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Abstract: The Unified Parkinson’s Disease Rating Scale (UPDRS) is used to recognize patients with
Parkinson’s disease (PD) and rate its severity. The rating is crucial for disease progression monitor-
ing and treatment adjustment. This study aims to advance the capabilities of PD management by
developing an innovative framework that integrates deep learning with wearable sensor technology
to enhance the precision of UPDRS assessments. We introduce a series of deep learning models to
estimate UPDRS Part III scores, utilizing motion data from wearable sensors. Our approach leverages
a novel Multi-shared-task Self-supervised Convolutional Neural Network–Long Short-Term Memory
(CNN-LSTM) framework that processes raw gyroscope signals and their spectrogram representations.
This technique aims to refine the estimation accuracy of PD severity during naturalistic human
activities. Utilizing 526 min of data from 24 PD patients engaged in everyday activities, our method-
ology demonstrates a strong correlation of 0.89 between estimated and clinically assessed UPDRS-III
scores. This model outperforms the benchmark set by single and multichannel CNN, LSTM, and
CNN-LSTM models and establishes a new standard in UPDRS-III score estimation for free-body
movements compared to recent state-of-the-art methods. These results signify a substantial step
forward in bioengineering applications for PD monitoring, providing a robust framework for reliable
and continuous assessment of PD symptoms in daily living settings.

Keywords: Parkinson’s disease; deep learning; self-supervised learning; wearable systems; health
monitoring

1. Introduction

Accurate and objective biomedical monitoring systems for Parkinson’s disease (PD)
are essential for disease assessment and personalized treatment. PD is a progressive neuro-
logical disorder primarily affecting older individuals, impacting both motor and non-motor
functions [1]. Patients often experience troublesome motor complications such as tremors,
rigidity, slow movement, and difficulty walking [2]. Managing motor complications re-
quires therapeutic adjustments during clinical visits. The Unified Parkinson’s Disease
Rating Scale Part III (UPDRS-III) is a traditional assessment tool neurologists use to evalu-
ate the severity of PD motor complications during these visits. The UPDRS-III involves
patients performing a series of tasks in a clinical setting, with the assessments guiding
therapeutic decisions. However, these evaluations occur sporadically and may not precisely
capture the ongoing status of a patient’s condition, potentially leading to inappropriate
treatment levels with subsequent complications [3].

Recent advancements in sensing technologies and machine learning could enable
continuous, objective monitoring of PD symptoms in real-time, paving the way for person-
alized treatment paradigms, especially those associated with PD symptoms [4–6]. These
innovations could extend to home-based applications, providing a means for monitoring
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daily motor fluctuations and effective management of PD medications [7], mitigating fre-
quent in-person clinical examinations and reducing costs with more convenient solutions.

Building on this premise, our paper is rooted in the evolving landscape of bioengineer-
ing and biosignal processing research that harnesses deep learning and wearable sensing
technology capabilities to provide an innovative approach for estimating UPDRS-III scores
in PD patients. Our approach uses data gathered from wrist and ankle sensors, which
monitor patients’ movements throughout their daily activities. The proposed methodology
leverages the synergistic capabilities of Multichannel Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks alongside a novel approach to
Self-supervised Learning (SSL). Our technical innovations and contributions are as follows:

• We introduce a multichannel CNN-LSTM framework designed to process and analyze
raw gyroscope sensor data and their spectrogram representations in parallel. This
architecture allows for the comprehensive extraction of spatial and temporal features
from PD patients’ movement data, significantly enhancing the accuracy of UPDRS-
III score estimation. Integrating 1D CNN models for raw signal processing and 2D
CNN models for spectrogram analysis, coupled with LSTM networks for capturing
long-term dependencies, represents a novel approach. This combination effectively
addresses the complexities of PD symptom manifestation in sensor data, setting a new
standard for precision in PD monitoring technologies.

• Our other novel contribution is extending the capabilities of SSL by introducing a
Multi-shared-task SSL (M-SSL) strategy. This approach leverages unlabeled data to
pre-train a multichannel CNN on various signal transformation recognition tasks,
significantly improving the model’s ability to extract and learn meaningful features
from PD motion data without human annotation. Implementing shared layers between
the branches of the CNN for each transformation recognition task, based on the
congruence of spectrograms and raw signals, introduces a novel mechanism for
enhancing feature learning. This method’s ability to refine data representation and
feature extraction without labeled data is a considerable advancement over traditional
SSL applications in bioengineering.

• We methodologically configure the multichannel CNN-LSTM network, including spe-
cific convolutional blocks and LSTM layers, optimized through the Bayesian technique.
This setup is tailored for the dual objectives of learning signal representations and
estimating UPDRS-III scores, thus offering a robust foundation for capturing the full
spectrum of PD symptoms. This innovative selection of convolutional kernel sizes,
pooling layers, and dropout rates, alongside integrating LSTM layers for sequence
modeling, enables precise UPDRS-III score estimation from complex sensor data.

Our approach addresses the gap in current technical signal processing methods—primarily,
their limitations in providing continuous, accurate UPDRS-III estimation from everyday life
activities. This could lead to improved treatment customization and patient care, indicating
a step toward more tailored healthcare solutions for individuals with PD.

2. Related Work

Bioengineering research for PD management has increasingly utilized wearable sen-
sors and machine learning algorithms to assess disease progression and symptom severity.
Primary efforts have predominantly focused on overcoming algorithmic challenges and
fostering innovations in signal analysis to quantify PD “symptoms” accurately. Studies
in this area have addressed various aspects, including estimating UPDRS-III sub-scores.
Some research has concentrated on quantifying bradykinesia [8–11], objectively assess-
ing slowness of movement in PD patients.Others have focused on detecting tremors and
estimating their severity [12–15], while some have targeted the estimation of dyskinesia
severity, which involves involuntary movements as medication side effects [16–18].

Moving beyond PD symptom severity into the challenge of UPDRS-III score estima-
tion, Nilashi et al. [19] explored feature extraction from wearable sensor data, utilizing
incremental support vector regression for score prediction. Zhan et al. [20] developed a
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mobile Parkinson’s disease score (mPDS) system that establishes correlations with UPDRS-
III scores through an ensemble of tasks assessing gait, balance, finger tapping, reaction
time, and voice. The application of adaptive neuro-fuzzy inference systems for analyzing
accelerometer and gyroscope data was investigated by Butt et al. [21], focusing on some
MDS-UPDRS-III tasks while wearing two wearable sensing devices. In another study by
Sotirakis et al. [22], six sensors were utilized to gather PD patients’ walking and postural
sway data. Afterward, feature extraction was performed, followed by a random forest
algorithm estimation.

Despite these advancements, several limitations persist within the field. A primary
constraint is the requirement for patients to actively participate in UPDRS-III-specific
tasks during assessments, which may not capture the full spectrum of symptom severity
experienced during daily activities. Moreover, the heavy reliance on feature extraction
techniques to estimate UPDRS-III scores risks missing nuanced yet clinically significant
information in raw sensor data [23]. This necessitates specific tasks that elicit measurable
symptoms, limiting assessments to discrete moments and interrupting the continuum of
daily life, thus providing only episodic insights into symptom fluctuations. Researchers
have investigated and analyzed raw sensor data for UPDRS-III score estimation to address
this challenge. For example, Hssayeni et al.’s work employs a combination of hand-crafted
features, raw temporal signals, and time-frequency representation analyzed through an
ensemble of deep learning models, showing a significant improvement over task-dependent
models for continuous UPDRS-III score monitoring [24]. Rehman et al. [25] focused on
deep convolutional neural networks processing accelerometer sensor data at the lower back
to collect gait data for estimating UPDRS-III scores during walking.

Building on prior research, our proposed work seeks to bridge these gaps by introduc-
ing a multichannel CNN-LSTM framework and a novel M-SSL methodology. Our approach
is designed to overcome the limitations of task-specific assessments and the constraints of
traditional feature extraction methods. By leveraging the capabilities of multichannel CNNs
for parallel processing of raw sensor data and their spectrogram representations, combined
with the sequential data processing strengths of LSTM networks, our methodology fa-
cilitates a more nuanced, continuous, and comprehensive assessment of PD symptoms.
Furthermore, the innovative application of M-SSL enables our model to learn and extract
meaningful features from unlabeled data, enhancing the model’s performance without
requiring specific patient task participation. This represents a significant technical ad-
vancement over existing methods and offers a more accurate, unobtrusive, and continuous
monitoring solution for PD management, addressing the critical need for a methodology
that accurately reflects the daily symptom severity experienced by individuals with PD
and paving the way for significant advancements in the quality of life for PD patients.

3. Materials and Methods

This section presents a detailed methodology outlining our approach to accurately
estimating UPDRS-III scores for PD patients using wearable sensor data. Our investigation
spans developing and integrating several deep neural network architectures, starting from
simple models and advancing to more complex configurations. Initially, we created a 1D
CNN to process raw gyroscope sensor data. This was followed by introducing a 2D CNN
optimized to analyze spectrograms derived from gyroscope signal data. Building upon
these initial models, we introduced a multichannel CNN configuration that processes raw
sensor data and their corresponding spectrogram representations in parallel. This evolution
of network architectures was followed by integrating CNNs with LSTMs, leading to the
implementation of 1D, 2D, and multichannel CNN-LSTM networks. Such a comprehensive
array of models allows for a robust framework that can capture the intricate spatial and
temporal dynamics in the sensor data, enhancing the accuracy of UPDRS-III score estima-
tion. We further enrich our methodology by introducing an innovative M-SSL CNN-LSTM
model, showcasing our progressive exploration from simpler to more complex models.
The details of each component and their integration into our unified approach are explained
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in the following sections. Figure 1 visually represents our study’s methodological flow and
innovative aspects.
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Figure 1. The architecture of our proposed model for estimating the UPDRS-III scores of PD pa-
tients. (A) outlines the data collection procedure and preprocessing steps. (B) depicts the signal
representation learning stage, where the network undergoes various signal transformations to acquire
robust features. (C) illustrates the UPDRS-III estimation network in the target, which incorporates
the knowledge transferred from the signal representation learning network. GAP: global average
pooling layer. GMP: global max pooling layer.

3.1. The Parkinson’s Disease Dataset

Motion data were captured from 24 individuals diagnosed with idiopathic PD as they
engaged in various activities of daily living (ADL) following a carefully designed proto-
col [26,27]. A depiction of data collection and preprocessing is seen in Figure 1A. Among
the participants, fourteen were female and ten were male, aged between 42 and 77 years,
with disease durations ranging from 4 to 17 years. Before levodopa medication, the patients’
UPDRS-III scores spanned from 12 to 60, which reduced to a range of 4 to 38 after one hour
of medication intake. Table 1 summarizes patients’ attributes. The study received approval
from the Institutional Review Board at Rochester Medical Center in accordance with the
Helsinki Declaration, and all participants provided written informed consent. Motion data
were collected using two wearable sensors from Great Lakes NeuroTechnologies Inc., Cleve-
land, OH, USA equipped with a triaxial gyroscope and accelerometer positioned on the
most affected wrist and ankle, capturing data at a sampling rate of 64 Hz. The anonymized
collected data were provided to our team for further analysis.

Table 1. The participants’ demographics.

Participant Attributes Value/Mean ± std

Total number 24
Sex (male, female) 14, 10
Age (years) 58.8 ± 9.5
Disease duration (years) 9.9 ± 3.8
UPDRS-III prior to medication 30.3 ± 11.6
UPDRS-III after medication 16.4 ± 8.4
Levodopa equivalent daily dose LEDD (mg) 1251 ± 478
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Participants were divided into two groups according to the data collection protocol,
allowing the capture of a comprehensive range of ADLs under varied conditions. These
activities were specifically selected to represent typical daily tasks, emphasizing the real-
world applicability of our methodology for continuous UPDRS-III estimation in natural
living environments. Figure 2A illustrates the participation and engagement of each of
the 24 study participants in various rounds, providing a visual representation of the total
duration spent by each individual in the study. As shown in this figure, 15 participants
underwent four rounds of activities, which spanned over four hours, and 9 participants
were involved in a continuous, two-hour session of unstructured, homelike activities.
The ADLs for the first group included ambulation, resting, cutting food, dressing, drinking,
unpacking groceries, and hygiene; each lasted between 15 and 60 s and was performed
at the subjects’ self-paced rhythm without prior training. The ADLs for the second group
were conducted in multiple stations and included laundry, watching television, snacking,
and desk work, lasting about 10 min. The structure of the first protocol mirrored the daily
variability in PD symptoms, considering the effects of medication over time. Conversely,
the second group’s continuous session represented a snapshot of daily life challenges faced
by individuals with PD for unobtrusive and continuous monitoring. Figure 2B offers a
closer look into a detailed breakdown of one participant’s activity durations across the four
rounds. It showcases the various tasks undertaken—from ambulation to more fine motor
activities, like cutting food and dressing—and their respective durations.

All participants refrained from taking their PD medication the night before the experi-
ment, initiating the trials in their medication OFF states, where the effects of the medication
were minimal. After an initial round, participants resumed their PD medications, where the
first group repeated the rounds every hour and the second group four times over two hours.
A neurologist conducted clinical examinations to measure and record the participants’
UPDRS-III scores. Four rounds of UPDRS-III assessments were performed for the first
group at the start of each experiment round. Two participants started the experiment
in their medication ON state and had three assessment rounds. For the second group,
two rounds of UPDRS-III assessments were conducted at the beginning and end of the
experiment rounds. Due to some technical issues, twenty trials of activities were missing
from the recordings of three subjects. The total number of the resulting round was 91 for all
24 participants. The red line in Figure 2B represents the UPDRS-III scores at each round.
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Figure 2. Data visualization from the study on 24 PD patients. (A) The duration (in minutes) and the
number of rounds each participant completed. Each bar represents a round of data, with the height
indicating the round’s duration. (B) A detailed breakdown of one participant’s activity duration
across the four rounds. The red line shows the UPDRS-III scores in each round.
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3.2. Data Preprocessing

We opted for signals from the gyroscope sensors, which perform better than accelerom-
eter sensors in estimating UPDRS-III scores [28]. To refine the data, we applied a bandpass
Finite Impulse Response (FIR) filter with a 3 dB cutoff frequency of 0.5–15 Hz to eliminate
low and high-frequency noise. Data collected during UPDRS-III examinations were ex-
cluded from the analysis to prevent the model from leveraging task-specific PD symptoms.
Afterward, the signals were segmented into non-overlapping windows of 5 s durations
to capture the characteristic symptoms of the disease [29]. Recognizing the spectral fea-
tures of various PD symptoms, such as tremors in the 4–6 Hz range and bradykinesia in
lower frequencies, we employed time-frequency representations of the signals to facilitate
effective feature learning [24]. Accordingly, we generated corresponding spectrograms by
applying a short-time Fourier transform (STFT) to the 5 s segmented windows, utilizing a
1 s Kaiser window with 0.9 overlaps.

3.3. The Utilized Deep Neural Networks Architectures

This subsection summarizes the fundamental framework of the 1D, 2D, multichan-
nel CNN, and LSTM architectures, highlighting their configuration for processing raw
gyroscope signals and their associated spectrograms.

3.3.1. Convolutional Processing Branches

A CNN is a deep learning architecture commonly used for processing structured
data arrays. CNNs are exceptionally proficient at signal processing tasks because they can
automatically learn hierarchical patterns and features from input data [30]. In the context
of our methodology, the CNN architecture consists of two convolutional branches:

• Raw Signal Branch (ConvR): This branch is responsible for processing the raw gy-
roscope signal component of the input, denoted as xr. It employs 1D convolutional
kernels in its layers, allowing the network to learn patterns directly from the raw
signal data.

• Spectrogram Signal Branch (ConvS): In contrast, this branch processes the spectro-
grams generated from the input gyroscope signal, denoted as xs. It utilizes 2D con-
volutional kernels in its layers to learn and extract features from the spectrograms,
representing the signal’s frequency content over time.

3.3.2. Multichannel CNN

A Multichannel CNN is an advanced architecture comprising multiple parallel convo-
lutional layers with distinct kernel sizes. This design enables the simultaneous processing
of input data through various filters, allowing the network to capture a broader range of
features and patterns. Particularly effective for multi-input data streams, this approach
enhances the network’s ability to discern complex patterns within the data [31]. In this
study, we leverage the multichannel CNN approach to concurrently process the raw gyro-
scope signals xr and their corresponding spectrograms, xs, using the ConvR and ConvS
convolutional branches.

3.3.3. LSTM Integration for Temporal Analysis

LSTM networks, subclasses of recurrent neural networks, address the vanishing
gradient dilemma commonly encountered in training over long sequences. LSTM networks
excel at recognizing long-term dependencies in data sequences, a trait crucial for tasks that
rely on historical data patterns [32]. Integrating CNNs with LSTMs results in a CNN-LSTM
architecture, which is adept at handling sequential data by utilizing CNN layers for initial
feature extraction and LSTM layers for sequence modeling. This composite structure is
particularly suitable for tasks requiring an understanding of spatial and temporal data
dimensions [33].
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3.4. Multi-Shared-Task Self-Supervised Learning

This subsection outlines the overarching structure of the multichannel CNN-LSTM,
emphasizing its multi-branch design for learning representations from both the raw signals
and their corresponding spectrograms in a self-supervised fashion using the proposed
multi-shared-task learning approach.

We hypothesize that leveraging SSL in a novel multi-shared-task framework can
significantly enhance the performance of deep learning models by acquiring meaningful
data representations without the need for human annotation. SSL is a machine learning
method that aims to enhance deep learning model performance by acquiring meaningful
data representations without human annotation [34]. It operates through a two-stage
learning process. First, the network tackles various signal transformation recognition tasks
to learn robust features and signal representations from unlabeled data. Afterward, the pre-
trained network from this phase is applied to the target task in the second stage, where the
learned knowledge is transferred through transfer learning and fine-tuning techniques.

3.4.1. Signal Representation Learning

In our work, to improve the monitoring of PD patients, we propose an innovative
M-SSL methodology (see Figure 1B), building upon the previously introduced multi-task
SSL [35]. This approach involves pre-training a multichannel CNN on various signal
representations, leveraging unlabeled raw gyroscope signals xr and their spectrograms xs

through the ConvR and ConvS convolutional branches. The outputs of the multichannel
CNN branches are directed to the respective representation recognition task layers. The
network incorporates a shared layer for each recognition task between the branches of
the CNN, aligning with the correspondence of spectrograms and raw signals to the same
data segment.

To train the network on various signal representations, we employed unlabeled data
from the training set to generate signal transformations xt and corresponding pseudo labels
yp

t , where t = 0, 1, 2, ..., T represents the various signal transformations, and T is the number
of these transformations. Thereon, spectrograms xs

t of xt were generated and concatenated
with the raw signal xr

t = xt to compose the network input ([xr
t , xs

t ], yp
t ). A stochastic

gradient descent method trains the network to recognize the t signal transformation,
producing a probability Pt indicating the likelihood of the signal being transformed from
the original. The network’s total loss L is minimized by reducing the weighted average of
individual losses corresponding to each signal transformation as follows:

L =
T

∑
t=0

αt

[
yp

t log(Pt) + (1 + yp
t ) log(1 −Pt)

]
, (1)

where α represents the loss weight coefficients of the transformation tasks. We generated
three signal transformations [36]:

• Rotation (t = 1): This transformation involves applying a random rotation with an
angle to the data to generate ([xr

1, xs
1], yp

1 ). This enables the network to gain insights
into different sensor placements.

• Permutation (t = 2): This transformation randomly disrupts the temporal sequence
within a data window by rearranging its segments, producing ([xr

2, xs
2], yp

2 ). This
allows the network to learn about the varying temporal positions of symptoms within
the window data.

• Time warping (t = 3): This transformation perturbs the temporal pattern of the data
using a smooth warping path or a randomly located fixed window, which distorts the
time intervals between samples and generates ([xr

3, xs
3], yp

3 ). This method allows the
network to learn about the changes in the temporal spacing of the samples.

These transformations are concatenated with the non-transformed (t = 0) original
signal ([xr

0, xs
0], yp

0 ) to form the network input.
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3.4.2. Target Task: The Estimation of UPDRS-III Score

Following the signal representation learning stage using the proposed M-SSL, we
transferred the knowledge acquired by the convolutional branches, ConvR and Conv.S,
of the multichannel CNN, represented by the network weights, to the multichannel CNN
component of the CNN-LSTM network, as depicted in Figure 1C. Afterward, the weights
of the first convolutional blocks in the multichannel CNN-LSTM network were frozen, and
the last convolutional blocks underwent fine-tuning using the annotated original training
data, ([xr

0, xs
0], y), to estimate UPDRS-III scores. Estimating UPDRS-III scores involves

regression, so we utilized the stochastic gradient descent algorithm to minimize the Huber
loss function Lh during the fine-tuning process. This loss function quantifies the error
between the estimated ŷ and clinical scores y as:

Lh =

{
1
2 (y − ŷ)2, for |y − ŷ| ≤ δ,
δ · (|y − ŷ| − 1

2 δ), otherwise.
(2)

where δ = 1 is where the loss function alternates between quadratic and linear behaviors.
The decision to employ the Huber loss arose from its robust regression performance and
reduced sensitivity to outliers within the data [37]. Following fine-tuning, the model was
evaluated on the data from the testing set ([xr

test, xs
test], ytest), as depicted in Figure 1C.

3.5. Model Hyperparameters
3.5.1. Signal Representation Learning Network

The proposed network to learn signal representations, as depicted in Figure 1B, con-
sists of a multichannel CNN with the two branches ConvR and ConvS. ConvR processes
the transformed raw gyroscope signal component, xr

t . This branch comprises two 1D
convolutional blocks with 64 kernels of size 32 in the first block and 128 kernels of size 8
in the second block. Following the first convolutional block, a max-pooling layer with a
pooling size of 16 and strides of 4 is applied, and a global average-pooling layer follows the
second block. Dropout rates of 0.1 and 0.2 are applied after each block. ConvS processes the
generated spectrograms of the transformed signal, xs

t , utilizing two 2D convolutional blocks.
The first block contains 64 kernels of size 5 × 5, and the second has 128 kernels of size 3 × 3.
Following the first convolutional block, the pooling size of the 2D max-pooling layer is 2
with strides of 2, and a global max-pooling layer follows the second block. A dropout rate
of 0.1 is applied for each block. The size of the multi-shared-task layers is 128.

3.5.2. UPDRS-III Estimation Network

The network for UPDRS-III estimation in the target task, as illustrated in Figure 1C,
and the network for signal representation learning share the same multichannel CNN
architecture. In addition to the convolutional branches, the UPDRS-III estimation network
includes two LSTM layers, each with a size of 128 and a dropout rate of 0.1. The outputs of
these layers are then fused and passed to a dense layer with a size of 256 before reaching
the output layer, which estimates the UPDRS-III scores. This architecture is also shared
across the series of deep neural networks discussed in Section 3.3. These hyperparameters
were selected using a random 20% validation split of the training data, employing Bayesian
optimization. The methodology’s Python code implementation is available on GitHub [38].

4. Results

To evaluate the performance of our proposed M-SSL multichannel CNN-LSTM, we
performed leave-one-out subject-wise testing utilizing all 24 subjects from both groups,
where each subject was sequentially held out for testing while the remaining subjects were
used for training. This process ensured that each subject acted as a test subject at least
once. The signal representation learning and the UPDRS-III estimation networks were
trained for 35 epochs with a batch size of 32, using the Adam optimizer with a 1 × 10−4

learning rate. Early stopping and learning rate scheduling strategies were employed to
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mitigate overfitting and stabilize the training process. We computed the mean estimated
network scores for each UPDRS-III round and compared them to the clinical scores of the
corresponding round. The practice of averaging the short-term estimated scores of PD
symptoms over a longer duration has previously been adopted to smooth the effect of
outliers in the model’s estimations [39]. The evaluation metrics included the correlation co-
efficient (r), coefficient of determination (R2), and mean absolute error (MAE). The network
configurations introduced in Section 3.3 were trained in a fully supervised setting on the
labeled training data and applied to the testing data without learning signal representations.
Figure 3 summarizes the average testing results for all 24 subjects and the improvements
achieved with each model.

From Figure 3, we can observe that our proposed M-SSL multichannel CNN-LSTM
surpasses all other supervised models by scoring the strongest correlation r = 0.89
(p ≤ 1 × 10−4), indicating how well the model’s estimations approximate the actual clinical
UPDRS-III score compared to other models. The performance is a substantial improvement
from the r = 0.72 achieved by the supervised multichannel CNN-LSTM and a significant
one from the r = 0.66 of the 1D CNN. Moreover, M-SSL multichannel CNN-LSTM exhibits
the highest R2 = 0.65 score among all networks. Further, the MAE reduces from 8.32
to 5.65. Another observation is that the multichannel CNN-LSTM outperforms CNNs
and CNN-LSTMs when utilizing single input data, further underscoring the multichannel
networks’ ability to capture complex data patterns effectively by combining raw sensor
data and their spectrograms.

0.670.66

0.67

CNN CNN-LSTM

0.69 0.67

0.72

0.89

CNN-LSTM

1D 2D Multi
channel 1D 2D Multi

channel Multichannel

Supervised learning Multi-shared-task 
self-supervised

Learning (M-SSL)

6.95

0.47
5.65

0.65

7.44

0.40

7.32

0.43

8.32

0.27

8.15

0.26 7.75

0.34

Pe
rf

or
m

an
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𝑅2 score Correlation coefficient 𝑟 MAEInput data

Figure 3. The proposed M-SSL multichannel CNN-LSTM performance metrics alongside the intro-
duced supervised single and multichannel CNN and CNN-LSTM. The red arrows denote the model’s
input data.
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Figure 4A depicts the correlation between the clinical and estimated UPDRS-III scores
for the M-SSL and supervised multichannel CNN-LSTM. Integrating the M-SSL strategy
reduces the 95% confidence region and 95% prediction band in the multichannel CNN-
LSTM, suggesting more precise estimations and enhanced performance. Furthermore,
in Figure 4B, we observe that integrating M-SSL consistently reduces the MAE values
across the various UPDRS-III scores. This observation underscores the M-SSL multichannel
CNN-LSTM’s capability to accurately monitor PD patients with varying disease severity.
We further explored the performance of M-SSL and supervised multichannel CNN-LSTM
concerning patients’ medication states. As illustrated in Figure 5, the M-SSL approach
enhances performance regardless of whether patients are ON or OFF their medications.
Moreover, it maintains a more stable performance and less variability, as evidenced by the
lower median and Interquartile Range (IQR) of the model’s MAE across all subjects and
their UPDRS-III scores.

M-SSL Supervised

(A) Multichannel CNN-LSTM

(B) Multichannel CNN-LSTM

𝑟 = 0.89 (𝑝 ≤ 1 × 10−4) 𝑟 = 0.72 (𝑝 ≤ 1 × 10−4)

Figure 4. A performance comparison of estimating the UPDRS-III score between the proposed M-SSL
and supervised multichannel CNN-LSTM. (A) depicts the clinical vs. estimated UPDRS-III scores for
each round. (B) displays the mean absolute error for UPDRS-III scores.

Two examples of the proposed M-SSL multichannel CNN-LSTM’s estimation of
UPDRS-III scores are illustrated in Figure 6. These examples display the estimations
at 5 s windows, the round-averaged estimations, the rounds, and the clinically documented
scores provided by the neurologists for each round. In Figure 6A, the subject initiated the
experiment in their medication OFF state with a recorded UPDRS-III of 27. Following medi-
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cation, the subject transitioned and remained in the medication ON state for the subsequent
three rounds, with scores of 14, 15, and 16. In Figure 6B, the subject exhibited more severe
symptoms at the experiment’s onset, with a UPDRS-III score of 49. Symptoms improved
after medication intake for rounds 2 and 3. However, in round 4, the patient experienced a
deterioration in disease severity upon transitioning into the OFF state, registering a score
of 42. The proposed model consistently estimated disease severity across varying symptom
levels in both cases, accurately capturing changes throughout the experiment.

𝐼𝑄𝑅 = 6.50

𝐼𝑄𝑅 = 5.50

𝐼𝑄𝑅 = 9.00
𝐼𝑄𝑅 = 7.88

Figure 5. The mean absolute error of the estimated UPDRS-III scores before and after medication (OFF
and ON medication states) using the proposed M-SSL and supervised multichannel CNN-LSTMs.
The Interquartile Range (IQR) was calculated for each.

ON state

OFF state

ON state

ON state

ON stateOFF state

ON state OFF state

(A)

(B)

Figure 6. The UPDRS-III estimations over time by the proposed M-SSL multichannel CNN-LSTM
compared to the clinical UPDRS-III scores for two PD patients. (A) illustrates a patient showing
improvement in PD symptoms over time. (B) displays a patient experiencing the return of PD
symptoms before the next dose of medication.
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We also evaluated the performance of M-SSL multichannel CNN-LSTM in estimating
the severity of motor symptoms during different activities, as depicted in Figure 7. We
calculated the R2 and MAE scores for the model’s estimations during each daily living
activity. The results indicate that the model’s performance remained consistent across
various activities, with R2 = 0.64 ± 0.07 and MAE = 5.55 ± 0.48, demonstrating robustness
to changes in activity while estimating UPDRS-III scores for PD patients.

Figure 7. The coefficient of determination R2 and the mean absolute error of the UPDRS-III estimations
by the proposed M-SSL multichannel CNN-LSTM during patients’ activities.

5. Discussion

In the growing field of PD research, accurately monitoring disease severity and pro-
gression presents a significant challenge. We introduced several deep neural network
architectures to tackle this challenge. We explored their performance in a PD dataset to
estimate the UPDRS-III score in individuals with PD using data from wearable sensors
during unobstructed free-body daily activities. The continuum of deep neural network
architectures introduced in our study yielded a progressive enhancement in performance,
culminating in the M-SSL multichannel CNN-LSTM architecture demonstrating the high-
est effectiveness.

This achieved progressive enhancement is attributable to various vital factors. First,
our model leveraged a deep CNN architecture, demonstrating promising results in estimat-
ing PD motor severity from raw signal data collected by wearable sensors [25]. Additionally,
by incorporating signal spectrograms, our approach effectively extracted features from the
temporal and spectral characteristics of the signals. This strategy, particularly evident in
the improved performance of the 2D CNN (r = 0.67, R2 = 0.27) compared to the 1D CNN
(r = 0.66, R2 = 0.26), has been shown to enhance UPDRS-III score estimation [24], given
that PD symptoms often manifest spectral features, like tremors and bradykinesia.

Furthermore, integrating a multichannel CNN in our methodology enhanced the
network’s capacity to learn and extract richer features from the raw and frequency rep-
resentations of multi-input signals, as demonstrated by its (r = 0.67, R2 = 0.34). This
approach has been explored previously and has shown benefits in processing wearable
data [40]. Further, incorporating LSTM layers alongside the CNN enabled the model
to capture temporal dependencies in the input data. This is apparent in the improved
performance of the 1D (r = 0.69, R2 = 0.43), 2D (r = 0.67, R2 = 0.40), and multichannel
CNN-LSTM (r = 0.72, R2 = 0.47) over their respective CNN counterparts. The effective-
ness of the CNN-LSTM architecture in processing wearable sensor data has been well
documented [41].

Another significant contributing factor to the robust performance of our methodology
is the signal representation learning phase, where the model was trained in a self-supervised
manner to learn various data representations. This process exposed the model to signal
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transformations such as rotation, permutation, and time warping. Previous studies, such
as [36], have shown that augmenting a CNN with these transformations can enhance its
performance in monitoring PD symptoms. These transformations effectively address sensor
position variability and the temporal variability of events within the collected PD data.
By incorporating signal representations from these three transformations, our model further
improved its UPDRS-III estimation performance. This enhancement, coupled with the
innovative M-SSL approach employed in our methodology, underscored the effectiveness
of our strategy in achieving superior estimation performance with a correlation coefficient
r = 0.89(p < 1 × 10−4), coefficient of determination R2 = 0.65, and MAE of 5.65.

A comparison of recent state-of-the-art studies utilizing machine learning and wear-
able sensors to estimate UPDRS-III scores in patients diagnosed with PD is presented
in Table 2. Our proposed M-SSL multichannel CNN-LSTM model exhibits superior per-
formance compared to other approaches, offering additional benefits such as activity
flexibility (non-task-dependent), a broader range of activities, automated feature extraction
(eliminating the need for manual feature engineering), and minimal sensor requirements.
For instance, our method outperformed the approach by Zhan et al. [20] (r = 0.89 vs. 0.81),
despite their methodology requiring patients to perform five specific tasks using a smart-
phone application and employing feature extraction techniques. Similarly, the proposed
M-SSL multichannel CNN-LSTM surpassed the performance achieved by Butt et al. [21]
(r = 0.89 vs. 0.81), which involved patients performing UPDRS-III-specific tasks and
feature extraction. Additionally, our approach showed more robust estimation capability
than Sotirakis et al. [22] (RMSE = 6.92 vs. 10.02), where patients performed walking and
postural sway tasks; then, features were extracted from six wearable sensor data. Further-
more, a study by Rehman et al. [25] was inferior (r = 0.89 vs. 0.82) despite focusing solely
on patients performing walking tasks. In addition to the aforementioned comparisons,
we directly compared our proposed M-SSL multichannel CNN-LSTM model with the
approaches by Hssayeni et al. [24] and Rehman et al. [25], as they also utilized raw sensor
data similar to our methodology. Our M-SSL multichannel CNN-LSTM model exhibited
superior UPDRS-III monitoring performance, achieving respective correlations of (r = 0.89
vs. 0.74 vs. 0.69).

Table 2. Recent UPDRS-III estimation methods in the literature.

Method Dataset Sensors No. Method’s Input Activities r R2 MAE RMSE

Zhan et al. [20] Theirs 1
Features extracted
from smartphone
data

5 smartphone tasks 0.88 − − −

Butt et al. [21] Theirs 2
Features extracted
from accelerometer
and gyroscope

12 MD-UPDRS-III-
specific tasks 0.81 − − −

Sotirakis et al. [22] Theirs 6
Features extracted
from accelerometer
and gyroscope

Walking and postural
sway − − − 10.02

Rehman et al. [25] Theirs 1 Accelerometer raw Walking 0.82 − − −

Hssayeni et al. [24] Ours 2 Gyroscope raw and
spectrograms 7 ADL 0.74 0.51 6.54 8.19

Rehman et al. [25] Ours 2 Accelerometer raw 7 ADL 0.69 0.40 7.35 9.05
Proposed M-SSL
multichannel
CNN-LSTM

Ours 2 Gyroscope raw and
spectrograms 7 ADL 0.89 0.65 5.65 6.92

While our proposed algorithm has demonstrated outstanding performance, it is essen-
tial to acknowledge certain limitations. One observation is that the model underestimates
high UPDRS-III scores, as depicted in Figure 4A. This discrepancy can be attributed to
the imbalanced data distribution, particularly concerning higher UPDRS-III scores. For in-
stance, there is only one round of activities with a UPDRS-III score higher than 50. Previous
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studies have reported similar behavior, such as that by Parisi et al. [42]. Therefore, our
future work will focus on collecting more data from the PD population with diverse disease
severity. Moreover, improving the interpretability of our deep learning model could involve
incorporating techniques such as attention mechanisms and gradient-based methods.

Responding to clinical feedback and recognizing the complexities of neurodegenera-
tive disease monitoring, we have incorporated a broader symptomatic assessment within
our study; while our wearable sensors are optimized for capturing detailed motion data
and do not directly measure speech clarity or facial expressions as per UPDRS-III items 18
and 19, these dimensions are integral to understanding the full spectrum of disease impact.
This comprehensive approach allows us to contextualize the quantitative data from the
wearables within a broader clinical framework, thereby providing deeper insights into
patient symptoms. Future iterations of this research will aim to integrate additional sensor
technologies to capture these and other vital aspects, enhancing the holistic assessment
capabilities of our monitoring tools. This study utilized the UPDRS Part III due to the
specific dataset, which was collected before the widespread adoption of the MDS-UPDRS.
Notably, there is a strong correlation between UPDRS and MDS-UPDRS scores, ensur-
ing the continued applicability of our findings [43,44]. Recognizing the benefits of the
MDS-UPDRS’s enhanced specificity, we plan to incorporate this updated tool in our future
research efforts.

This work’s significance in bioengineering lies in its potential to improve PD moni-
toring and management immensely. The ability to accurately monitor disease progression
and symptom severity in real-time, without frequent clinical visits, can empower clinicians
with timely and accurate information for personalized treatment planning and disease
management in PD patients.

6. Conclusions

Our innovative M-SSL approach, implemented through a multichannel CNN-LSTM
network, efficiently processes and analyzes motion data to capture the complexity of PD
symptoms in free-body, unconstrained settings to estimate UPDRS-III scores in PD patients.
The methodology integrates signal transformations such as rotation, permutation, and time
warping to enhance the network’s learning capability and accuracy. The experimental
results from 24 PD subjects with a data duration of 526 min demonstrate the efficacy of our
approach, achieving a high correlation of r = 0.89 between the estimated and clinically
documented UPDRS-III scores. This performance surpasses traditional 1D, 2D, and mul-
tichannel CNN and CNN-LSTM models and outperforms other recent state-of-the-art
methods, establishing a new benchmark in the field. Such findings underscore the potential
of our method to improve PD monitoring significantly, providing clinicians with a reliable
and objective tool to assess disease severity and optimize treatment strategies. Furthermore,
our proposed methodology has broad potential applications within bioengineering, pro-
viding pathways for addressing challenges across various medical conditions and paving
the way for future innovations in patient care and disease management that underscore the
critical role of engineering solutions in improving healthcare outcomes.
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