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Abstract: Cardiac pacemakers are used for handling bradycardia, which is a cardiac rhythm of usually
less than 60 beats per minute. Therapeutic dual-sensor pacemakers aim to preserve or restore the
normal electromechanical activity of the cardiac muscle. In this article, a novel intelligent controller
has been developed for implanted dual-sensor cardiac pacemakers. The developed controller is
mainly based on intuitionistic fuzzy logic (IFL). The main advantage of the developed IFL controller
is its ability to merge the qualitative expert knowledge of cardiologists in the proposed design
of controlled pacemakers. Additionally, the implication of non-membership functions with the
uncertainty term plays a key role in the developed fuzzy controller for improving the performance of
a cardiac pacemaker over other fuzzy control schemes in previous studies. Moreover, the proposed
pacemaker control system is efficient for managing all health-status conditions and constraints
during the different daily activities of cardiac patients. Consequently, the healthcare of patients with
implanted dual-sensor pacemakers can be efficiently improved intuitively.

Keywords: cardiac diseases; dual-sensor pacemakers; intelligent control; intuitionistic fuzzy logic

1. Introduction

The sinoatrial (SA) is the biological heart pacemaker and is responsible for generating
electrical signals that cause contraction of the atria. It passes through the atrioventricular
node, together with the heart conduction system and His-Purkinje fibers, to the ventri-
cles [1]. Thus, a normal heartbeat rhythm depends on the normal activity of the sinoatrial
node, and any failure in these systems may lead to heart abnormalities, such as bradycardia
diseases [2]. Heart rhythm abnormalities and heart failure patients are mainly treated using
pacemakers and defibrillators [3]. In 2023, it is expected that 1 to 1.4 million pacemakers
will be implanted worldwide [4,5].

Cardiac pacemakers are implanted as depicted in Figure 1. They are used for handling
bradycardia, which is a cardiac rhythm usually less than 60 beats/min. The pacemakers
aim to restore the normal electromechanical activity of the heart by generating electrical
pulses [6]. Sending an electrical pulse to both ventricles to aid them in beating in a more
coordinated and synchronized mode recovers the normal ventricular contractility and
improves the pumping efficiency of the heart [7]. The main components of traditional
pacemakers are pacing leads and a pulse generator [2]. The pulse generator includes the
battery of the pacemaker in addition to the circuits that transfer stimulation to the heart
only in case of arrhythmia. Pacemaker leads are electrical conductors covered by insulators.
The electrical impulses are carried by the leads from the pacemaker to the heart and the
sense amplifiers signal from the heart to the pacemaker [7].
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Figure 1. Implanted pacemaker with pacing leads connected to the heart. 

The technology of cardiac pacemakers has rapidly advanced since the first pace-
maker implantation in the 1950s [8], including the quality of pacemaker leads, monitoring 
methods, control algorithms, and responsive programming for pacing rates. Different 
pacemaker types can be classified depending on many viewpoints. Pacemakers can be 
with or without leads, which are very small devices to be placed within the heart to avoid 
the use of pacing leads. Pacemakers have internal batteries or can harvest energy remotely 
by using an external battery pack.  

Heart diseases are some of the most widespread diseases globally. Therefore, im-
plantable cardiac devices are needed to monitor and control heart rates, communicating 
with medical experts to achieve some therapeutic procedures if the behavior of a patient’s 
heart becomes abnormal in real time [9–11]. Hence, the development of advanced pace-
maker control has recently acquired significant attention from researchers. The suggested 
approaches for controlling the artificial pacemaker have concentrated mainly on using 
classical linear system theory [12,13], analog spiking neural network [14], and radial basis 
function (RBF) neural network [15], and different schemes of optimal controllers have 
been proposed [16,17]. However, the above controllers are still limited to accurate and 
linearized models of the heart. 

Fuzzy logic has been applied in medical applications and diagnosis [18] to overcome 
complex modeling and parameter uncertainty. The basic idea of fuzzy logic control (FLC) 
is to qualitatively merge the knowledge of expert physicians into the design procedure of 
automated medical systems [19,20]. However, traditional fuzzy controllers cannot always 
give good control actions with respect to the degree of non-membership of all elements in 
fuzzy sets to manage the system uncertainty [21]. Hence, Atanassov [22] proposed the 
intuitionistic fuzzy set (IFS) to provide a new general fuzzy framework, comprising both 
membership and non-membership function degrees at the same time. The IFS has been 
utilized in medical applications and decision making successfully [23,24].  

In this article, we aim to propose a new IFL control to regulate implanted dual-sensor 
pacemakers under different daily activities. The following summarizes the contributions 
of this study: 
• Proposing a novel IFLC of implanted pacemakers to regulate heart rates during the 

daily activities, i.e., at rest, walking, and jogging, of cardiac patients; 
• Investigating the robust capabilities of our proposed IFLC to verify the safe health 

conditions of patients with pacemakers during daily activities; 
• Conducting a comparative study among the current state-of-the-art control methods 

of dual-sensor pacemakers to validate the outperformance of the proposed IFLC.  

Figure 1. Implanted pacemaker with pacing leads connected to the heart.

The technology of cardiac pacemakers has rapidly advanced since the first pacemaker
implantation in the 1950s [8], including the quality of pacemaker leads, monitoring methods,
control algorithms, and responsive programming for pacing rates. Different pacemaker
types can be classified depending on many viewpoints. Pacemakers can be with or without
leads, which are very small devices to be placed within the heart to avoid the use of pacing
leads. Pacemakers have internal batteries or can harvest energy remotely by using an
external battery pack.

Heart diseases are some of the most widespread diseases globally. Therefore, im-
plantable cardiac devices are needed to monitor and control heart rates, communicating
with medical experts to achieve some therapeutic procedures if the behavior of a patient’s
heart becomes abnormal in real time [9–11]. Hence, the development of advanced pace-
maker control has recently acquired significant attention from researchers. The suggested
approaches for controlling the artificial pacemaker have concentrated mainly on using
classical linear system theory [12,13], analog spiking neural network [14], and radial basis
function (RBF) neural network [15], and different schemes of optimal controllers have been
proposed [16,17]. However, the above controllers are still limited to accurate and linearized
models of the heart.

Fuzzy logic has been applied in medical applications and diagnosis [18] to overcome
complex modeling and parameter uncertainty. The basic idea of fuzzy logic control (FLC)
is to qualitatively merge the knowledge of expert physicians into the design procedure of
automated medical systems [19,20]. However, traditional fuzzy controllers cannot always
give good control actions with respect to the degree of non-membership of all elements
in fuzzy sets to manage the system uncertainty [21]. Hence, Atanassov [22] proposed the
intuitionistic fuzzy set (IFS) to provide a new general fuzzy framework, comprising both
membership and non-membership function degrees at the same time. The IFS has been
utilized in medical applications and decision making successfully [23,24].

In this article, we aim to propose a new IFL control to regulate implanted dual-sensor
pacemakers under different daily activities. The following summarizes the contributions of
this study:

• Proposing a novel IFLC of implanted pacemakers to regulate heart rates during the
daily activities, i.e., at rest, walking, and jogging, of cardiac patients;

• Investigating the robust capabilities of our proposed IFLC to verify the safe health
conditions of patients with pacemakers during daily activities;

• Conducting a comparative study among the current state-of-the-art control methods
of dual-sensor pacemakers to validate the outperformance of the proposed IFLC.
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The technological advancements of pacemakers have evolved from steady rate to
complicated rate-responsive pacemakers in the last few years. Implanted pacemakers
sense heart arrhythmias and transmit electrical pulses to stimulate the cardiac muscle
and control the performance of the heart pacing [25]. Automated control algorithms
have been proposed to improve the efficiency of pacemakers in previous studies. The
performance of implanted pacemakers can be classified according to the control ap-
proaches and the system variables as open-loop [26] or closed-loop [27–29] controllers.
For instance, Arunachalam et al. [9] presented a fractional-order proportional–integral–
derivative FOPID control of pacemakers to provide the required control signals to organize
the cardiac pacing rhythms. Although the proposed FOPID controller is suitable for rate-
adaptive pacing, its design is essentially based on selective tuning processes. Also, a
proportional–integral–derivative (PID) scheme was proposed to control the heart rate of
a pacemaker [30]. It is represented through a loop consisting of the Massachusetts Insti-
tute of Technology (MIT) rule with a delta rule and an adaptive correction factor. This
proposed PID controller achieved a good transient response in a simulation study, but the
adaptive correction factor of the learning rate must be adjusted manually to achieve the
stabilized pacing performance. A backstepping control scheme was developed to improve
the pacemakers’ performance in managing heart rates by using RBF networks [15]. The
RBF network controller has been confirmed by using 12 cases in four arrhythmias patients.
However, the RBF-based backstepping controller is complex and should be manually tuned
to achieve targeted pacing rates.

Nawikavatan et al. [16] presented a metaheuristic optimization algorithm to enhance
the performance of proportional–integral–derivative–accelerated (PIDA) for controlling
the cardiac pacemaker in the cardiovascular system. The spiritual search has been used for
tuning both the parameters of the traditional PID and the proposed PIDA control schemes.
The results showed that the dynamic response of PIDA control is better than that of a
conventional PID for the heart-rate regulation of the pacemaker.

Wojtasik et al. [31] described a brief work of fuzzy logic controller algorithms on
hardware implementation for adaptive heart rates. This controller was executed on a CPU
and mixed-mode VLSI chip to verify that the pacemaker can be implemented with minimal
power consumption. Nevertheless, the main drawback is the comparatively high-power
consumption using a commercial CPU core. PID combined with traditional fuzzy control is
utilized for designing a control algorithm for the dual-sensor pacemakers [32]. For patients
with bradycardias at rest, the suggested fuzzy PID control of pacemakers is utilized. The
simulation results showed that this fuzzy PID control is efficient for heart-rhythm recovery,
but it is still limited for other body activities, such as jogging cases. Recently, the authors
in [33] proposed a robust fractional-order PID (PIλDδ) controller dependent upon a particle-
swarm optimization (PSO) algorithm for a pacemaker to control the arrhythmias of cardiac
patients. Also, Nako et al. [34] used a fractional-order PID (PIλDµ) controller to achieve
a minimum active component count design to apply in cardiac pacemakers based on
simulation experiments. Nevertheless, our study focuses on the development of a novel
controller of implanted dual-sensor pacemakers to handle the uncertainty of all possible
body activities, such as walking and jogging.

2. Methods
2.1. Mathematical Pacemaker Model

This study used the mathematical SA model by Yanagihara, Noma, and Irisawa
(YNI) [35]. The YNI model is a good SA model for representing the generation and
propagation of the electrical action potentials in the cardiac muscle. It is used efficiently in
the numerical simulation of heart electroactivity of SA cells, which are more physiologically
relevant models than other mathematical models. In Figure 2, the YNI model simulates the
biopotential activity of the heart. This model includes one time-independent current and
five dynamic currents. The first is the cell membrane capacitance current Ic, the sodium
current INa, the slow inner current Is, the potassium current IK, and the delayed inner
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current activated by hyperpolarization Ih, ensuring the conservation of transmembrane
currents, in units of (µA/cm2). The second is the time-independent one, which is leakage
current Il. The YNI model output response is V (mV), which illustrates the membrane
potential is given in (1); where Cm (µF/cm2) presents the myocardial membrane capacitance
and Iapp is the applied external current.
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Iapp = Cm
dV
dt

+ INa + IK + Il + Is + Ih (1)

Then, the SA model can be simplified to

Cm
dV
dt

+
V

Rm
= Iapp (2)

where Rm presents the myocardial membrane resistance. For the pacemaker, the pulse
current Ipulse (t) is equal to Iapp which passes through the resistance Rpulse to produce the
voltage Vpulse, and the total transferred energy ET can be calculated for a single pulse
through the duration dpulse by

ET =
dpulseV2

pulse

Rpulse
(3)

The correlated transferred energy ET of the implanted pacemaker and the optimal
signal pulse have been estimated previously in [36], such that Rm = 20 Ω, Rpulse = 601 Ω,
and Vpulse = 197.8 mV. The delay time duration is 0.094 s for recovering each heartbeat.
In this study, the pulse duration dpulse represents the control signal to the cardiac pacemaker
to obtain the targeted heart rates during different body activities.

2.2. Intuitionistic Fuzzy Sets

Atanassov [37] proposed an intuitionistic fuzzy set (IFS) to generalize traditional fuzzy
sets by adding a hesitancy or uncertainty element, linking the fuzzy membership function
with the opposite non-membership function. This section gives some basics and concepts
of IFS to explain the contributions of our developed pacemaker control system as follows.
Let A∗ ⊂ Y be a crisp and fixed set. An IFS A in Y is determined by

A = {⟨x, δA(x), βA(x)⟩|x ∈ Y} (4)

which is characterized by a membership degree δA(x) and non-membership degree βA(x)
where δA(x) : Y → [0, 1] βA(x) : Y → [0, 1] , such that

0 ≤ δA(x) + βA(x) ≤ 1 ∀x ∈ Y (5)
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The uncertainty or hesitancy of the element x ∈ Y to the IFS A is given in (7), where
σA(x) is the degree of uncertainty of x ∈ Y. The IFS A is reduced to a traditional fuzzy set if
σA(x) = 0, ∀x ∈ Y.

σA(x) = 1 − δA(x)− βA(x) , ∀x ∈ Y (6)

Let a = (δa, βa), a1 = (δa1 , βa1), and a2 = (δa2 , βa2) be three intuitionistic fuzzy
numbers (IFNs) to determine the following four operational rules:

a1 ⊗ a2 = (δa1 δa1 , βa1 + βa2 − βa1 βa2) (7)

aγ =
(
δ

γ
a , 1 − (1 − βa)

γ) (8)

na =
(
1 − (1 − δa)

n, βn
a
)

(9)

a1 + a2 = (δa1 + δa2 − δa1 δa2 , βa1 βa2 ) (10)

Let a = (δa, βa) and b = (δb, βb) be two intuitionistic fuzzy suggestions and δa, βa, δb,
βb ∈ Q holding the constraints: δa + βa ≤ 1 and δb + βb ≤ 1. Then, the suggestions a and b
processes, conjunction (

∧
), disjunction (∨), implication (→) and standard negation (¬),

are given by
a ∧ b = (min(δa, δb), min(βa, βb)) (11)

a ∨ b = (max(δa, δb), max(βa, βb)) (12)

a → b = (max(βa, δb), max(δa, βb)) (13)

¬ b = (βa, δa) (14)

The graphical representation of a triangular intuitionistic fuzzy set is shown in Figure 3.

Assuming the IFN
∼
A =

(
al , am, au; cl , am, cu

)
such that cl ≤ al ≤ am ≤ au ≤ cu and cl, al,

am, au, cu∈ R. The mathematical description of membership function δÃ(x) and non-
membership function βÃ(x) are defined as

δÃ(x) =



0, x ≤ 0

x−al

am−al , al < x ≤ am

au−x
au−am , am ≤ x < au

0, x ≥ au

(15)

βÃ(x) =



1, x ≤ cl

x−am

cl−am , cl < x ≤ am

am−x
am−cu , am ≤ x < cu

1, x ≥ cu

(16)

The basic workflow of an intuitionistic fuzzy logic controller (IFLC) is shown in
Figure 4. The error signal, which computes as a crisp input value the difference between
the desired heartbeats and the actual sensor output, is the input of the IFLC. Typically, the
IFLC produces a real output value that provides the necessary control signal. Intuitionistic
fuzzification, an intuitionistic fuzzy inference system (FIS) with an if–then rule base, and
intuitionistic defuzzification are the main elements of IFLC [24,38]. The error signal is
scaled by gain Ke in the intuitionistic fuzzification stage and then allocated to each IFS
in a given input universe of discourse x∈ R with a membership function δ and non-
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membership function β of the interval [0, 1]. The knowledge rule base of the inference
engine is constructed by a set of ith intuitionistic if–then rules in (18).

Rδ
i : i f x1 is Aδ

1,i AND x2 is Aδ
2,i AND · · · AND xn is Aδ

n,i
THEN zδ

1 is Bδ
1,i AND · · · zδ

m is Bδ
m,i

Rβ
i : i f x1 is Aβ

1,i AND x2 is Aβ
2,i AND · · · AND xn is Aβ

n,i

THEN zβ
1 is Bβ

1,i AND · · · zβ
m is Bβ

m,i

(17)
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For all M fuzzy rules Ri, i = 1, 2, . . ., m, FISδ and FISβ give the resulted outputs zδ and
zβ based on the membership function δB and non-membership function βB, respectively,
using the Center-of-Gravity (COG) defuzzification step [26,38]. In the end, the overall crisp
output or the control signal u of the IFLC in (19) presents a linear collection of zδ and zβ

with the uncertainty value σc, where 0 ≤ σc ≤ 1. The scaling output gain Ku is carefully
selected to achieve the desired system response.

uc = Ku

(
(1 − σc)zδ + σczβ

)
(18)
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2.3. Developed Controller of Dual-Sensor Pacemakers

Figure 5 presents the workflow of the developed IFC to regulate dual-sensor pace-
makers. Two inputs of the IFC are the error and the change in error signals, which are
scaled by the gains, Ke and Kce, respectively. The error signal represents the difference
between the actual heart rate and the desired value of heart rates according to the body
status. The control signal of the developed IFC is the duration of the pulsed heart rate to
be generated by the cardiac pacemaker. Figure 6 depicts the triangular IFS functions of
both fuzzification and defuzzification steps. They include three subsets of linguistic terms,
which are Negative (N), Zero (Z), and Positive (P) on the normalized input and output
ranges from −1 to +1. We assumed the uncertainty or hesitancy value is 0.0001 as given in
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(7). To generate intuitionistic fuzzy output, the if–then rule base of the intuitionistic fuzzy
engine is designed as illustrated in Table 1.
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Table 1. Developed fuzzy rules for regulating dual-sensor pacemakers.

Change of Error (ce)
Error (e)

Negative Zero Positive

Negative Negative Negative Zero
Zero Negative Zero Positive

Positive Zero Positive Positive

3. Results and Evaluation

All simulation tests of the developed IFLC of the dual-sensor pacemaker have been
implemented and executed by using the MATLAB/Simulink® R2023b software and Fuzzy
Logic ToolboxTM V23.2. The parameters of the developed IFLC were manually adjusted
to ensure reliable performance during all tested cases of dual-sensor pacemakers. These
parameters are scaling input-output gains, Ke = 0.75, Kce = 0.75, and Ku = 100.0, as shown
in Figure 5. The hesitancy value σc is 0.0001.

Table 2 illustrates all targeted or preset heart rates of six patients during three daily
body activities, i.e., at rest, walking, and jogging [13,30,39,40]. The tested data of cardiac
patients include six cases of three females and three males between 45 and 66 years old.
Average preset heart rates are 86.2 ± 5.17 bpm at rest, 96.8 ± 4.8 bpm for walking, and
112.2 ± 4.5 bpm for jogging. The minimum preset heart rate is defined for case 6, as
80 ± 5 bpm at the rest activity, while the maximum preset heart rate is 122 ± 5 bpm during
the jogging case 4, as given in Table 2.



Bioengineering 2024, 11, 691 8 of 15

Table 2. Desired heart rates of six tested cases during daily body states.

Cardiac Patient (Sex, Age (Years))
Desired Heart Rates (bpm)

At Rest Walking Jogging

Case1 (Female, 66) 81 ± 5 94 ± 5 107 ± 5
Case 2 (Male, 54) 89 ± 5 98 ± 5 113 ± 5
Case 3 (Male, 48) 90 ± 5 100 ± 5 120 ± 5

Case 4 (Female, 45) 92 ± 5 103 ± 5 122 ± 5
Case 5 (Female, 58) 85 ± 6 92 ± 4 103 ± 3
Case 6 (Male, 62) 80 ± 5 94 ± 5 108 ± 4

In this study, all pacemaker pulses have a constant amplitude of ±0.165 mA, but the
corresponding duration is variable to represent the control action of the developed IFLC.
The control signal to a pacemaker typically has a duration that is inversely proportionate
to the target heart rates. Figures 7–12 depict the tracking results of six tested patients’
preset heart rates during three daily activities—walking, running, and resting—using the
developed IFLC of the implanted pacemaker. In Figure 7, the controlled pulse duration of
the dual-sensor pacemaker for case 1 is 0.53 to 0.79 s to manage the heart rates of 113 to
76 bpm during three body activities. The preset heart rates of case 4 are the highest values
among all the tested cases, as listed in Table 2. Therefore, the minimum pulse durations
of the controlled pacemaker are produced, which are 0.65, 0.59, and 0.49 s for the body
activity status at rest (92 bpm), walking (102 bpm), and jogging (122 bpm), respectively, as
depicted in Figure 10. The developed controller of the implanted dual-sensor pacemaker
showed a successful pacing-rate response for all tested cases to achieve the longest pulse
duration of 0.79 s at the rest states of cases 1 and 6 (see Figures 7 and 12), while the shortest
pulse duration of 0.49 s is produced for cases 3 and 4 at the jogging states, as shown in
Figures 9 and 10. That allows the heart to provide the patient’s body with sufficient blood
amount according to the daily activity.
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Figure 12. Results of the tested case 6 using developed pacemaker control: (a) at rest; (b) walking;
and (c) jogging.

To emphasize the benefits and accurate performance of our developed controller,
Table 3 compares the developed IFLC against other fuzzy and neural network controllers
in previous studies [15,39,40] utilizing the same pacemaker model and the preset heart
rates of all tested cases. The performance results of the RBF neural network controller [15]
are not available for cases 5 and 6, but other data results demonstrate the general behavior
of adaptive RBF networks for controlling dual-sensor pacemakers. The developed IFLC
achieved the smallest values of the root mean squared error (RMSE) in the range of 0.17 for
case 6 at the rest state to 0.26 for case 4 at the jogging state; see Table 3. The RBF neural
network control achieved better maximum error values than the developed controller for
most cases at the rest and the jogging states. However, the developed IFLC is still capable
of achieving the lowest values of the maximum errors for tracking the preset heart rates in
almost all walking cases less than 1.85%, as illustrated in Table 3.

Table 3. Comparative evaluation of the developed IFLC versus other closed-loop controllers in
previous studies.

Control
Method

Patient
At Rest Walking Jogging

RMSE Maximum Error RMSE Maximum Error RMSE Maximum Error

Classical
Fuzzy [39,40]

Case 1 2.38 4.88% 3.72 7.29% 6.40 8.26%
Case 2 2.07 3.45% 4.24 6.34% 3.39 5.31%
Case 3 3.14 5.38% 4.73 6.86% 2.76 4.35%
Case 4 3.47 6.45% 3.36 4.08% 2.67 4.27%
Case 5 1.81 2.63% 2.68 2.84% 2.68 5.01%
Case 6 2.51 4.82% 2.27 3.91% 2.45 3.21%



Bioengineering 2024, 11, 691 12 of 15

Table 3. Cont.

Control
Method

Patient
At Rest Walking Jogging

RMSE Maximum Error RMSE Maximum Error RMSE Maximum Error

Fuzzy PID
[39,40]

Case 1 1.19 2.63% 1.14 2.27% 1.27 1.96%
Case 2 0.91 2.30% 0.95 2.15% 1.23 2.77%
Case 3 0.89 2.63% 0.87 2.08% 0.62 1.71%
Case 4 1.09 2.13% 0.76 1.47% 0.64 1.71%
Case 5 0.89 1.72% 1.35 2.27% 1.44 2.51%
Case 6 0.82 1.92% 1.15 2.23% 0.66 0.94%

RBF Neural
Network [15]

Case 1 0.64 1.68% 0.54 0.57% 0.90 1.13%
Case 2 0.45 1.22% 0.68 0.64% 0.80 0.54%
Case 3 0.49 1.68% 0.53 1.07% 0.71 0.43%
Case 4 0.44 0.78% 0.51 0.99% 0.74 0.56%
Case 5 – – – – – –
Case 6 – – – – – –

Developed
IFLC

Case 1 0.21 * 1.62% 0.21 1.85% 0.23 2.21%
Case 2 0.21 1.60% 0.21 1.41% 0.25 1.55%
Case 3 0.20 1.76% 0.22 0.78% 0.25 1.00%
Case 4 0.21 1.23% 0.23 0.49% 0.26 1.00%
Case 5 0.20 2.35% 0.21 1.60% 0.23 2.12%
Case 6 0.17 1.58% 0.22 1.64% 0.24 2.38%

* Bold values indicate the best performance result of the controlled pacemaker.

4. Discussion

Automatic closed-loop control of dual-sensor pacemakers has been successfully
achieved using our developed IFLC on six cardiac patients during three daily activities, i.e.,
at rest, walking, and jogging, as shown in Figures 7–12. The developed IFLC demonstrated
accurate results for tracked preset heart rates at any tested body condition. The implication
of the non-membership functions with the uncertainty term σc, as given in (17) and (18),
plays a key role in the designed IFLC for improving controlled pacemakers over traditional
fuzzy and fuzzy PID controllers in previous studies, as depicted in Figure 5 and Table 3.
That allows an adaptive estimation of the pacemaker pulse duration, which is the control
signal of the developed fuzzy controller in response to the body activity of patients.

The RMSE and maximum errors have been used as performance evaluation metrics of
implanted pacemaker controllers [13,39]. In Table 3, the developed IFLC showed superior
averaged performance over other types of fuzzy and RBF network controllers to regulate
different pacing rates. The developed IFLC achieved significantly better performance than
traditional fuzzy and fuzzy PID controllers by reducing the RMSE to 0.17 for case 6 and the
maximum error of 0.49% for case 4, as presented in Table 3. Although the RBF network
controller achieved lower maximum error values, e.g., 0.43% for case 3, than the developed
controller, the IFLC achieved the best values of the RMSE for all cases. That means the
steady-state performance of our developed IFLC is stable to give the best therapeutic
results of the controlled dual-sensor pacemakers. Additionally, uncertainty handling is
the main advantage of the designed IFLC against other competitive controllers in Table 3,
as given in the hesitancy value in (7). Also, the developed IFLC can be considered as a
generic representation of previous fuzzy controllers by adding non-membership function
terms to achieve accurate control performance of the pacemaker, as depicted in Figure 6.
Consequently, the computational cost of the designed IFLC is relatively higher than that
of other classical fuzzy controllers, but the expected energy consumption for executing
the IFLC algorithm is negligible to affect the lifespan of the current lithium batteries for
implanted pacemakers.

To further improve the pacing-rates regulation using our developed IFLC, auto-tuning
parameters of the designed fuzzy controller can be accomplished using metaheuristic
optimization techniques [24,41]. This optimization step could enhance the performance of
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the IFLC, minimizing the maximum errors of tracked preset heart rates to the lowest values.
Also, merging neural networks with IFLC can constitute a good performance for time-
varying nonlinear systems [42] similar to the dynamical behavior of cardiac pacemakers.
However, the evaluated performance of the developed IFLC is still superior to other fuzzy
and neural network controllers in previous studies for achieving the automated regulation
of heart rates via implanted dual-sensor pacemakers as presented in Table 3.

5. Conclusions

In this article, a novel IFLC has been successfully developed for controlling the electri-
cal pulses of dual-sensor pacemakers. The developed controller can assist cardiac patients
in achieving the preset heart rates with minimal RMSEs of 0.17 to 0.24 during three different
daily activities: resting, walking, and jogging. The main parameters of the developed IFLC
such as the input–output control gains and the hesitancy value are carefully tuned to
achieve a desirable performance of tracked preset heart rates, as shown in Figures 7–12.
Moreover, the comparative evaluation of the developed IFLC versus other closed-loop
controllers in the literature showed the outperformance of applied intuitionistic fuzzy for
controlling therapeutic medical devices like implanted pacemakers.

The future work of this study includes adding more daily activities of the patients
such as running and climbing stairs to cover all possible conditions of the heart. The future
version of the designed IFLC can be improved to be suitable for single-sensor pacemakers
and/or other types of cardiac pacemakers. Conducting preclinical studies will be arranged
with collaborated cardiologists to implement and validate our developed IFLC of implanted
dual-sensor pacemakers.
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