall loudness, the chroma is then normalized. Finally, a logarithmic
transformation is applied to the chroma values, mimicking the human perception of pitch,
which tends to follow a more logarithmic pattern than a linear one.

2.4.4. Tonnetz

Tonnetz audio feature extraction focuses on capturing tonal relationships and har-
monic content in audio signals. Many researchers use the Tonnetz feature to address acous-
tic and music detection [40–42]. Like chroma features, the raw audio signal is transformed
into the frequency domain using STFT, which divides the signal into short, overlapping
frames. Since Tonnetz first requires chroma features, in each frame of the STFT, chroma
calculates the energy within specific frequency bands corresponding to each pitch class.
Subsequently, the Tonnetz features are computed based on the chroma features by capturing
the tonal centroid and spreading pitch classes.

2.4.5. Mixed-MMCT

Mixed-MMCT is a novel audio feature extraction method introduced in this study. It is
a new feature name formed by mixing the first letters of Mel-spectrogram, MFCC, Chroma,
and Tonnetz. The objective of this method is to improve the pig vocal classification accu-
racy by concatenating Mel-spectrogram, MFCC, Chroma, and Tonnetz features along the
appropriate axis to create a single, combined feature vector for each time frame. Combining
these features creates a comprehensive and rich representation of audio data, capturing
different aspects of the sound signal. This new feature extraction method outperforms
individual methods, particularly in the context of pig vocalization classification. Figure 3
shows the overall flow diagram of the classification method, and Figure 4 visualizes the
spectrogram form of the pig vocalization sample in each audio feature extraction method.
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first row displays the non-vocalization samples, and the second row shows the vocalization samples.

2.5. Deep CNN Architecture

Figure 4 shows the overall proposed network architecture diagram. The input size
of the network follows the output size of the audio feature extraction in each method.
The input sizes of MFCC, Mel-spectrogram, Chroma, Tonnetz, and Mixed-MMCT are
20 × 130 × 1, 128 × 130 × 1, 12 × 130 × 1, 12 × 130 × 1, and 166 × 130 × 1, respectively. The
network backbone architecture consists of three convolutional layer blocks. The sizes of the
convolutional layer filter in the first, second, and third blocks are 32, 64, and 128, with a
stride of 1 × 1 and a kernel size of 5 × 5, respectively. Different filter and kernel sizes were
experimented with, and the filter and kernel sizes used in the experiments outperformed
others in terms of performance and accuracy. A 2 × 2 max-pooling layer is applied to
down sampling, and the Rectified Linear Units (ReLUs) are used to implement nonlinear
activation functions. The ReLUs function f (x) is calculated using f (x) = max(0, x), where
x represents the input and max(0, x) retains only values greater than 0. Dropout [43] is
applied after the last layer to prevent over-fitting. Two fully connected layers are applied.
The first fully connected layer has 1000 neurons, and the second fully connected layer is
connected to a softmax function with two neurons and outputs the probability for each
class. It is classified as vocalization when the output value of the first neuron is greater than
the output value of the second neuron; otherwise, it is non-vocalization. Figure 5 shows
the overall proposed network architecture diagram.
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2.6. Experimental Setting

Initially, this work follows [44] to resample the monophonic signal to the default
sample rate of 22,050 Hz in the data preprocessing. The dropout parameter is set to 0.5, and
the batch size is 16. During the training process, the initial learning rate is set to 5 × 10−4,
the decay step is 1000, and the decay rate is 0.9. In addition, the stochastic gradient descent
(SGD) optimizer is applied as the model optimizer with a momentum of 0.9. The Rectified
Linear Units (ReLUs) are used to implement nonlinear activation functions. The overall
model is trained up to 50 epochs to complete each experiment. All experiments in this study
are implemented using Python programming language and a TensorFlow-based open-
source [45] deep learning framework. The model is trained on a Windows 10 operating
system with an NVIDIA GeForce RTX 2080 Ti GPU to benefit from faster training times in
deep learning frameworks with the support of Cuda and cuDNN. The CPU is an Intel(R)
Core (TM) i7-8700 CPU with six cores operating at 3.30 GHz.

2.7. Evaluation Criteria

In this study, the performance of a predictive model is assessed using the four evalua-
tion parameters: accuracy, precision, recall, and F1-score.

• Accuracy serves as an intuitive performance metric specifically designed to character-
ize the effectiveness of an algorithm in classification tasks. It qualifies the ratio of cor-
rectly predicted samples to the overall sample count, as demonstrated by Equation (1).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

• Precision is a metric focused on evaluating the accuracy of positive predictions. Specifi-
cally, it calculates the precision for the minority class, representing the ratio of correctly
predicted positive samples to the total predictive positive samples. The computation
of precision is outlined in Equation (2).

Precision = TP/(TP + FP) (2)

• Recall is a metric that calculates the number of accurate positive predictions made
among all possible positive predictions. In contrast to precision, which focuses solely
on accurate positive predictions out of all positive predictions, recall encompasses a
broader scope. The computation of recall is defined in Equation (3).

Recall = TP/(TP + FN) (3)

• F1-score provides a consolidated measure by combining precision and recall into a
single metric encompassing both aspects. It has the ability to convey scenarios with
high precision and poor recall, as well as situations with poor precision and perfect
recall. The computation of the F1-score is outlined in Equation (4).

F1-score = 2 × (Precision × Recall)/(Precision + Recall) (4)

where true positive (TP) signifies a correctly classified positive sample, true negative
(TN) denotes the number of predictions accurately identifying the sample as negative,
false positive (FP) represents the number of samples wrongly classified as positive, and
false negative (FN) refers to the quantity of samples inaccurately identified as negative.

3. Results
3.1. Experimental Results

This section reports all of the model evaluation results. This study performed experi-
ments in the classification task and used the fivefold cross-validation technique to assess the
predictive model by dividing the dataset into five partitions: four partitions are reserved for
the training set, whereas the remaining partition is reserved as a validation set. The model
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repeated training five times and used the average of the five validation results to measure
classification accuracy. All the evaluation results are displayed as the percentage of the
right predictions. The confusion matrixes of the pig vocalization and non-vocalization
classification results in each method are illustrated in Figure 6. A confusion matrix displays
the performance of the classifier in the experiment. According to the confusion matrices in
Figure 6, the model can correctly classify the true positive (TP) and true negative (TN) with
the proposed Mixed-MMCT method compared to other methods. However, the classifica-
tion rate drops considerably with the Tonnetz method. Table 2 shows the measurements
of the performance of the model with accuracy, precision, recall, and F1-score metrics in
each dataset. The average accuracy of fivefold cross-validation on three databases, namely,
Nias, Gimje, and Jeongeup, across various feature extraction methods, including MFCC,
Mel-spectrogram, Chroma, Tonnetz, and Mixed-MMCT, yielded consistent results. Specifi-
cally, for the Nias dataset, the accuracies were 95.44%, 98.25%, 91.41%, 85.03%, and 99.50%,
respectively. Similarly, for the Gimje dataset, the accuracies were recorded as 95.06%,
98.78%, 87.72%, 80.78%, and 99.56% across the same feature extraction methods. Lastly,
for the Jeongeup dataset, the accuracies for the same feature extraction methods were
97.34%, 98.87%, 93.44%, 79.66%, and 99.67%, respectively. The results demonstrate that
the proposed Mixed-MMCT feature extraction method achieved the highest performance
compared to other methods regarding pig vocalization and non-vocalization classification
tasks. The Receiver Operating Characteristic (ROC) curve is employed to evaluate the
model classification of each method. The ROC curves are illustrated in Figure 7.
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Table 2. The average results (%) of the accuracy, precision, recall, and F1-score using a fivefold
cross-validation technique with the Nias, Gimje, and Jeongeup datasets.

Dataset Methods Accuracy Precision Recall F1-Score

Nias

MFCC 95.44 95.48 95.43 95.46
Mel-spectrogram 98.25 98.29 98.23 98.26

Chroma 91.41 91.51 91.39 91.45
Tonnetz 85.03 85.33 85.02 85.17

Mixed-MMCT 99.50 99.51 99.50 99.50

Gimje

MFCC 95.06 95.08 95.07 95.07
Mel-spectrogram 98.78 98.79 98.78 98.79

Chroma 87.72 87.86 87.77 87.81
Tonnetz 80.78 81.11 80.81 80.96

Mixed-MMCT 99.56 99.56 99.57 99.57

Jeongeup

MFCC 97.34 97.35 97.35 97.35
Mel-spectrogram 98.87 98.87 98.88 98.87

Chroma 93.44 93.59 93.42 93.51
Tonnetz 79.66 80.29 79.62 79.95

Mixed-MMCT 99.67 99.65 99.66 99.66
The bold values denote the optimal value, improving the visual result comparison.

Animals 2024, 14, x FOR PEER REVIEW 10 of 16 
 

The bold values denote the optimal value, improving the visual result comparison. 

 
Figure 6. Confusion matrix of the classification results of the different feature extraction methods. 

 
Figure 7. The ROC curve visualization of the model classification performance in each feature ex-
traction method. (a–c) are ROC curves of Nias, Gimje, and Jeongeup, respectively. 

As reported in Figure 7, the Mixed-MMCT method exhibits the highest area under 
the curve. This indicates that, in this scenario, the classifier demonstrates superior perfor-
mance in distinguishing both positive and negative samples. 

3.2. Robustness Experimental Results 
Robustness experiments were performed to prove the effectiveness of the model. As 

mentioned in Section 2.1, three datasets were gathered from three different actual pig 
farms. Hence, to conduct model robustness experiments, three datasets, namely, NGdb, 
NJdb, and GJdb, were created by combining pairs of datasets: Nias with Gimje, Nias with 
Jeongeup, and Gimje with Jeongeup, respectively. Each combined dataset comprised 8000 
samples. These datasets were utilized for training and testing purposes, with one dataset 

Figure 7. The ROC curve visualization of the model classification performance in each feature
extraction method. (a–c) are ROC curves of Nias, Gimje, and Jeongeup, respectively.

As reported in Figure 7, the Mixed-MMCT method exhibits the highest area under the
curve. This indicates that, in this scenario, the classifier demonstrates superior performance
in distinguishing both positive and negative samples.

3.2. Robustness Experimental Results

Robustness experiments were performed to prove the effectiveness of the model. As
mentioned in Section 2.1, three datasets were gathered from three different actual pig farms.
Hence, to conduct model robustness experiments, three datasets, namely, NGdb, NJdb, and
GJdb, were created by combining pairs of datasets: Nias with Gimje, Nias with Jeongeup,
and Gimje with Jeongeup, respectively. Each combined dataset comprised 8000 samples.
These datasets were utilized for training and testing purposes, with one dataset used for
training and the remaining dataset used for testing in each combination. Specifically, NGdb
was employed for training, with Jeongeup as the testing set; NJdb served as the training
set, while Gimje was used for testing; GJdb was utilized for training, with Nias designated
as the testing set. All data preprocessing and experimental settings, including the data
augmentation, input size, batch size, learning rate, and training epoch, were applied to
match the previous experiments. Table 3 shows the measurements of the performance of
the model with accuracy, precision, recall, and F1-score metrics in each experiment. Table 4
summarizes the average performance results of the robustness experiments. It can be seen
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that the model works better with the Mixed-MMCT method than with other methods.
Figures 8 and 9 show ROC curves and confusion matrices, respectively.

Table 3. The average robustness experiment results (%) of the accuracy, precision, recall, and F1-score
using a fivefold cross-validation technique with the NGdb, NJdb, and GJdb datasets.

Training Set Test Set Methods Accuracy Precision Recall F1-Score

NGdb
(Nias + Gimje)

Jeongeup

MFCC 92.45 93.18 92.45 92.81
Mel-spectrogram 86.98 89.60 86.98 88.27

Chroma 54.25 72.16 54.25 61.94
Tonnetz 59.10 74.62 59.10 65.96

Mixed-MMCT 90.05 91.70 90.05 90.87

NJdb
(Nias + Jeongeup)

Gimje

MFCC 80.72 82.58 80.73 81.64
Mel-spectrogram 96.35 96.50 96.35 96.42

Chroma 51.85 68.26 51.85 58.93
Tonnetz 65.40 65.84 65.40 65.62

Mixed-MMCT 99.22 99.23 99.23 99.23

GJdb
(Gimje + Jeongeup) Nias

MFCC 68.00 79.66 68.00 73.37
Mel-spectrogram 94.62 95.08 94.63 94.85

Chroma 60.10 70.19 60.10 64.75
Tonnetz 63.30 78.65 63.30 70.15

Mixed-MMCT 97.75 97.83 97.75 97.79

The bold values denote the optimal value, improving the visual result comparison.

Table 4. The average results (%) of all the robustness experiments.

Methods Accuracy Precision Recall F1-Score

MFCC 80.39 85.14 80.39 82.70
Mel-spectrogram 92.65 93.73 92.65 93.19

Chroma 55.40 70.20 55.40 61.93
Tonnetz 62.60 73.04 62.60 67.42

Mixed-MMCT 95.67 96.25 95.68 95.96
The bold values denote the optimal value, improving the visual result comparison.
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4. Discussion

This study aimed to classify pig vocalization and non-vocalization and to help with the
pig sound data collection task. To achieve this goal, this study constructed a new deep learn-
ing network architecture and examined various audio feature extraction methods. In the
process of audio data collection, this study only labeled those audio sounds that contained
pig sounds and no pig sounds as vocalization and non-vocalization, respectively—in other
words, those pig sounds that were visible or invisible on the waveform and distinguish-
able by the human ear. This can make the classification performance slightly superior to
real-time classification performance.

The different feature extraction methods, including MFCC, Mel-spectrogram, Chroma,
and Tonnetz, captured various aspects of the audio signal. Comparing these methods
allowed this study to assess their effectiveness in representing the relevant information.
Furthermore, a new feature extraction method, Mixed-MMCT, was introduced to improve
the model performance accuracy. When discussing the output size of the feature extraction
method, this study carefully selected that which was inspired by previous research [46–49].
As visualized in Figure 4, each feature produced different characteristics of an audio signal
over time. Mel-spectrogram provided feature information about the distribution of energy
across different frequency bands with 128 mel-scales. MFCC was derived from the Mel-
spectrogram, obtaining 20 cepstral coefficients representing the spectral characteristics of
the audio signal. The Chroma method mapped the magnitude spectrum of the audio signal
onto the 12-dimensional vectors, while Tonnetz computed the tonal centroid features and
produced only six-dimensional basis features. As shown in Table 2, the different types
of feature extraction methods have a clear influence on the model performance. These
reports show that the methods that produce smaller sizes of the audio features perform
poorer than the methods that produce bigger sizes of the audio features. For instance, the
model does not work well with Chroma and Tonnetz. In contrast, the model achieves
excellent performance with MFCC and Mel-spectrogram. Additionally, the combination
of the feature extraction method called Mixed-MMCT yields superior performance and
demonstrates other evidence, as reported in [1,48,50–52]. Obviously, feature extraction
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methods that generate large audio features may have drawbacks related to computational
complexity. Table 5 summarizes the floating-point operations per second (FLOPS), the
number of trainable parameters, and the inference time for each method in a single input
image for comparison.

Table 5. Comparison of the method computational complexity per signal input image.

Methods GFLOPS Trainable Parameters (M) Inference Time (s)

MFCC 0.145 4.36 0.031
Mel-spectrogram 0.939 33.03 0.039

Chroma 0.086 2.30 0.023
Tonnetz 0.086 2.30 0.023

Mixed-MMCT 1.21 41.22 0.046

To further prove the effectiveness of the model, this model is supposed to compare
the performance with the existing models or conduct more experiments with the existing
dataset. However, at the time of this study, there is no publicly available pig vocalization
and non-vocalization benchmark dataset. Therefore, model robustness experiments were
conducted to verify the model performance. As described in Section 3.2, two datasets
were combined to create a training set, and the remaining dataset was used as a test set for
model robustness experiments. Table 3 shows that the MFCC features extraction method
outperforms other methods when the model trains with NGdb. Based on this scenario,
the MFCC method can extract rich information with data that have a high dBFS, or the
higher dBFS of the test set might have a positive effect on the performance. However,
the MFCC performs poorly when the model tests with other test sets, while the Mixed-
MMCT maintains the performance at a high score. As shown in Table 4, the Mixed-
MMCT method continued to demonstrate outstanding performance on a new dataset in
mode robustness experiments. The Mel-spectrogram method showed slightly decreased
performance, while the Chroma and Tonnetz methods decreased remarkably, making the
model nearly impossible to classify with the new dataset. From the observations in this
study, two main reasons caused the model to drop its performance. The first main reason
is the dataset variation of each farm. The acoustic characteristics of the audio signal vary
with different conditions and environments, such as background noise, reverberation, and
the age of pigs. The second main reason is audio input features. The more information
the feature extraction method obtains, the better the deep learning model performs, and
vice versa.

Finally, this study indicates which audio feature extraction method is suitable for
generating the input for training deep learning models to classify pig vocalization and non-
vocalization in actual pig farms. The results demonstrate that combining feature methods
improves the model performance compared to using them separately. The findings in this
study will be used in data collection to separate pig vocalization and non-vocalization
automatically for future work.

5. Conclusions

This study implements audio feature extraction methods with a deep learning network
to solve pig vocalization and non-vocalization problems. Data augmentation techniques
are employed for model training to tackle the issue of an insufficient training dataset. These
techniques help to improve the performance and generalization of the model. Furthermore,
this study introduces a new audio feature extraction method to enhance model classification
accuracy by combining many other feature extraction methods. Consequently, this new
method provides superior performance compared to other methods.

The results of this study may become a significant and useful solution to the pig
vocalization data collection problem. In future work, pig vocalization classifications such
as screaming, grunting, squealing, and coughing will be considered. This future research
will provide solutions for improving animal welfare monitoring in pig farms.
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