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Abstract: Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS)
pathway, which is responsible for the regulation of a number of processes connected to bacterial
pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As
BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacterio-
static/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK
has always been an amenable strategy due to the conserved binding sites of the domains across
bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS
regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence
and discusses the available inhibitors of BHK, which is a specific response regulator with essential
structural features.

Keywords: bacterial histidine kinase; two-component signaling system; antibacterial resistance;
bacterial histidine kinase inhibitors

1. Introduction

Bacterial infections have a substantial effect on global health. However, the discovery
of wonder medications known as “antibiotics” offered consistent health advantages, re-
duced infections and decreased patient mortality during the last decade [1]. Moreover, the
extensive use and misuse of antibiotics exacerbates selective pressure on microbes, leading
to antimicrobial resistance (AMR). The global scope of the problem, as well as the impact
of AMR on human health, health-care expenses, and society, remains largely unclear [2].
AMR is a complicated worldwide public health concern, and no single or simple solution
will suffice to fully control the emergence and spread of pathogenic organisms resistant to
existing antibacterial medications [3]. AMR is caused by a number of different mechanisms,
such as drug or target inactivation (penicillinases, cephalosporinases, carbapenemases, and
β-lactamases), binding site modifications (PBP2a in Staphylococcus aureus, which changes
the cross-linking target of the peptidoglycan layer in Enterococcus faecium and Enterococcus
faecalis), and the development of resistance to AMR (the reduced level of OprD porin
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protein in Pseudomonas aeruginosa exhibits resistance against imipenem) [4–7]. In 2010, Neis-
seria, Staphylococcus, and Enterobacteriaceae developed resistance to the antibiotic ceftaroline
(2010); Staphylococcus developed resistance to both linezolid (2000) and daptomycin (2003)
in 2001; and Acinetobacter and Pseudomonas developed resistance to these antibiotics in 2004
and 2005, respectively. According to statistics from the WHO, 1.27 million patients died
due to infections caused by resistant bacteria in 2019 [8–10]. Furthermore, the mortality rate
might increase to 10 million patients each year by 2050, as reported by O’Neill. Therefore,
immediate action is needed to counteract the emergence and rampant dissemination of
AMR [11].

Many targets have been investigated for the development of antibacterial drugs [1].
The cell wall biosynthesis process has been widely investigated and validated as an an-
tibacterial target of the β-lactam and glycopeptide classes of antibiotics [12]. The fatty
acid production pathway has also been validated by the widespread use of well-known
medications such as isoniazid, an antitubercular treatment, and triclosan, an antiseptic [13].
Bacterial folate biosynthesis is a well-known and appealing target that involves many types
of enzymes. However, the well-known targets are DHFR (dihydrofolate reductase) and
DHPS (dihydropteroate synthase). DHFR has been verified by the use of drugs such as
trimethoprim (an antifolate antibiotic) and pyrimethamine (an antiprotozoal agent). DHPS
is another target that has been proven to be crucial for folate synthesis and was validated
as a sulfonamide [14].

Another potent antibacterial target is the dual inactivation of DNA GyrB and ParE. By
inhibiting these topoisomerases, DNA replication, repair, and catenation are prevented [15].
Furthermore, protein synthesis, primarily carried out by the molecular machinery known
as ribosomes and translational machinery, is regarded as a vulnerable target for antibi-
otics [16]. Tetracyclines are widely used antibacterial medications that target protein
synthesis (blocking the A site of the 30S subunit of the ribosome, thereby preventing the
binding of aminoacyl t-RNA) [17]. Aminoglycosides interfere with the formation of ini-
tiation complexes of the 30S subunit [18]. During the transpeptidation cycle, macrolides
interfere with the elongation of peptides [19]. Despite the fact that these antibiotics and
their targets have been shown to be clinically significant, the increase in resistance ne-
cessitates the development of novel strategies. Several strategies already reported in the
literature include structural modification, bacteriophage therapy, and targeting of the
explored pathways with novel molecules.

None of these strategies were found to be effective in preventing AMR. Therefore,
research is more focused on the discovery of novel untapped or unexplored pathways. One
such attractive target is bacterial histidine kinases (BHKs). BHKs are constituents of bacte-
rial two-component systems (TCSs), which are involved in primary signal transduction
pathways. BHK is highly conserved among all bacterial species and has broad-spectrum
activity. In addition, no human homologs or proteins with similar structures (with the
exception that mammalian kinases possess comparable protein folds in the ATP domain)
exhibit selectivity toward bacterial species [20]. Furthermore, BHK is important for bac-
terial survival, the inhibition or inactivation of which results in bacterial death. All these
characteristics make BHK a potential antibacterial target. In this review, we discussed the
biological significance of TCS-BHKs in the identification of new antibacterial agents as well
as existing TCS-BHK inhibitors, which can be used further to develop new and diverse
antibacterial agents.

2. TCS Signaling Pathway and BHK

TCSs are considered appealing antibacterial targets because they are conserved in
almost all bacterial species. In addition, the TCS is and involved in the regulation of a
number of processes connected to bacterial pathogenicity, virulence, biofilm development,
antibiotic resistance, and bacterial persistence. Although crucial for bacterial adaptability
and fitness, only a few of these TCSs are considered essential for bacterial cell survival.
However, some TCSs are not essential for bacterial survival in laboratory environments, but
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they enhance bacterial fitness by enabling adaptation to environmental changes. Certain
responses are expressed by pathogenic bacteria in response to their host environment, and
these responses typically rely on the TCS system. Another important consideration is the
difference between targeting essential and nonessential TCSs in pathogens. Essential TCSs
are essential for the survival and growth of bacteria. While inhibiting TCSs can efficiently
kill or suppress bacteria, it can also lead to the swift development of resistance, as bacteria
are under strong selective pressure to survive. On the other hand, nonessential TCSs often
regulate virulence factors rather than basic survival. By targeting these systems, we can
reduce the pathogen’s ability to cause disease without necessarily killing it, which may
result in slower resistance development. For example, studies have shown that targeting
the Agr system in Staphylococcus aureus, which is not essential for survival but crucial
for virulence, can significantly diminish its ability to cause infections without inducing
rapid resistance [21,22]. This approach could offer a more sustainable way to manage
bacterial infections. TCS signaling involves autophosphorylation of a membrane-bound
BHK, phosphotransfer of the phosphoryl group to a cognate response regulator (RR), and
ultimately modulation of the expression of target genes (Figure 1) [23]. BHKs are present
in both essential and nonessential TCSs. Appropriate phosphorylation levels of RR are
tightly regulated by the phosphatase activity of BHK, RR, or a partner protein [23,24]. BHK
autophosphorylation is mediated via the catalytic and ATP-binding (CA) domain, which
binds ATP and phosphorylates BHK at a conserved histidine residue in the dimerization
and histidine phosphotransfer (DHp) domain. The CA and DHp domains are conserved
and present in all HKs, whereas the remaining sensor domains (periplasmic, PAS, GAF,
HAMP) are variable and not present in all HKs [23].
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Figure 1. The TCS signaling pathway and role of bacterial histidine kinase in gene regulation. DHp
domain-Dimerization and histidine phosphotransfer domain; C A domain-Catalytic and ATP binding
domain; H-box-Highly conserved histidine residue; P-Phosphoryl group.

The BHK CA domain is a desirable target for structure-based virtual screening and
phenotypic screening of pharmacological inhibitors due to its conserved properties and
crucial function in TCS signal transduction. The high level of sequence conservation in the
CA catalytic site further suggests that inhibitors directed against this region will have broad-
spectrum antibacterial effects. The CA domain is thus a promising BHK target location for
the discovery and development of broad-spectrum antibiotics. Drug polypharmacology,
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which involves simultaneous inhibition of many targets, has been suggested as a method
to prevent the emergence of drug resistance to novel antibiotics [25–28]. Because bacteria
have several TCSs, inhibitors of the highly conserved CA domain are likely to shut down
a number of signaling pathways, impairing the bacteria’s capacity to quickly adapt to
environmental changes, including those that occur during an infection of the host. TCS
inhibition may not be bactericidal for some bacteria, but it is likely to limit efficient growth,
lowering survival capacity [23] (Figure 1). The ATP-binding Bergerat fold found in the
CA domain of many human protein families, which is also present in essential proteins
such as Hsp90, is one potential drawback of BHKs. The Bergerat fold may cause BHK
autophosphorylation inhibitors (HKAIs) to have off-target effects on human ATP-binding
domains and may also cause toxicity to mammalian cells. This fold is present in both
microbial and human ATP-binding protein domains [29].

TCS-BHK Inhibitors

For almost 20 years, TCSs have been identified as viable antibacterial therapeutic
targets. Some TCSs are essential or required for bacterial growth. Furthermore, given the
high degree of conservation among TCS active sites and the occurrence of several TCSs in
every bacterium, an inhibitor with broad-spectrum activity that targets various TCS regula-
tory networks should be identified. Overall, targeting TCSs is likely to effectively disable
bacteria’s ability to adapt to environmental and physiological changes. The availability of
crystal structures of BHK has made the design of BHK inhibitors possible. In the current
review, we discussed novel BHK inhibitors with different response regulators identified in
the literature (Table 1).

Table 1. BHK and its inhibitors.

Two-Component Systems Expression System
(Bacteria) Inhibitors Reference

Histidine Kinase Response Regulator

PhoP PhoQ Salmonella typhimurium
Diaryloxazole

Vo CD, Shebert HL et al., 2017 [30]
Diarylpyrazoles

PhoR PhoB Gram-negative bacteria
Thiophenes

Velikova N et al., 2016 [31]
Phenol

WalK WalR Firmicutes

Imidazoliums Yamamoto et al., 2001 [32]

Thiazolidiones
Qin Z, Zhang J et al., 2006 [33]

Huang RZ et al., 2012 [34]
Liu et al., 2014 [35]

Thiophenes Boibessot T et al., 2016 [36]

Thienopyridine Gilmour R et al., 2005 [37]

Walkmycin Okada A et al., 2010 [38]
Eguchi Y et al., 2011 [39]

Signermycin Watanabe T et al., 2012 [40]

PhoR PhoP Firmicutes

ResE ResD Firmicutes Thiophenes

EnvZ OmpR Escherichia coli and
relatives Thienopyridine

AlgR2 AlgR1 Pseudomonas aeruginosa
Isothiazolones

Roychoudhury S et al., 1993 [41]
Imidazoliums
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Table 1. Cont.

Two-Component Systems Expression System
(Bacteria) Inhibitors Reference

Histidine Kinase Response Regulator

VanS VanR E. faecium (VRE) and S.
aureus (VRSA) Thienopyridine Gilmour R et al., 2005 [37]

KinA Spo0F Bacillus subtilis and
relatives

6-oxa isosteres Kanojia RM et al., 1999 [42]

Indoles Weidner-Wells MA et al., 2001 [43]

Benzimidazoles Weidner-Wells MA et al., 2001 [43]

Benzoxazoles Weidner-Wells MA et al., 2001 [43]

CheA CheY Motile bacteria of all
phyla Welch M et al., 1998 [44]

NtrB or NRI NtrC or NRII Escherichia coli and
relatives

Diaryltriazoles Pioszak A A et al., 2003 [45]
Kanojia RM et al., 1999 [42]6-oxa isosteres

HK853 RR468 Thermotoga maritima
Adenines Wilke KE et al.,2015 [46]

Goswami M et al.,2018 [47]

Benzothiazoles Wilke KE et al.,2015 [46]

CckA CckA Caulobacter crescentus
and relatives Diarylpyrazoles Vo CD et al.,2017 [30]

In 2022, Radwan et al. synthesized a series of novel isatin derivatives with either
β-hydroxyketone or chalcone moieties and examined their antibacterial activity. These
compounds (1a–1j) (Figure 2) exhibited potent activity against S. aureus in the range
of 0.044–0.057 mmol/L (MIC). Among these compounds, 1a showed the most potent
antibacterial activity, with an MIC of 0.026 mmol/L. The activity of 1a against S. aureus
was explained by its significant docking score values (glide score −36.231 kcal mol−1,
electrostatic energy −0.697 kcal mol−1, and van der Waals energy −35.534 kcal mol−1)
within the binding site of BHK (S. aureus) (PDB: 5C93). Compound 1a could be further
optimized for the development and synthesis of more potent antibacterial agents [48].

Focusing on the discovery of novel antibacterial agents in 2020, Carabajal et al.
screened 686 compounds from the published kinase inhibitor set (PKIS), a compound li-
brary published by GlaxoSmithKline, to identify inhibitors of PhoP/PhoQ in S. typhimurium.
The results demonstrated that a series of compounds with quinazoline scaffolds exhibited
potent and selective downregulation of PhoP/PhoQ-activated genes. Among these quina-
zoline derivatives, 2a and 2b (Figure 3) showed more potent antibacterial activity, with
IC50 values of 6.9 and 3.2 µM, respectively. Furthermore, these compounds can emerge as
appealing lead molecules for the development of antibacterial agents [49].

In an effort to discover novel antibacterial agents, waldiomycin (3a) and its methyl
ester derivative (3b) (Figure 4) were identified as novel BHK inhibitors. Waldiomycin,
a methyl ester derivative, exhibited significant inhibitory activity against the Walk-type
H-box region, with IC50 values of 10.2 and 75.8 µM, respectively. The results demonstrated
that the binding interactions of ligands with WalK-BHK could be studied further for the
development of novel antibacterial agents [50].

In another study by Mizar et al. in 2018, xanthoangenol B 1 (4a) was identified using
a GFP (green fluorescent protein) reporter system that was previously used to identify
SaeRS TCS (response regulator in S. aureus) inhibitors obtained from plants. Approximately
four derivatives (xanthoangenol (4b), xanthoangenol (4c) and PM-56 (4d)) (Figure 5) were
identified and screened for their antibacterial activity. Among them, 4a and 4d demon-
strated excellent inhibitory activity against SaeRS, with IC50 values of 2.1 and 4.3 µM,
respectively [51].
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In 2019, Zhang et al. developed a system based on artificial proteoliposomes and
used it for screening AgrC inhibitors. A library of traditional Chinese medicine (TCM)
monomers was selected and screened for ArgC inhibitory activity. The results showed
that the two TCM monomers rhein (5a) and aloe emodin (5b) (Figure 6) inhibited AgrC
autophosphorylation with IC50 values of 13.7 and 62.2 µM, respectively. Furthermore, these
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compounds inhibited the growth of S. aureus in a dose-dependent manner, with MIC values
of 32 and 64 µg/mL, respectively [52].
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In 2016, Velikova et al. reported the identification of putative BHK autophosphoryla-
tion inhibitors by combining in silico and in vitro fragment-based screening. Among the
screened fragments, compound 6 (Figure 7) was the most potent compound, inhibiting the
autophosphorylation of BHK in a concentration-dependent manner, with IC50s against S.
aureus and E. coli BHK PhoR of 212 and 16 µM, respectively [31].
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Continued efforts to increase the potency of molecules against BHK led to the discovery
of novel heterocycles. In 2017, Vo et al. demonstrated that repurposing diaryl pyrazole-
based ATP-competitive (HSP90) inhibitors as effective antibacterial agents targeting BHKs
is a promising strategy for the development of newer antibiotics. A total of nine CCT018159
(7a, Figure 8) derivatives were synthesized and evaluated against multiple BHKs (PhoQ,
DivJ, and Cck). Compounds 7b, 7c, and 7d (Figure 8) showed favorable properties, both
for the inhibition of CckA (C. crescentus) and PhoQ (Salmonella), which are essential for
virulence. The results confirmed that the presence of a chlororesorcinol ring was essential
for potent activity within the series. In summary, this study identified a pathway for the
development of HSP90 inhibitors as novel antibacterial agents [30].
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In 2017, Zheng et al. used whole-cell phenotypic high-throughput screening to screen
a small-molecule library of approximately 540,000 compounds to identify new DosRST
inhibitors. Compounds 8a and 8b (Figure 9) were identified as potential antibacterial
agents. Compound 8a reduced the autophosphorylation of DosS with an IC50 of 1.9 µM,
and 8b inhibited the autophosphorylation of both DosS and DosT with IC50s of 0.5 and
5 µM, respectively [53].
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In 2016, Boibessot et al. synthesized a series of thiophene derivatives and screened
them for their antibacterial activity. Among them, eight compounds (9a–9h) (Figure 10)
were found to inhibit the autophosphorylation activity of the BHKs WalK, PhoR, and ResE
from B. subtilis, with IC50 values ranging from 52.81–196.9, 1.63–122.6, and 20.3–243.9 µM,
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respectively. These lead compounds can be used as a starting point for the development of
novel antibacterial agents [36].
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Prompted by TCM monomer activity against BHK, Zhang et al. in 2015 explored the
other TCM monomers 10a–10e (Figure 11) using structure-based virtual screening of a
natural TCM monomer library. These compounds specifically inhibited the autophospho-
rylation of VicK in a dose-dependent manner, with IC50 values of 3.8, 5.4, 15.4, 4.6, and
9.1 µM, respectively. In addition, the compounds exhibited potent antibacterial activity
(10a: 37.1 µg/mL; 10b: 38.5 µg/mL; 10c: 17 µg/mL; 10d: 68.5 µg/mL; 10e: 21 µg/mL)
against S. pneumoniae [54].
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In 2015, Wilke et al. elucidated the active site of BHK using an HTS-FP displacement
assay. The results demonstrated that nine compounds exhibited potential inhibitory activity
against different BHKs. Among them, four compounds (11a–11d) (Figure 12) containing
adenine moieties possess significant targetable inhibitor space within the binding pocket.
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The other five compounds (11e–11i) (Figure 12) that possess unique chemical structures
were found to be more potent, as evidenced by their IC50 values. These compounds could
be utilized for the production of multitargeted, TCS-mediated antibiotics with innovative
modes of action [46].
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In 2014, Bellale et al. discovered a particular class of diarylthiazole compounds
(Figure 13) that had potent inhibitory activity against PrrBA TCA, which is required for
the viability of M. tuberculosis. Over 40 diarylthiazole derivatives, such as 12a and 12b,
which demonstrated remarkable antibacterial activities with MICs of 0.4 and 0.25 µg/mL,
respectively, were subsequently developed, and the majority of these derivatives exhibited
favorable physicochemical characteristics and significant MICs against M. tuberculosis
(MIC ≤1 µg/mL) [55].
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In another study by Liu et al. in 2014, six analogs of thiazolidine (13a) (13b–13g)
(Figure 14) were developed and created by altering functional groups to enhance the
antibacterial activity and decrease the toxicity of 13a. The results indicated the inhibitory
effects of these compounds on the autophosphorylation of WalK, with IC50 values ranging
from 24.2 to 71.2 µM. With MICs ranging from 1.5 to 6.3 µM, these compounds exhibited
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strong antibacterial activity against S. epidermidis and S. aureus, including clinical methicillin-
resistant S. epidermis (MRSE) and MRSA, which were dramatically improved compared
to 13a [35].

Antibiotics 2024, 13, x FOR PEER REVIEW 11 of 18 
 

antibacterial activity against S. epidermidis and S. aureus, including clinical methicillin-re-
sistant S. epidermis (MRSE) and MRSA, which were dramatically improved compared to 
13a [35]. 

Cl

N

S

O

N

Cl

O

COOH13b

Cl

N

S

O

N

Cl

O

13c

COOH

Cl

N

S

O

N
O

13d

COOH

Cl

N

S

O

N
O

13e
COOHF

Cl

N

S

O

N

13f
Cl

O
COOH

N

S

O

N
O

13g
COOH

Cl

N S

N

O

OCH3

O
COOH

13a

 
Figure 14. Chemical structures of compounds 13a–13g. 

In 2012, Watanabe et al. screened more than 10,000 Streptomyces extracts by using 
differential growth assays and identified signermycin B (14) (Figure 15) as a potent com-
pound that interfered with the WalK dimerization domain. Furthermore, its inhibitory 
activity against WalK was evaluated for different bacterial species (S. aureus, E. faecalis, B. 
subtilis, and S. mutans), and IC50 values ranging from 37–62 µM were calculated. These 
results demonstrated that the WalK dimerization domain could serve as a potent binding 
site, and further optimization of singermycin B could lead to the development of novel 
antibacterial agents [40]. 

H

H

OH

OH

O

NH
O

14  
Figure 15. Chemical structure of signermycin B (14). 

In another study, Cai et al. in 2011, identified four compounds, 15a–15d (Figure 16), 
as possible PhoQ inhibitors using HTS and enzymatic activity-coupled assays. These four 
compounds had significant binding affinities to the S. flexneri PhoQc protein in the surface 
plasmon resonance (SPR) response and inhibited the autophosphorylation activity of S. 

Figure 14. Chemical structures of compounds 13a–13g.

In 2012, Watanabe et al. screened more than 10,000 Streptomyces extracts by using dif-
ferential growth assays and identified signermycin B (14) (Figure 15) as a potent compound
that interfered with the WalK dimerization domain. Furthermore, its inhibitory activity
against WalK was evaluated for different bacterial species (S. aureus, E. faecalis, B. subtilis,
and S. mutans), and IC50 values ranging from 37–62 µM were calculated. These results
demonstrated that the WalK dimerization domain could serve as a potent binding site, and
further optimization of singermycin B could lead to the development of novel antibacterial
agents [40].
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In another study, Cai et al. in 2011, identified four compounds, 15a–15d (Figure 16),
as possible PhoQ inhibitors using HTS and enzymatic activity-coupled assays. These four
compounds had significant binding affinities to the S. flexneri PhoQc protein in the surface
plasmon resonance (SPR) response and inhibited the autophosphorylation activity of S.
flexneri PhoQc (KD = 4.50, 10.6, 7.56, and 9.40 µM, respectively). The IC50 values of these
four compounds calculated during the luminescent kinase assay were 69.37 (15a), 48.9 (15b),
7.99 (15c), and 27.2 (15d) µM. The results showed that all four putative PhoQ inhibitors
were able to reduce Shigella virulence [56].
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Another study by Eguchi et al. in 2011 investigated the effect of walkmycin C (16)
(Figure 17) on WalK BHK in B. subtilis and S. aureus. Furthermore, walkmycin also exhibited
significant activity against the cytoplasmic domains of VicK (IC50: 2.53 µg/mL), CiaH
(IC50: 4.29 µg/mL), and LiaS (IC50: 4.96 µg/mL) of Streptococcus mutans. Moreover, it also
inhibited the autophosphorylation activities of EnvZ and PhoQ from E. coli, both with
IC50s of 1.25 µM. Studies of the inhibitory activity of walkmycin C on the virulence factors
of S. mutans showed that exposure to walkmycin C at sub-MICs could inhibit biofilm
formation, acid tolerance, and competence. Thus, walkmycin C can be used as a potential
lead molecule for the development of BHK inhibitors [39].
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In 2010, to identify potent inhibitors of BHK, Henriksen et al. performed virtual
screening of a library containing approximately 106 compounds. Forty-nine compounds
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were found to exhibit potent inhibitory activity, and among them, eighteen compounds
were directly evaluated against three different S. aureus strains and two E. coli strains
via disk inhibition assays. Compounds 17a and 17b (Figure 18) were the most potent,
with G-score values of −7.70 and −7.68 kcal/mol, respectively, and MM-GBSA values of
−20.34 and −20.53 kcal/mol, respectively. These compounds can be further optimized for
the development of future antibacterial agents [57].
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In 2010, Okada et al. screened approximately 1368 cultures of Streptomyces sp. by
using differential growth assays and produced different walkmycin derivatives. Among
these, walkmycin B (18) (Figure 17) had the greatest binding affinity for WalK in B. subtilis,
with a KD value of 7.63 µM. Furthermore, they measured the autophosphorylation bands
densitometrically and calculated the IC50 values of 18 against WalK of S. aureus (5.7 µM)
and B. subtilis (1.6 µM) [38].

In another study, Pan et al. (2010) designed and created a series of new 2-arylimino-3-
aryl-thiazolidine-4-one compounds based on the core structure of compound 13a (Figure 14)
to develop more potent and less harmful BHK inhibitors. Six derivatives (19a–19f) (Figure 19)
were created by altering the functional groups through cyclization, aldol condensation,
substitution, and hydrolysis. The autophosphorylation activity of WalK was inhibited by all
six derivatives in a concentration-dependent manner, with IC50 values that are comparable
to those of 13a (IC50 = 47.9 µM) at 88.35, 61.15, 34.83, 66.68, 22.15, and 82.51 µM [58].
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In 2006, Qin et al. initially employed a structure-based virtual screening (SBVS) method
to identify potential inhibitors of S. epidermidis WalK from a small-molecule library of
chemical compounds. Among the 76 candidates that target the WalK ATP binding domain,
only seven exhibited significant growth-inhibitory effects on S. epidermidis. Compounds 13a
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and 20a–20b (Figure 20), which possess a thiazolidione scaffold, exhibited greater ATPase
activity of the WalK protein, with IC50s ranging from 6.5 to 29 µM. Only the non-biofilm-
forming S. epidermidis ATCC 12228 was susceptible to 20b, while 13a and 20a were effective
against S. aureus, S. pyogenes, and S. mutans [33].
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Figure 20. Chemical structures of compounds 20a–20b.

Gilmour et al. (2005) identified thienopyridine (CAS 332175-01-6) (21) (Figure 21) as a
novel class of competitive ATP inhibitors of BHKs and analyzed its antibacterial activity
by using the HTVS of compound libraries. The results indicated that 21 has a core ring
structure that is similar to that of purines, although the exact structural mechanism by
which TEP inhibits BHKs is yet unknown. However, its hydrophobic portion may be
responsible for cell wall permeation, thereby inhibiting bacterial growth. Competitive ATP
inhibition was evaluated using Lineweaver–Burk analysis, and the average Ki value for
21 was found to be 0.62 ± 0.11 µM. Furthermore, 21 could serve as a starting material for
novel inhibitors that specifically inhibit BHKs [37].
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In 2001, Yamamoto et al. developed and examined a series of imidazole (22a–22e)
and zerumbone (22f–22k) derivatives (Figure 22). Prompted by the inhibitory activity of
imidazoles against BHK, the authors screened imidazole derivatives against the autophos-
phorylation of YycG. Astonishing results were observed for the derivatives, with IC50
values ranging from 6.6 to 120 µM. Almost 100 zerumbone derivatives were screened for
their ability to inhibit YycG autophosphorylation. However, the results were not positive,
and no inhibitor was detected during the study. Then, the authors tried to synthesize
zerumbone derivatives by cleaving their cyclic structures. Upon structural modification,
the obtained zerumbone derivatives were found to be active (IC50: 750–2300 µM). The
derivative 29 h was found to be a more potent inhibitor of YycG, with an IC50 value of
750 µM [32].
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In 1993, Roychoudhury et al. identified compounds that prevent the phosphorylation
or dephosphorylation of AlgR2 and the DNA-binding activity of AlgR1, which prevent
the production of the alginate gene. In this study, 15 compounds were shown to be
effective in screening approximately 25,000 compounds for the inhibition of algD promoter
activation. Furthermore, four (23a–23d) (Figure 23) of fifteen compounds strongly inhibited
AlgR1-AlgR2 phosphorylation, AlgR2 kinase activity, AlgR2 phosphatase activity, the
DNA-binding activity of AlgR1, and the kinase activities of CheA, NRII, and KinA [41].
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3. Conclusions

In the present review, we described the roles of the TCS pathway and BHK in bacterial
survival and AMR. Furthermore, we also summarize the advancements in the discovery
of novel BHK inhibitors in the 21st century. However, despite these massive efforts, none
of the discovered inhibitors have entered clinical use or are, to the best of our knowledge,
even undergoing clinical studies. To make progress and eventually find new effective
antimicrobial medications, challenges must be recognized and overcome. We will use this
conclusion section to predict and discuss these possible challenges and obstacles.

Although the chemical structures of the reported inhibitors are diverse, their exact
structure–activity relationships cannot be elucidated. Furthermore, progress in the dis-
covery of BHK inhibitors is still in its infancy. Although crystal structures are available,
the lack of cocrystals makes it cumbersome to identify potential receptor–ligand interac-
tions. Some studies based on fragment-based and structure-based virtual screening and
drug repositioning were implemented to identify BHK inhibitors that exhibited significant
inhibitory potential. In the near future, understanding the binding mode and conduct-
ing molecular modeling studies will significantly accelerate the discovery of novel BHK
inhibitors with greater potency. In addition, researchers can perform more prospective
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analyses by inducing spontaneous mutants to BHK inhibitors that are under development
to elucidate on-target effects and possible resistance mechanisms. Although challenging,
designing and developing novel BHK inhibitors is a viable approach for combating AMR.
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