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Simple Summary: Prebiotics, essential for humans and our gut microbiome, maintain the ecosystem’s
homeostasis in a mutual relationship with the host and microbiome. As a gut microbiome modulator,
poorly absorbed or indigestible carbohydrates interact with the gut microbiome, and its metabolites
promote immune health. However, there is limited discussion of a habitual diet in metabolic diseases.
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome
(SIM) is intriguing to gain deeper insights into their therapeutic implications.

Abstract: Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal micro-
biome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions,
including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for devel-
oping a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable
basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated
fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to
delve into the existing body of research to shed light on the promising developments of possible
dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is
the crosstalk of diet, microbiota, and gut–organ interactions facilitated by producing short-chain fatty
acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms
include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementa-
tion, holds the promise of significant health consequences via the prolonged reaction with the gut
microbiome. Most importantly, the literature consistently reports no adverse effects, providing a
strong foundation for the safety of this dietary therapy.

Keywords: prebiotics; metabolic diseases; fermentable carbohydrates; specific intestinal microbiome;
diabetes; NAFLD; obesity; metabolic cardiovascular diseases

1. Introduction

A wise food selection is fundamental for the health and lifespan of individuals with
metabolic diseases. The consequences of metabolic imbalance may be severe, and diet can
provide the essential energy, macronutrients, and micronutrients for growth, cell differenti-
ation, repair, and maintenance. The current dietetic guideline is not a rigid prescription and
is affected by personal, cultural, and traditional preferences. Many recommendations have
remained relatively consistent over time; they suggest that a balanced diet with nutrient-
dense foods that provide vitamins, minerals, and other health-promoting components in
reducing the risk of development of metabolic diseases, such as obesity, diabetes, cardio-
vascular diseases, and non-alcoholic fatty liver [1,2]. Different phenotypes of the human
body express the pros and cons of dietary effects, such as anthropometric, biochemical
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parameters, and the gut microbiome. In recent years, there has been increasing interest in
the role of the intestinal microbiome in the development and treatment of metabolic dis-
eases. The gut microbiota, a fascinating and complex ecosystem within our bodies, plays a
significant role in metabolic diseases. However, nutrient-dense foods, known as functional
foods, need to be better defined, mostly suggested in categories of vegetables, fruits, whole
grains, seafood, legumes, unsalted nuts and seeds, and fat-free and low-fat dairy products.
In current dietetic knowledge, some foods reshape the gut microbiota and produce vital
health-related elements; dietary fiber is the most discussed topic. However, apart from the
dietary fiber, other short or medium-chain carbohydrates, such as oligosaccharides and
inulin [3,4], also induce the specific intestinal microbiome (SIM) and their metabolites, such
as secondary bile acids and short-chain fatty acids (SCFAs), which are important in the
etiopathophysiology of metabolic diseases [5,6]. They communicate with the gut–organ
axis, hormones, metabolic pathways, and immune cells [3,5,7,8]. Bioactive metabolites that
originate from the gut microbiota are known to be produced through consuming natural
food. Aromatic amino acids such as tryptophan, primary bile acids, and others are the
potential substances that link the microbiota to the host’s physiology, a so-called mutualism.
Furthermore, many studies have confirmed the beneficial effects of the increase in SCFAs,
the reduction of inflammation and endotoxemia, and the involvement of gut microbiota
assistance in a range of bodily functions. These include the protection of pathogens and
the regulation of immune functions [8–10]. The effects of macronutrient metabolism by
the gut microbiome on human health have been extensively studied, but research on the
impact of short and medium-chain carbohydrates on the gut microbiome in metabolic
diseases remains limited [3]. In this review, we gather the particular carbohydrate polymers
that interact with the SIM and affect host metabolism in a diet-specific manner to treat
or prevent metabolic diseases. First, we need to understand the mechanism of the SIM,
which works in the pathophysiology of the prevention of metabolic diseases. Secondly,
there is evidence of prebiotics and potential prebiotics stimulating the SIM and producing
SCFAs and other microbial metabolites. Finally, evidence of dietary effects rather than the
supplementation of prebiotics is shown. Understanding these data empowers people to
take control of their metabolic health through their nutritional choices.

2. SIM and Metabolic Diseases

The complexities of the gut microbiota and their influence on metabolic health require
a multidimensional perspective, encompassing factors such as dietary composition, in-
dividual variations in microbiome composition, and their collective impact on metabolic
function. Dysbiosis, a disruption of the gut microbiota, is involved in different metabolic
progressions. However, gut microbiota profiles lack uniformity due to environmental
confounders, study design, medication, health conditions, and ethnicity. In 575 individ-
uals with diabetes mellitus and 840 healthy controls, there are significant correlations
in specific gut microbiomes. Individuals with diabetes displayed a lower abundance of
Bifidobacterium and higher levels of Lactobacillus spp. compared with non-diabetics [11].
The obesity-related microbiome included the genus of Megamonas and Escherichia–Shigella
as biomarkers of obesity [12]. Abnormalities of gut microbiota composition in patients
with non-alcoholic fatty liver disease (NAFLD) have been highlighted in a meta-analysis
showing an increased abundance of Escherichia, Prevotella, and Streptococcus and a decreased
abundance of Coprococcus, Faecalibacterium, and Ruminococcus [13]. A higher abundance of
Clostridium sensu stricto, Desulfovibrio, Parabacteroides, and Streptococcus and a lower abun-
dance of Ruminococcaceae, Roseburia, and Faecalibacterium spp. are found in individuals
with hypertension [14]. These meta-analyses overlap with several microbial signatures in
metabolic diseases. Nevertheless, the studies mentioned were not able to investigate the
dietary factors, highlighting the urgent need for further research in this area.

The gut is a complex ecosystem that contains a diverse array of bacteria, including
commensal, harmful, and conditional bacteria. Commensal bacteria act on the host’s im-
mune system to induce protective responses that prevent colonization and invasion by
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pathogens. Multiple studies have established associations between human gut bacteria and
host physiology, especially the genera of Bifidobacterium, Akkermansia, and Lactobacillus. In
the previous review, we summarized the characteristics of gut microbiota in newly diag-
nosed diabetes, and these microbiota patterns can be restored with antidiabetic treatments
provided by Western and Chinese medicine [15]. Considering the significant impact of
drugs on reshaping the gut microbiome, the administration of probiotics stands out as a
direct and effective method for microbiome manipulation. In a meta-analysis of the effects
of probiotics on metabolic disease-related variables, the intake of probiotics resulted in
consistent improvement in anthropometric and biochemical parameters in individuals with
metabolic diseases, although some had a minor effect [16,17]. The possible cause depended
on the survival conditions for the growth of probiotics in those patients with metabolic
diseases, such as the food being fed to the gut microbiota. The human gut microbiome is a
complex and dynamic ecosystem in which different strains of microorganisms compete for
different resources to effectively colonize it [18]. Our selection of foods is not only needed
for basal metabolism, body development, and essential vitamins but also for feeding our
gut microbiota, as food provides “prebiotics”. Prebiotics are an element of food that pro-
motes the growth of beneficial microorganisms in the intestines, and the composition of the
microbiota is predominated by carbohydrate polymers [19]. The combination of prebiotics
and probiotics showed a better improvement of glycemic variables than probiotics alone, as
summarized in a systematic review of randomized controlled trials [20]. However, based
on the current definition of prebiotics and accumulating evidence, some food ingredients
exhibit the prebiotic effect but have yet to be classified as prebiotics. Therefore, this review
summarizes the evidence of natural food ingredients that stimulate and maintain SIM
growth for the prevention or treatment of metabolic diseases.

3. Crosstalk of Gut Microbiome and Its Metabolites

Undoubtedly, the gut microbiota assumes a pivotal role in maintaining the gut’s in-
tegrity, acting as a robust defense. Equally important is its role in the production of a
diverse range of bioactive molecules, which are instrumental in interconnecting glycol-
ysis, the tricarboxylic acid/Krebs cycle, oxidative phosphorylation, and macronutrient
metabolism. In the molecular context, these bioactive metabolites derived from gut mi-
crobiota serve as crucial signaling molecules to various cell types, thereby facilitating
hormone secretion [21]. A current animal study has uncovered the unique function of
Butyricimonas virosa, which not only belonged to an SCFAs-producing bacteria but also
exhibited a novel function in glucose regulation that was linked to the upregulation of
GLP-1 receptors rather than its production of SCFAs [22]. Another recent study unveiled a
lipid from Akkermansia muciniphila’s cell membrane that mimics the immunomodulatory
activity of a15:0-i15:0 PE, which has a highly restricted structure–activity relationship [23].
This underscores the profound influence of gut microbiota on miRNA expression and the
modulation of the host’s immune homeostasis [24,25]. For instance, microbiota activities
have been shown to downregulate the expression of miR-10a in dendritic cells through the
toll-like receptors TLR–TLR ligand TLR4, TLR5, TLR9, and nucleotide-binding oligomer-
ization domain-containing protein 2 (NOD2) interaction via the myeloid differentiation
factor 88-dependent pathway. This downregulation effectively reduces NF-κB and p38/Jun
N-terminal kinase (JNK) activation, thereby potentially mitigating intestinal inflammation
as observed in an animal study [26]. A study involving a blinded, randomized, cross-over
dietary intervention on healthy individuals further solidified these findings [10]. The
results showed that a significant increase in colonic and peripheral blood SCFAs, blood
total B cells, naïve B cells, and mucosal-associated invariant T cells was observed in the
high-SCFAs diet group compared to the low-SCFAs diet group over 21 days [10].

SCFAs, the most common bioactive metabolites produced by the intestinal gut micro-
biota, are fascinating due to their diverse effects on various physiological processes and the
novel mechanisms they employ. For instance, specific SCFAs, such as acetate, butyrate, and
propionate, have been found to activate G protein-coupled receptors (GPR41, GPR43, and
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GPR109a) and inhibit histone deacetylase (HDAC), mechanisms that are intriguing and
warrant further exploration [27].

Firstly, the effects of SCFAs on metabolism and adipocyte lipolysis are multifaceted.
They are involved in the activation of the activity of GPR43 [28,29] present in pancreatic
islet α and β cells [30,31] and the secretion of the hormone leptin in adipocytes [32]. This
can potentially lead to a reduction in insulin resistance. SCFAs also play a crucial role
in regulating several leukocyte functions, including the production of pro-inflammatory
cytokines such as TNF-α and IL-1β, anti-inflammatory cytokines, such as IL-10 and TGFβ,
or glucocorticoids, eicosanoids, and chemokines (e.g., MCP-1 and CINC-2) [27,33]. An
increase in SCFAs can reduce systemic lipopolysaccharide (LPS) endotoxemia inflammation
and activation of toll-like receptor-4 and reverse the production of oxidative stress [34,35]
(reactive oxygen species) and NF-kB transactivation. This results in an increase of carnitine
palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα)
target gene, and a decrease in IL-8 mRNA transcription that may improve apolipopro-
tein A-I formation of dysfunctional HDL particles, which is consequently linked to the
reduction of cardiometabolic inflammation [36]. Additionally, the observations are in line
with the studies by Brown et al. and Ørgaard A. et al., which demonstrated significant
inhibition of lipolysis in primary human fat cells and stimulation of glucagon-like peptide-1
(GLP-1) [37] and somatostatin hormone secretion [38]. SCFAs were shown to decrease
the serum concentration of ghrelin (appetite hormone) and stimulate the production of
GLP-1 and Peptide YY by activating GPR43 and GPR41 [39]. This involved the mechanisms
in the gut–brain neural circuit; an animal study observed that butyrate administration
suppressed the activity of orexigenic neurons and decreased neuronal activity in the brain-
stem. Therefore, this reduced the appetite and activated brown adipose tissue by utilizing
plasma triglyceride-derived fatty acids [40]. More specifically, in one of the SCFAs, acetate,
a study used labeled carbohydrate and positron emission tomography (PET)-scanning to
investigate the SCFA and its effect on the host’s appetite and showed that intraperitoneal
acetate was fermented by the gut microbiome and taken by the brain, and this resulted in
appetite suppression and hypothalamic neuronal activation patterning [41]. These interac-
tions provide the mechanical benefit of reducing systemic inflammation, adiposity, insulin
resistance, and cardiometabolic and diabetes risk. Secondly, SCFAs are natural inhibitors
of HDACs, which play an essential role in chromosome structure modification and gene
expression regulation via the dissociation of DNA and the relaxation of nucleosome struc-
ture. HDACs upregulate genes associated with fatty acid uptake and oxidation, electron
transport, or oxidative phosphorylation accompanied by fatty acid-induced myocardial
lipid accumulation and elevated triglyceride levels shown in many animal studies [42,43].
SCFA-mediated HDAC inhibition promotes chromatin acetylation and reduces cardio-
vascular complications, offering a promising avenue for future research and potential
therapeutic interventions.

Another important microbiota-medicated metabolite is secondary bile acids. Primary
bile acids, such as cholic acid and chenodeoxycholic acid, play critical roles in cholesterol
metabolism and lipid digestion, and bile acids are reabsorbed via enterohepatic circulation.
Primary bile acids will be transformed by gut microbiota after the deamination of conju-
gated bile acids, mainly from the genera Enterobacter, Clostridium, and Enterococcus [44],
to secondary bile acids, such as deoxycholic acid and lithocholic acid or ursodeoxycholic
acid (UDCA) in humans, specifically in the colon which affects the diverse metabolic
pathways. For instance, a water-soluble bile acid, tauroursodeoxycholic acid (TUDCA),
is produced by the conjugation of UDCA with taurine in the body. This compound has
shown a 30% improvement in hepatic and muscle insulin sensitivity in people with obesity
compared to the placebo [45]. Another promising interaction of conjugated secondary bile
acid is glycodeoxycholic acid (GDCA), which forms with deoxycholic acid and another
amino acid, glycine, in the liver. GDCA was correlated with reduced insulin resistance via
communication with the gut microbiome and interleukin-22 secretion [46].
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It is notable that an increase in a secondary bile acid stimulates the farnesoid X re-
ceptor (FXR) expressed in the liver and intestine and leads to the release of fibroblast
growth factor (FGF) 19 in humans or FGF15 in mice, which improves insulin sensitivity
and hepatic lipid metabolism [47]. An interesting observation was made in Roux-en-Y
gastric bypass (RYGB) patients who showed increased postprandial bile acid and FGF19
response compared with obese controls [48]. This suggests a potential link between the
metabolic effects of secondary bile acids and weight loss. Secondary bile acids can also
activate the thiol guanosine receptor-5 (TGR5), boost muscle energy consumption, stimulate
the secretion of GLP-1 by endocrinal L cells, and suppress the dysbiosis of pathogenic
bacteria [49]. Furthermore, the interaction between GLP-1 and natural gut intraepithe-
lial T lymphocytes around the small intestine regulates an overabundance of dietary fat
and simple sugar systemic metabolism [50]. This microbial biotransformation included
bacteria belonging to the genera Bacteroides, Clostridium, Eubacterium, Lactobacillus, and
Escherichia [51]. A multicenter, double-blind, randomized, placebo-controlled, phase 3a
study on 283 patients with non-alcoholic steatohepatitis (NASH), with and without type
2 diabetes, demonstrated that 72 weeks of treatment with semisynthetic bile acid deriva-
tive obeticholic acid led to significant improvement in the NASH activity score [52]. In
addition, alteration of secondary bile acids metabolism inhibited bile acid synthesis in the
liver [53], the involvement of deamination, and regulated ammonia hepatic removal, which
may contribute to a reduction in hepatic ammonia accumulation underlying steatosis [54].
Abnormality of bile acids influences vasodilation and transcription of vasoactive molecules
via large conductance calcium-activated potassium channels, causing the risk of cardiovas-
cular disease [55]. Therefore, altering secondary bile acids can be a potential therapeutic
intervention for metabolic-associated fatty liver disease (MAFLD) and other metabolic
diseases. Furthermore, Figure 1 illustrates the mechanism of dietary prebiotics involving
the intestinal crosstalk of the gut microbiome and its metabolites in metabolic diseases.
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metabolic health or ecosystem in the gut microbiome [56]. For example, a meta-analysis
by He and colleagues did not find associations between beta-glucans and HbA1c, fasting
glucose, and fasting insulin in overweight individuals or those with T2D or hyperlipidemia.
However, the study did find associations between oats (which are high in oligosaccharides)
and the above variables [57]. This research underscores the need for a nuanced understand-
ing of food ingredients and their effects on gut microbiota and metabolic health. Food
elements that cannot be digested or absorbed by the host will leave bacteria as food, defined
as “prebiotics” [58]. The inter-individuals’ responses to prebiotics and gut microbiomes
require personalized nutrition strategies. For example, a human study investigated the rela-
tionship between the administration of Bifidobacterium strains and galato-oligosaccharides
(GOS) in obese adults; they did not find the synergism as a symbiotic effect [59]. Under-
standing the specific food ingredients, especially in carbohydrate polymers, can manipulate
the target microbiota for reversing dysbiosis. This understanding is not just theoretical but
has practical implications in managing metabolic diseases. Some short-chain carbohydrate
polymers, such as GOS and fructose-oligosaccharides (FOS), overlap with fiber. Apart
from common prebiotics, resistant starch, polyols, and other undigested disaccharides and
monosaccharides were partly digested or not fully absorbed by the small intestine and
then passed through the large intestine for the fermentation process by gut microbiota [60].
However, insulin-resistant individuals exhibit increased fecal monosaccharides, suggesting
that the dysbiosis in those individuals reduced the microbial carbohydrate metabolism [61].
In this review, we suggest that some poorly absorbed or indigestible carbohydrates promote
the SIM, which is beneficial for carbohydrate metabolism to manage metabolic diseases.
Figure 2 shows the classification of fermentable carbohydrates.

Biology 2024, 13, 498 6 of 21 
 

 

4. Current Evidence of Food for the Simulation of the SIM 
In the past, fiber was shown to be the most essential ingredient for allocating intesti-

nal microbiota. However, not all ingredients classified by the definition of fiber influence 
the metabolic health or ecosystem in the gut microbiome [56]. For example, a meta-analy-
sis by He and colleagues did not find associations between beta-glucans and HbA1c, fast-
ing glucose, and fasting insulin in overweight individuals or those with T2D or hyper-
lipidemia. However, the study did find associations between oats (which are high in oli-
gosaccharides) and the above variables [57]. This research underscores the need for a nu-
anced understanding of food ingredients and their effects on gut microbiota and meta-
bolic health. Food elements that cannot be digested or absorbed by the host will leave 
bacteria as food, defined as “prebiotics” [58]. The inter-individuals’ responses to prebiot-
ics and gut microbiomes require personalized nutrition strategies. For example, a human 
study investigated the relationship between the administration of Bifidobacterium strains 
and galato-oligosaccharides (GOS) in obese adults; they did not find the synergism as a 
symbiotic effect [59]. Understanding the specific food ingredients, especially in carbohy-
drate polymers, can manipulate the target microbiota for reversing dysbiosis. This under-
standing is not just theoretical but has practical implications in managing metabolic dis-
eases. Some short-chain carbohydrate polymers, such as GOS and fructose-oligosaccha-
rides (FOS), overlap with fiber. Apart from common prebiotics, resistant starch, polyols, 
and other undigested disaccharides and monosaccharides were partly digested or not 
fully absorbed by the small intestine and then passed through the large intestine for the 
fermentation process by gut microbiota [60]. However, insulin-resistant individuals ex-
hibit increased fecal monosaccharides, suggesting that the dysbiosis in those individuals 
reduced the microbial carbohydrate metabolism [61]. In this review, we suggest that some 
poorly absorbed or indigestible carbohydrates promote the SIM, which is beneficial for 
carbohydrate metabolism to manage metabolic diseases. Figure 2 shows the classification 
of fermentable carbohydrates. 

 
Figure 2. Categories of fermentable carbohydrates. Abbreviation: GOS: galacto-oligosaccharides, 
FOS: fructo-oligosaccharides. * Artificial compounds. 
Figure 2. Categories of fermentable carbohydrates. Abbreviation: GOS: galacto-oligosaccharides,
FOS: fructo-oligosaccharides. * Artificial compounds.

5. Soluble Non-Starch Carbohydrates (NSPs)

Soluble non-starch polysaccharides, notably pectin and psyllium, offer promising
health benefits due to their prebiotic properties. The role of NSP structure and function in
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health advantages such as antioxidants, anti-inflammatory, anti-diabetic, lipid-lowering,
and immunomodulatory effects have been well discussed [62–64]. In animal studies, pectin
has shown potential in reducing fasting glucose levels [65], liver steatosis [66], and serum
lipid profiles [67,68]. Pectin specifically favored the growth of Bacteroides and also increased
the species Lachnospira eligens and Faecalibacterium prausnitzii [69]. However, the effect of
pectin is less compelling in human studies. Another promising viscous fiber is psyllium,
which has been shown to be more effective at decreasing serum lipopolysaccharides, serum
triglycerides, and liver cholesterol than the anti-obesity drug (orlistat) by increasing the
relative abundance of Roseburia, Bacteroides, Faecalibacterium, and Coprobacillus [70]. Due to
its unique chemical structure, psyllium forms a viscous gel that binds to bile acids in the
gut and eliminates bile acids via the stools, thus reducing blood cholesterol concentrations.
Psyllium husk did not significantly reduce the fasting and postprandial glucose in animal
studies, but significant results were shown in human studies [71–73]. More importantly,
the significant cholesterol-lowering effects of psyllium were highly discussed. However,
none of the studies investigated the effect of psyllium on gut microbiota in individuals
with metabolic diseases.

6. Oligosaccharides

Oligosaccharides have been widely discussed and commonly used as prebiotics. As
discussed in the previous review [3], GOS and fructo-oligosaccharides (FOS) have been
widely used to treat metabolic diseases. Dietary GOS contain raffinose family oligosaccha-
rides and isomalto oligosaccharides (IMOs) that were correlated with lower body fat and
higher insulin sensitivity in individuals with impaired glucose tolerance [74]. In another
randomized controlled trial involving 29 patients with diabetes, GOS were associated
with an increased level of gut microbiota belonging to the bacterial family Veillonellaceae
(genus Akkermansia), which correlated inversely with glucose response [75]. Another type
of commonly known oligosaccharide is Mannan, which is converted by Galactomannan
polysaccharides (soluble fiber) during heating, involvement of hydration and swelling,
disruption of hydrogen bonds, gel formation, and increased viscosity in industrial pro-
cesses [76]. A recent in vitro fermentation study showed that Mannan-oligosaccharides
can stimulate the growth of Barnesiella, Odoribacter, Coprococcus, and Butyricicoccus and
increase SCFA production in a dose-dependent manner [77]. FOS are used separately as a
prebiotic; they reduce postprandial blood glucose response and increase GLP-1 and PYY
secretion [78,79]. In a meta-analysis, FOS supplementation was suggested to increase the
number of Bifidobacterium spp. However, it depends on the duration and dose manner [80].

7. Resistant Starch

Resistant starch (RS) has been suggested as a prebiotic used for the utility of resistant
starch in alleviating the burden of metabolic diseases by reconstructing gut microbiota. RS
is classified into five types (RS1-5): physically inaccessible, enzyme inaccessible, retrogra-
dation, chemically modified to complexed with lipid, and RS2-4, which can be degraded by
Ruminococcus bromii or Bifidobacterium adolescentis. This degradation process can facilitate
the regulation of intestinal motility, a key factor in maintaining gut health and potentially
influencing metabolic health, by promoting the secretion of PYY [81]. Examples from
animal studies suggested that RS increases Akkermansia and butyric acid, which are linked
to metabolic health, as mentioned before [82,83]. In a human study, RS administration
produced similar findings to those in animal studies; it reshaped the relative abundance of
Akkermansia, Ruminococcus, Victivallis, and Comamonas compared to the baseline [84]. The
protective effect of starch from Pueraria lobata to relieve non-alcoholic fatty liver (NAFLD)-
associated gut dysbiosis was linked to increased quantities of Lactobacillus, Bifidobacterium,
and Turicibacter and decreasing Desulfovibrio [85]. In a double-blinded, controlled study, RS4
significantly and clinically reduced blood glucose and insulin excursions compared with
refined wheat flour [86]. In another study comparing different types of RS, large amounts
of short-chain fatty acids with RS5 produced more butyric acid, and RS3 produced more
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lactic acid. Moreover, RS5 increased the relative abundance of Bifidobacterium, Dialister,
Collinsella, Romboutsia, and Megamonas [87] significantly.

8. Inulin

Inulin has shown the potential benefits of managing diabetes mellitus and obesity, [4]
but notably, the effects of inulin can vary among individuals. For instance, in a randomized,
double-blinded study of a dietary intervention with 4 g/day of inulin after 3 months,
individuals with diabetes showed an increased abundance of Faecalibacterium prausnitzii and
Akkermansia muciniphila accompanied by decreases in serum glucose and HbA1c [88]. This
outcome suggests a potential benefit of inulin in diabetes management. Furthermore, inulin
administration promoted the expansion of Bifidobacterium, Phascolarctobacterium, and Blautia
and reduced the opportunistic pathogens, such as Acinetobacter and Corynebacterium, in the
inulin-treated rats. This study showed that inulin regulated the fecal metabolites of indole-
3-acetic acid and kynurenic acid, whereas there were reduced levels of kynurenine and 5-
hydoxyindoleacetic acid [89]. These findings highlight the potential of inulin in modulating
gut microbiota and metabolic health. However, in a randomized, controlled, cross-over
study comparing the consumption of refined grain, inulin, and wheat germ (15 g/d),
the consumption of inulin caused no reduction in glucose AUC. Wheat germ (which
contains GOS) caused the greatest reduction in the greatest glucose AUC among the three
interventions [90]. This variability in outcomes underscores the need for further research
and individualized approaches. Another study indicated a non-significant improvement in
insulin levels and Homeostatic Model Assessment (HOMA) indices in individuals with
obesity, but it found significantly decreased total cholesterol and LDL cholesterol after
inulin supplementation [91]. Inulin also significantly decreased cannabinoid receptor-1 and
Patatin-like phospholipase-3 gene expressions in the liver, which are associated with total
NAFLD activity scores [92].

9. Disaccharides and Monosaccharides

Disaccharides or monosaccharides may not be absorbed because of a deficiency in
enzymes that digest lactose and fructose, which affect the gut microbiome. Lactose comes
from dairy products. The prevalence of lactose malabsorption ranges from 51% to 89%
in the Asian population [93]. The role of dairy products in human health has been exten-
sively studied [94,95]; daily consumption of milk has been associated with a lower risk of
cardiovascular diseases, colorectal cancer, metabolic syndrome, obesity, and osteoporosis,
as observed in 41 meta-analyses [95]. Some studies have suggested that low-fat milk and
yogurt are associated with a lower risk of diabetes [96]. However, mechanistic studies
are limited to the investigation of the effect of lactose on metabolic diseases. The current
evidence suggests that the hypoglycemic effects of lactose are based on the increased
protein intake from dairy products, which slow down sugar absorption [97]. A study
in Finland investigated the postprandial blood glucose and insulin responses to liquid
test meals in random order containing 40 g carbohydrates from milk, lactose, glucose, or
fructose. Equal amounts of energy were compared in 10 patients with type 2 diabetes,
and milk and lactose-based meals led to a similar glucose response, but there was a lower
insulin response in milk than with the lactose meal [98]. However, few limited studies
have investigated lactose and the gut microbiome. In an in vitro experiment investigating
microbiota from healthy volunteers, lactose was found to decrease the relative abundance
of Bacteroidaceae and increase lactic acid bacteria, specifically Lactobacillaceae, Entero-
coccaceae, and Streptococcaceae, and the health-promoting bacteria Bifidobacterium with
increased total SCFAs, specifically acetate. Lactose also enhances the prevalence of the
β-galactosidase gene [99], which expresses an essential glycoside hydrolase enzyme in
the human body. Furthermore, lactulose, a non-digestible sugar derived from lactose, is
also considered a prebiotic, increases the abundance of the SCFA-producing bacteria Lacto-
bacillus and Bifidobacterium, and suppresses the potentially pathogenic Escherichia coli [100].
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However, lactulose belongs to artificial sugars, and we discussed it as a prebiotic in the
previous review [100].

High fructose consumption in animal studies causes hepatic and extrahepatic insulin
resistance, affecting metabolic diseases such as obesity, diabetes, MAFLD, and high blood
pressure [101,102]. Fructose ingestion increased the relative abundance of Bacteroides fragilis
in mice, correlated with decreased secondary bile acid production [103]. However, the
evidence is less compelling in humans and larger animals [104–106], diverging across evolu-
tion because the liver and kidneys are the only gluconeogenic organs in humans; the small
intestine is not included as it does not express glucose-6-phosphatase (G-6-Pase) [107]. This
critical issue is important in translating experimental evidence from mice to humans. Moore
et al. conducted an oral glucose tolerance test (OGTT) of 75 g glucose with or without 7.5 g
fructose on healthy controls and patients with type 2 diabetes. Even when the additional
sugar dose increased by 10%, plasma glucose was reduced by 19% and 14% in healthy
individuals and those with diabetes, respectively [108]. Of note, patients with diabetes
experienced a reduction in plasma insulin (21%) when fructose was added [108]. Growing
evidence shows that consumption of sweetened beverages (either sucrose or a high fructose
corn syrup) is associated with increased body weight and postprandial triglycerides that
increase the occurrence of metabolic and cardiovascular disorders [109,110]. This condition
occurs because fructose is not absorbed from the gut as efficiently as the monosaccharide
alone due to the low GLUT5 and GLUT2 activities in response to fructose [111]. However,
we did not exclude the consideration that excessive fructose may increase insulin resistance
through the co-absorption of glucose during digestion processes in humans. This condition
can be observed in a study of healthy men who were administered a high dose of fructose
(200 g/d) added to their usual meal, thus increasing their ambulatory blood pressure,
triglycerides, fasting insulin, and HOMA indices. It also decreased HDL and resulted in
the de novo development of metabolic syndrome in 25% of them [112]. Therefore, there is
no unequivocal evidence that free fructose intake from natural foods is directly related to
adverse metabolic effects and unabsorbed fructose in the gut increased the SCFA-producing
genera Anaerostipes Coprococcus, Ruminococcus, and Erysipelatoclostridium in human stud-
ies [113,114] and the most abundant butyrate producer in the human gut is Faecalibacterium
prausnitzii, which also ferments fructose [115]. These findings suggest that fructose is a
two-edged sword depending on dose and nutrient co-absorption.

10. Polyols

Polyols, also known as sugar alcohols, are compounds being investigated for their
interactions with gut microbiota. Two common polyols, mannitol and sorbitol, are abundant
in mushrooms and several fruits and vegetables. It is worth noting that polyols are also used
to produce artificial sweeteners, such as lactitol and erythritol [116]. In a recent study, white
button or portobello mushrooms were fed to animals for 15 weeks. Both mushrooms, being
high in mannitol, significantly increased Verrucomicrobia and reduced Cyanobacteria [117].
More studies have explored the effects of mushroom polysaccharides (glycan and pectin)
on gut microbiota. In vitro simulation experiments have demonstrated that mushroom
polysaccharides promote the proliferation of beneficial bacteria, including Bacteroides and
Phascolarctobacterium [117]. This reaffirms the prebiotic effect of mushrooms and contributes
to a sense of their potential health benefits. Moreover, the polysaccharides inhibited the
growth of unfavorable bacteria, such as Escherichia–Shigella [117], and had similar results to
the intake of GOS in the previous session. While the effect of carbohydrate polymers from
mushrooms on gut microbiota is still debatable, their prebiotic effect is undeniable.

11. Evidence for Prebiotics or Potential Prebiotics and Metabolic Diseases

Based on this evidence, the quality of carbohydrates, rather than the quantity, relieves
metabolic diseases by regulating the gut ecosystem. This finding brings hope as it suggests
that increasing the carbohydrate quality can minimize the risk of developing diabetes and
other metabolic diseases [118]. For instance, a randomized cross-over study conducted on
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50 individuals with high risks of metabolic syndrome revealed that a whole grain diet (high
in oligosaccharides) led to a decrease in body weight, interleukin (IL)-6, and C-reactive
protein after 8 weeks of dietary intervention, particularly with the intake of rye [119], which
is rich in fructans. These positive outcomes bring a beacon of hope for health professionals,
nutritionists, researchers, and individuals interested in metabolic diseases.

11.1. Obesity

In a meta-analysis of the use of psyllium, it is effective in reducing body weight
and waist circumference [120]. Anti-obesity effects and inhibition effects of pathogenic
microbiota using the treatment of oligosaccharides were observed in genetically and diet-
induced obese animals, resulting in decreasing the inflammatory markers and reducing
adiposity [121]. Similar results were also consistent in human studies, which increased
the secretion of satiety hormones, decreased hepatic de novo lipogenesis, and eventually
decreased food intake and fat-mass development [122]. An example of this is when
individuals with diabetes add soluble fiber guar gum to their regular diet, which leads
to improvements in waist circumference, HbA1c, 24 h urinary albumin excretion, and
serum trans-fatty acids compared to their baseline levels. This also results in greater
weight reduction compared to a control group [123]. In a randomized cross-over trial in
healthy controls, resistant starch administration in controlled diets reduced the visceral
and subcutaneous fat areas, LDL, and increased the production of GLP-1 and acetate [84].
In a placebo-controlled study in younger ages, consumption of inulin was found to reduce
body weight, percent of body fat, and trunk fat compared to the baseline, but results were
similar to those of the dietary fiber group [124]. Inulin increases the abundance of the genus
Bifidobacterium and decreases Bacteroides vulgatus. In obese individuals, the pre-intervention
levels of Anaerostipes, Akkermansia, and Butyricicoccus drive the decrease of BMI in response
to inulin [125,126]. A meta-analysis and systematic review of cohort studies showed that the
risk of overweight and obesity decreased by 7–25% due to increased dairy products [126].

11.2. NAFLD

In animal studies, fructo-oligosaccharides were administered to investigate the prebi-
otic effects on the hepatic manifestation of metabolic syndrome. The results were significant,
showing a reduction of hepatic steatosis and liver inflammation [127,128]. This was ac-
companied by an increase in fecal short-chain fatty acid levels. This increase was linked
to the change in gut microbiota, specifically the increase in beneficial bacteria such as
Lactobacillales and Clostridium [127]. This change in gut microbiota is believed to play a
crucial role in the observed reduction of hepatic steatosis and liver inflammation. Similarly,
in a study of individuals with NAFLD, resistant starch administration led to a reduction
in intrahepatic triglyceride content after adjustments of weight loss and the abundance of
Bacteroides stercoris [129]. In a case-control study, fructose from fruits and vegetables was
found to be inversely proportional to the odds of NAFLD in the Iranian population [130].
However, a high fructose diet (classic 60% caloric intake) causes impaired glucose tolerance
and insulin resistance due to co-absorption with glucose, leading to increased sucrose
metabolism [131]. Although the adverse effects of fructose ingestion in mice are stronger
than in large animals or humans, it is crucial for individuals with NAFLD to be aware of
their dietary choices and not exceed a daily intake of 50 g of fructose [3,132].

11.3. Diabetes

The evidence from 35 randomized, controlled clinical studies indicates that psyllium
can significantly reduce fasting blood glucose and HbA1c levels [133]. Furthermore, it
suggests that psyllium has the added benefit of boosting antioxidant activities and trig-
gering signaling pathways that contribute to overall health. Psyllium effectively elevated
the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GPX), which are entire defense strategies of antioxidants to inhibit hypoxia/reoxygenation-
induced reactive oxygen species production and significantly enhanced the activation of



Biology 2024, 13, 498 11 of 21

the Akt/Nrf2/HO-1 signaling pathway [134]. Self-perceived lactose-intolerant respon-
dents had reported a substantially higher rate of diabetes and hypertension that is linked
to low intake of lactose suggested in these populations [135]. A current observational
study indicated that higher consumption of GOS was negatively correlated with body fat
and positively correlated with insulin sensitivity in prediabetes independent of physical
activity, macronutrients, and fiber intake [74]. In a randomized, double-blind, placebo-
controlled clinical trial, elderly patients with type 2 diabetes consumed milk powder
co-supplemented with inulin and resistant dextrin and had a greater reduction of blood
pressure and an increase in postprandial insulin and β-cell function index compared to
placebo for 12 weeks [136].

11.4. Metabolic Cardiovascular Diseases

Plenty of randomized clinical studies and meta-analyses have evaluated the effect
of psyllium on lipid levels and showed a significant improvement in systolic blood pres-
sure [137]. Similar to psyllium, another soluble NSP, arabinoxylan consumption reduced
fasting glucose, triglycerides, and apolipoprotein A-1 compared to placebo [138]. In a
double-blind, randomized, placebo-controlled, cross-over study on overweight individuals
with metabolic syndromes, GOS administration for 12 weeks decreased circulating choles-
terol, triacylglycerols (TAGs), and total to HDL cholesterol ratios [139]. In another similar
study, in which 10 g/day inulin treatment was given for three weeks in healthy individuals,
inulin administration also resulted in decreased blood TAGs and liver lipogenesis [140]. In
three large prospective cohorts in the US, a consistent result with a negative association
between fructose intake and incident hypertension was seen [106]. Higher dairy products
also showed negative associations with hypertension, either high or low-fat dairy [94],
which is rich in another disaccharide (lactose).

While many studies have focused on the effects of individual dietary components,
the potential synergistic effects of prebiotics in the gut microbiome remain a promising
yet unexplored area. This gap in our understanding presents an exciting opportunity for
further research, potentially uncovering new strategies for improving health outcomes.

12. Dietary Effect Is More Promising than Prebiotics Administration

Based on the above studies, prebiotics and potential prebiotics address metabolic dis-
eases. However, current evidence for prebiotic supplementation remains controversial. For
example, adding 20 g/d inulin administration to an already high-fiber diet did not provide
additional benefits on various physiological parameters, such as lipid profiles and body
weight [141]. Other studies also had similar results on supplementation with inulin and/or
FOS, which had no significant independent effects on fasting glycemia and insulinemia,
HOMA-IR index, or lipid profile [142–146]. In a randomized controlled trial in individuals
with type 2 diabetes, who were randomized to a prebiotic (galacto-oligosaccharide mixture)
or placebo (maltodextrin) supplement for 12 weeks, GOS supplementation had no signif-
icant effects on clinical outcomes or bacterial abundance compared with a placebo [75].
This result may be linked to natural prebiotics rather than supplementation in altering
regional gut transit time [147]. It is a direct way of preventing the over-absorption of
macro/micronutrients and is secondary to systemic chronic inflammation and immune
response [148]. Thus, diets containing potential prebiotics may maximize the regional gut
transit time, thus increasing the reaction rate of gut microbiota [149]. An example of a
feeding study measuring gastric emptying time in healthy controls who consumed liquid
and solid breakfasts showed that both meals contained the same energy and fiber. Still,
the solid meal had a longer gastric emptying time than the liquid meal, and individuals
also felt less hungry on a solid diet [150]. However, limited studies have compared supple-
mentation with prebiotics and dietary prebiotics in individuals with metabolic diseases.
The importance of a personalized diet is geographic and cultural [151]. Due to species’
structure variance across geographies, examining food ingredients and microbiota in the
local region is essential [152].
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In summary, different types of prebiotics have been found to have specific effects on
metabolic parameters. Soluble NSPs and inulin, for example, have been correlated with
improved lipid profiles, weight loss, and blood pressure. GOS, on the other hand, have
been associated with insulin sensitivity and weight loss. Resistant starch and fructans
have shown a relationship with hepatic parameters, such as ALT and AST [153]. It is also
worth noting that other short-chain carbohydrates interact highly with the gut microbiome.
Table 1 contains examples of natural foods with high fermentable carbohydrate content and
shows how they can impact the microbiome [3]. Including more of these natural prebiotics
in our regular diet could be a new dietary approach to help manage metabolic diseases.

Table 1. Category of high fermentable carbohydrate content in natural foods and alteration of the
microbiome. ↓ indicates the reduction of the relative abundance of the gut microbiome.

Soluble NSP Oligosaccharides Resistant Starch and Inulin Di- and Mono-Saccharides Polyols

Oat bran Wheat Lentils Dairy Mushrooms
Barley Pulses Oats Some Fruits (Apples, pears, etc.) Cherry
Seeds Figs Barley Dates

Apples Garlic Banana
Oranges Onion
Carrots Nuts

Genus [70] Genus [77,80] Genus [84,85,87] Family [99] Family [117]

Bacteroides Akkermansia Akkermansia Bacteroidaceae Verrucomicrobia
Roseburia Barnesiella Ruminococcus Lactobacillaceae Phylum [117]

Coprobacillus Odoribacter Victivallis Enterococcaceae ↓ Cyanobacteria
Species [69] Coprococcus Comamonas Streptococcaceae Genus [117]

Lachnospira eligens Butyricicoccus Lactobacillus Genus [113,114] Bacteroides
Faecalibacterium prausnitzii Bifidobacterium Bifidobacterium Anaerostipes Phascolarctobacterium

Turicibacter Coprococcus ↓ Escherichia-Shigella
Phascolarctobacterium Ruminococcus

Blautia Erysipelatoclostridium
↓ Desulfovibrio

13. Comparison between Current Dietary Therapies on Metabolic Diseases

Specific dietary modifications improve the food quality or change macronutrient
distribution, showing beneficial effects on metabolic syndrome conditions and individual
parameters. These specific nutritional modifications include the Mediterranean, plant-
based, and dietary approaches to stop hypertension (DASH) diets as the paradigm for
metabolic syndrome prevention and treatment [154–156]. However, the most effective
dietary pattern for its management has not been established, and those dietary interventions
are similar regarding high fiber intake, vitamins, minerals, and polyphenols. The potential
prebiotic effects of these dietary interventions have yet to be thoroughly studied. The
number of prebiotics must be considered an essential ingredient for optimal results in
managing metabolic diseases. For example, the quantity of prebiotics can vary for those
with the same fiber content. Furthermore, a more direct glycemic manipulation is a low-
carbohydrate diet [157]. The short-term effects (less than 6 months) of a low-carbohydrate
diet are efficacious for the reduction in fat mass and remission of type 2 diabetes; however,
there is a diminishment of weight loss and metabolic cardiovascular benefits beyond
6 months [157]. A long-term effect of the low-carbohydrate diet was associated with a higher
risk of all-cause mortality based on 272,216 individuals in observational studies and large-
scale trials [158]. This result may be due to an increased mortality rate when carbohydrates
were exchanged for animal-derived fat or protein, but there was decreased mortality when
they were exchanged with plant-based sources [159]. This outcome also confirmed the
importance of the quality of carbohydrate intake. Still, these diets are hardly quantified and
may cause malnutrition [160]. The SIM diet may encompass its immunomodulatory effects,
biological impacts, and underlying molecular mechanisms [161] to solve this problem.

14. Adverse Effects on Gastrointestinal Symptoms and Tolerance

Doubtless, there are two sides to every coin. As prebiotics and potential prebiotics
interact with the gut microbiome, luminal gas production and osmotic effects caused by
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fermentation in the gut may cause more gastrointestinal symptoms, such as diarrhea, bloat-
ing, borborygmi, belching, and nausea or vomiting. Notably, NSPs and resistant starch
cause few GI symptoms [162], whereas shorter chains of carbohydrates cause more [163]. A
meta-analysis of findings from 103 clinical trials in adults without gastrointestinal disease
who reported gastrointestinal effects, including those involving tolerance (e.g., bloating,
flatulence, and borborygmi/rumbling) and function (e.g., transit time, stool frequency, and
stool consistency), suggested that different types of NSPs and fermentable carbohydrates
should have tolerable intake dose recommendations for their consumption [164]. Moreover,
depending on their psychological conditions, individuals may have different levels of gas-
trointestinal tolerance [165]. Dietitians and health professionals must proactively inquire
about the increased intake of natural prebiotics for individuals with metabolic diseases.
This proactive approach can help reduce the chances that patients will discontinue their
medication when they experience common gastrointestinal symptoms with suitable foods.
It will also potentially improve patients’ overall health and well-being. Furthermore, the
gut microbiome affects virtually all metabolic diseases. However, the understanding of
mechanisms of dietary manipulation, including the role of the microbiota and its metabo-
lites and other chemical components, varies considerably from one benefit area to the
other. This review helps us better understand the mechanisms of new natural food therapy
in addressing the SIM and how it interacts with the gut–organ axis. The findings call
for further coordinated state-of-the-art clinical research to elucidate the mechanisms of
interaction between food and the body (host) to document the gut microbiome effects on
metabolic diseases.

15. Conclusions

Understanding the role of natural prebiotics in managing metabolic diseases is a
key area for future research. This holistic SIM approach to dietary recommendations
can potentially yield more tailored and effective dietary approaches for individuals with
metabolic diseases. By delving into underlying mechanisms and therapeutic potential, we
can identify more targeted and personalized approaches to metabolic disease management.
However, further well-designed large-scale interventional studies are urgently needed to
ensure the generalizability of these findings and to fully understand the potential of natural
prebiotics in managing metabolic diseases.
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Abbreviations

AUC area-under-the-curve
SIM specific intestinal microbiome
SCFAs short-chain fatty acids
NAFLD non-alcoholic fatty liver disease
TLR toll-like receptors
GPR G protein-coupled receptor
HDAC histone deacetylase
GLP-1 glucagon-Like Peptide-1
PYY peptide YY
HOMA Homeostatic Model Assessment
GOS galacto-oligosaccharides
FOS fructo-oligosaccharides
MAFLD metabolic-associated fatty liver disease
FGF fibroblast growth factor
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FXR farnesoid X receptor
TGR5 thiol guanosine receptor-5
TUDCA tauroursodeoxycholic acid
GDCA glycodeoxycholic acid
Hs-CRP high sensitivity C-reactive protein
ROS reactive oxygen species
Akt protein kinase B
p38 mitogen-activated protein kinases
ERK extracellular signal-regulated kinase 1
TNF-α tumor necrosis factor Alpha
IL interleukin
NOD2 nucleotide-binding oligomerization domain-containing protein 2
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
JNK Jun N-terminal kinase
CPT1 carnitine palmitoyltransferase
PPAR α Peroxisome proliferator-activated receptor alpha
NASH non-alcoholic steatohepatitis
SOD superoxide dismutase
CAT catalase
GPX glutathione peroxidase
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