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Simple Summary: During pregnancy, maternal glucocorticoids control fetal growth and the matura-
tion of fetal tissues. Synthetic glucocorticoids are commonly used to stimulate lung differentiation in
pregnancies at high risk of premature birth. Despite their beneficial effects on fetal survival, their
impact on the developing brain is less clear. Among postnatal factors that might have a profound
effect on both the cognitive capacity and behavior of the offspring, high fructose consumption in
the young population is of particular concern. The present study aimed to investigate the effects
of prenatal synthetic glucocorticoid exposure additionally challenged with postnatal fructose over-
consumption on locomotion, anxiety, and memory in adult male rat offspring. According to our
results, prenatal glucocorticoid treatment induced changes in reactions to novel situations in male
rats that might represent advantageous fetal developmental adaptation, while increased exploratory
behavior, reduced anxiety, and improved ability to recognize novel objects could improve survival
in an adverse postnatal environment. On the other hand, moderate fructose consumption did not
appear to alter the effects of prenatal glucocorticoid exposure, suggesting that fetal programming
had a predominant influence.

Abstract: Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes
regarding stress reactivity and cognition. Increased fructose consumption has also been associated
with alterations in cognitive capacity and behavior. The present study investigated the effects
of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition
memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal
fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation
and male offspring were supplemented with a moderate dose of fructose. Recognition memory,
locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field
test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the
levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95,
calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally,
protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form
were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of
exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein
levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of
prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in
reactions to novel situations in male Wistar rats.
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1. Introduction

Rapid growth and finely tuned development of the fetal brain during pregnancy
make it particularly vulnerable to any hostile intra-uterine environment [1]. Alterations in
conditions during critical stages of development lead to a set of permanent fetal adaptive
changes, a process termed developmental programming. During prenatal development,
glucocorticoids (GCs) control fetal growth, proliferation, and the maturation of numerous
fetal tissues, including neuronal differentiation [2]. Maternal cortisol increases through-
out normal gestation [3], providing sufficient cortisol levels during the third trimester,
required for the maturation of the fetal organs and preparation for delivery [4]. In pregnant
mothers under stress, high circulating GCs induce adaptive changes in fetal structure and
metabolism that initially promote fetal survival, but are often associated with metabolic and
mental health disorders later in life [5,6]. Besides endogenously derived hypercortisolism,
prenatal treatments with synthetic corticosteroids in clinical practice have similar effects.
Dexamethasone is a glucocorticoid receptor (GR) agonist commonly used to stimulate
lung differentiation and newborn survival in pregnancies at high risk of preterm deliv-
ery [7]. However, it is well known that prenatal dexamethasone treatment also induces
lower birth weight [8]. Several longitudinal studies have reported that prenatal expo-
sure to synthetic corticosteroids is associated with greater distractibility and hyperactivity,
neurosensory deficits, aggressive–destructive behavior, and higher emotionality in chil-
dren [9–12]. Animal studies have also revealed that prenatal dexamethasone treatment
induced increased stress reactivity [13], cognitive impairments associated with changes in
hippocampal synaptic transmission [14], and a reduction in the number of proliferative
cells in the hippocampus [15].

Among postnatal factors that might have a profound effect on both the metabolic and
mental health of the offspring, high fructose consumption is particularly concerning in
the young population [16,17]. Higher intake of fructose, mainly from beverage consump-
tion, is a risk factor for the development of metabolic diseases [16]. Consequently, poor
metabolic health is associated with the disruption of child cognitive development, even
in healthy, typically developing children [18]. Recent studies have highlighted the role of
the hippocampus in fructose-induced cognitive deficits, especially in sensitive periods of
neurocognitive development—childhood and adolescence [19]. A high-fructose diet in
adolescents elevates glucocorticoids and induces anxiety- and depressive-like behavior [17].
Moreover, high fructose consumption during infancy provokes different behavioral effects
in male and female rats, with negative effects on attention and impulsivity noted only in
males [20]. The focus of this study was to evaluate if fructose overconsumption during
the childhood of male rats might affect possible behavioral responses induced by prenatal
GC programming.

Fetal exposure to excessive glucocorticoids, natural or synthetic, also has sex-specific
effects on offspring behavior. Males tend to show learning and memory deficits, while
females show depressive-like and anxiety-like behavior [21]. Furthermore, male offspring
exposed to maternal stress show stress-induced locomotor hyperactivity in adulthood [22].
In humans, prenatal glucocorticoid overexposure has also been associated with increased
cortisol reactivity to acute psychosocial stress and depression in girls and increased risk of
attention deficit hyperactivity disorder symptoms in boys [23–25].

The present study aimed to investigate the effect of dexamethasone prenatal treat-
ment and postnatal moderate fructose consumption on recognition memory and general
locomotion in Wistar Han male offspring. Additionally, to compare with our previously
obtained results on females [26], anxiety-like behavior in males after identical treatment
was estimated. Due to the hippocampal key role in the performance of recognition mem-
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ory [27], hippocampal levels of proteins related to synaptic plasticity—growth-associated
protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95 (PSD-95) and its form
phosphorylated at Serine 295—the ratios of total and auto-phosphorylated (Threonine
286) calcium/calmodulin-dependent kinase IIα (CaMKIIα) were estimated. Additionally,
protein levels of the GR and its transcriptionally active form phosphorylated at Serine
232 (corresponding to human Serine 211), which is considered a biomarker for activated
GR [28], were evaluated.

2. Materials and Methods
2.1. Animals and Treatment

Adult female Wistar Han rats (2–2.5 months old) were mated in the vivarium of
the Institute for Biological Research, Belgrade, Serbia, during the night. Animals were
maintained under standard conditions (23 ± 2 ◦C, 60–70% relative humidity, 12 h light/dark
intervals), with food and water available ad libitum. In the morning, vaginal smears were
analyzed, and sperm-positive vaginal smears were considered as an indication of pregnancy
(day 0 of gestation). Gravid females were randomized into two groups. The experimental
group received subcutaneous injection of dexamethasone (Dx) in a dose of 0.5 mg/kg/day
on gestational days 16, 17, and 18, while control females were treated with the same quantity
of saline. This particular dosing paradigm is well in line with the recommended range of
clinical human exposure [7,29] and causes low birth weight in Wistar rats [30]. To check the
effect of prenatal Dx overexposure, the body masses of one-day-old offspring of control
and Dx-treated dams were measured. After weaning (21st day of life), to minimize litter
effect, males were randomly chosen from control litters and litters of Dx-treated mothers,
and divided into two more groups. The first group was fed with standard laboratory
rodent chow (Veterinarski zavod Subotica, Serbia). Both food and drinking water were
available ad libitum. The second group had ad libitum access to the same chow and
10% (w/v) fructose solution instead of drinking water. Thus, four groups were formed:
control male offspring (C), male offspring supplemented with fructose in drinking water
(F), male offspring from Dx-treated dams (Dx), and male offspring from Dx-treated dams
supplemented with fructose in drinking water (Dx-F). Each group consisted of six males.
The postnatal experimental procedure, which included water or 10% fructose consumption,
lasted for 10 weeks. Male offspring were subjected to behavioral testing at the age of three
months. After two days, animals were euthanized by rapid decapitation. The body mass
was measured immediately before euthanasia. The experimental paradigm is presented as
timeline (Figure 1).
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All animal procedures complied with Directive 2010/ 63/EU on the protection of
animals for experimental and other scientific purposes and the ethical standards of the
Low Animal Welfare No 41/2009 as national guides on the care and use of laboratory
animals, and were approved by the Ethical Committee for Use of Laboratory Animals of
the Institute for Biological Research “Siniša Stanković”, University of Belgrade, No 7-12/12.
The experiments were performed following a guideline on the principles of regulatory
acceptance of 3Rs (replacement, reduction, refinement) testing approaches, European
Medicines Agency, 2016.

2.2. Behavioral Tests

Animals were subjected to three behavioral tests in the adult period of life, i.e., at the
age of three months, on four consecutive days between 9 A.M. and 1 P.M. It was supposed
that the day-after-day submissions to tests might induce better habituation to stress in
comparison to the interrupted exposure pattern [31]. Open-field test (OFT), performed
on Day 1, is a standard assay for assessing locomotor activity in rodents by tracking their
walking distance and periods of inactivity. Two other OFT parameters, the number of
entries and the time spent in the central zone, were used to evaluate anxiety-like behavior,
which was additionally investigated by elevated plus maze (EPM) on Day 4. Day 1 was also
considered as the habitation phase for the Novel object recognition test (NOR), which was
performed on Days 2 and 3. This test was used to measure behavior relevant to recognition
memory. Both OFT and NOR were performed in the same apparatus, consisting of four
adjacent plastic-coated open-field square areas (70 × 70 cm), enclosed and separated by
plywood (H = 50 cm). The activity of up to four rats was synchronously and independently
registered in this apparatus by a high-angle video camera, elevated at 2.40 m above ground
level, and connected to a PC. The identically positioned camera was used to record rat
behavior in EPM. All behavioral tests were performed in a separate dimly illuminated
room (indirect 2 × 40 W light) with light and acoustic isolation, and the temperature was
maintained at 25 ◦C. Video analysis was performed using ANY-maze software (ANY-maze
Video Tracking System 4.30, Stoelting Co., Wood Dale, IL, USA). Particular behavioral
parameters were identified by two proficient experimenters unaware of the experimental
groups. After each test, the equipment was cleaned with 10% ethanol solution and dried
with paper towels to remove any trace of odor.

2.3. Open-Field Test

Each animal was positioned in the center of the area, and its locomotion was recorded
during the following 5 min interval. By ANY-maze analysis, two main parameters illus-
trating animal locomotor activity were defined: (1) total traveled distance (in meters), by
tracking the center of the animal body; (2) time of inactivity (in seconds) as the sum of
periods when animals did not express movement in space. Founded on the premise that
rodents express anxious behavior in open fields by avoiding the central part of the area
and prefer to move near the fence [32], the central region (35 × 35 cm), presenting ¼ of the
total area, was observed to track rat ambulation. The time that the center of rat body spent
in this region and the number of entrances during 5 min were analyzed and calculated to
reflect their level of anxiety.

2.4. Novel Object Recognition Test

This test was established as a valuable measure of cognition and memory reten-
tion [33]. The variant of the NOR protocol applied in our experiments was adapted from
the protocol [34]. Each animal was allowed a 10 min training session with exposure to two
identical, non-toxic objects (hard plastic items) placed in the two opposite corners of the
arena (70 × 70 cm). Following the training session, the animals were immediately returned
to their home cage. After 24 h, each animal was returned to the same arena, in which one
familiar object was replaced with a novel object of a similar size, but with a different shape
and color. The animal was placed in the center of the arena facing away from both objects.
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The exploration was defined when the animal’s head was directed toward an object and
inside a circle (R = 6 cm) around the object. The test was ended after accumulating 40 s of
exploration time on either of the sample objects. The novel object preference ratios were
calculated by dividing the novel object exploratory time by the time used to explore both
objects (40 s). The sessions were video-recorded and subsequently analyzed by ANY-maze.

2.5. Elevated Plus Maze

Anxiety-like behavior was examined by EPM, according to the described proce-
dure [35]. The EPM apparatus was made of blue acrylic and consisted of three zones:
two opposite open arms (50 × 10 cm) and two opposite closed arms (50 × 10 cm) with
40 cm walls, connected by a central platform (10 × 10 cm). The cross-platform was elevated
to a height of 60 cm. The testing was started by placing each rat in the central square of the
maze facing one of the closed arms. Its behavior was recorded for the next 5 min with a
video camera positioned vertically above the apparatus. Two basic parameters, the percent-
ages of open arm entries and of time spent in open arms during 5 min, were calculated and
analyzed. Additional ethological parameters [35], like the number of rearing, the time spent
grooming, as well as behaviors related to risk assessment—head-dipping (exploratory
scanning over the sides of the maze), closed-arm returns (c-returns) and stretched attend
posture (SAP)—were also estimated. However, the results are presented only where there
were significant effects of the treatments.

2.6. Serum Corticosterone Determination

Blood was collected from individual animals’ trunks in the morning hours, between
09:00 and 10:00 h, and the sera were stored at −80 ◦C until the analysis. Based on a previous
pilot study, samples were diluted 20×, and total corticosterone, both bound and free, was
determined using a commercially available ELISA kit, following manufacturer instructions
(#KGE009, R&D Systems, Abingdon Science Park Abingdon, OX14 3NB, Abingdon, UK).
Intra-assay and inter-assay coefficients of variations were 6.1% and 6.5%, respectively.

2.7. Preparation of Whole Cell Extract

After decapitation, brains were removed and hippocampi were dissected. To obtain
whole-cell protein extracts, tissues were homogenized in 10 vol. (w/v) of ice-cold RIPA
buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.1% SDS, 0.5% Triton
X-100, 1 mM EDTA, 1 mM EGTA, 2 mM DTT with protease and phosphatase inhibitors)
using a glass/teflonhand homogenizer (Potter-Elvehjem, Deltalab, Barcelona, Spain). The
homogenates were sonicated on ice (3 × 5 s at 10 MHz, Hielscher Ultrasound Processor,
Hielscher Ultrasonics, Teltow, Germany), left for extraction for 30 min at 0 ◦C, and finally
centrifuged at 20,000× g for 30 min. The resulting supernatants were stored at −70 ◦C.

2.8. Western Blot Analysis

The concentration of isolated proteins was determined by the Lowry method, using
bovine serum albumin (BSA) as a standard. Equal protein amounts (10 or 40 µg per lane)
were separated by electrophoresis on 8% or 10% sodium dodecyl sulfate-polyacrylamide
gels and transferred to polyvinylidene difluoride membranes (Immobilon-P, Merck Milli-
pore Ltd., Tullagreen, Ireland). The membranes were blocked by 5% non-fat dry milk or
2% bovine serum albumin in phosphate-buffered saline (PBS, 1.5 mM KH2PO4, 6.5 mM
Na2HPO4, 2.7 mM KCl, 0.14 M NaCl, pH 7.2) at room temperature for one hour, and
then incubated overnight at 4 ◦C with following primary rabbit polyclonal antibodies:
anti-PSD95 (#2507s, Cell Signaling; 1:1000), anti-phospho-PSD95-Ser295 (#45737s, Cell
Signaling, Danvers, MA, USA; 1:1000), anti-phospho-GR-Ser211 (#4161s, Cell Signaling
Massachusetts, USA; 1:1000), anti-CaMKIIα (sc-9035, Santa Cruz Biotechnology, Dallas, TX,
USA; 1:6000), anti-phospho-CaMKIIα-Thr286 (sc-12886-R, Santa Cruz Biotechnology, Dal-
las, TX, USA; 1:6000), anti-GAP-43 (sc-10786, Santa Cruz Biotechnology, Dallas, TX, USA;
1:15,000), anti-β-actin (PA1-183, Thermo Fisher Scientific, Rockford, IL, USA; 1:2000) and
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anti-GAPDH (#2118, Cell Signaling, Massachusetts, USA; 1:10,000) used as equal loading
controls. Anti-synaptophysin rabbit monoclonal (MA5-14532, Thermo Fisher Scientific,
Rockford, IL, USA; 1:200) and anti-GR mouse monoclonal antibody (sc-393232, Santa Cruz
Biotechnology, Dallas, TX, USA; 1:500) were also used. After extensive washing, mem-
branes were incubated for 90 min with appropriate horseradish peroxidase-conjugated
secondary antibody (#7074 or #7076 Cell Signaling, MA, USA; 1:2000). The immunore-
active protein bands were visualized by the chemiluminescence method using iBright
FL1500 Imaging System, and quantitative analysis was performed using iBright Analysis
Software V5.3.0 (Thermo Fisher Scientific, USA).

The expression of the target proteins in each experimental group was determined as
the fold change relative to the appropriate controls that were assigned the value 1 (n = 6).

2.9. Statistical Analyses

Physiological parameters, behavioral data, and Western blot (see Supplementary
Materials) data are presented as mean ± standard error of the mean (SEM). Statistical
analyses for the effects of fructose and Dx treatments were performed using two-way
ANOVA (Prism 8, GraphPad Software Inc, San Diego, CA, USA). Further inter-group
differences were evaluated by the Tukey post hoc test and were considered significant
at p < 0.05. Effect sizes were calculated with partial eta squared coefficients (η2

p) and
interpreted as small effect (η2

p = 0.01), medium effect (η2
p = 0.06), and large effect (η2

p = 0.14).

3. Results
3.1. Physiological Parameters

The body mass of the one-day-old offspring was significantly reduced after dexametha-
sone (Dx) treatment of pregnant dams compared to the controls. The average body mass of
the animals in the experimental groups did not differ significantly from the control group at
the age of three months. Significant differences in circulating corticosterone concentration
between the control and treated groups were not observed as well. All data are presented
in Table 1.

Table 1. Body mass and plasma corticosterone level.

Physiological Parameters C Dx F Dx-F

Body mass of one-day-old offspring (g) 6.58 ± 0.26 5.94 ± 0.29 * / /
Body mass of three-month-old offspring (g) 322.33 ± 22.18 318.33 ± 12.69 343.17 ± 14.97 351.00 ± 6.96

Corticosterone of three-month-old offspring (ng/mL) 44.56 ± 9.60 34.12 ± 7.32 46.94 ± 7.65 28.26 ± 3.18

All values are provided as the mean ± SEM; n = 12 for one-day-old offspring, n = 6 for three-month-old offspring.
Four groups were formed after weaning: control male offspring (C), male offspring supplemented with fructose
in drinking water (F), male offspring from Dx-treated dams (Dx), and male offspring from Dx-treated dams
supplemented with fructose in drinking water (Dx-F). A value of p < 0.05 was considered statistically significant
and is given * p < 0.05.

3.2. Behavioral Testing

The effects of treatments on the animal locomotion were evaluated by open field (OF).
The distance that rats traveled and the cumulative period of their inactivity during 5 min in
the OF area were not affected by Dx treatment. However, two-way ANOVA revealed that
fructose treatment affected both parameters. Namely, fructose-treated groups had longer
traveled distances (F (1, 20) = 5.34, p < 0.05, η2

p = 0.21) and shorter periods of inactivity
(F (1, 20) = 8.33, p < 0.01, η2

p = 0.29) (Figure 2a and 2b, respectively). Post hoc analyses
revealed that the period of inactivity was significantly decreased in the fructose group
compared to the Dx group and Dx-F group (* p < 0.05, F vs. Dx or Dx-F).
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Figure 2. Animals were subjected to three behavioral tests, and parameters were measured and
analyzed by ANY-maze software. Open-field test was used to evaluate (a) total locomotion by
traveled distance and (b) time of inactivity during 5 min in the OF area. Two additional parameters,
(c) the time spent in the central zone and (d) the number of entries to the center, were used to evaluate
anxiety-like behavior. Cognition and memory retention were evaluated by a novel object recognition
test and presented by the novel object preference ratios (e). Anxiety-like behavior was examined by
Elevated Plus Maze during 5 min, where the parameters (f) percentage of the total entrances into open
arms and (g) time spent in the open arms are presented. The number of head-dipping in 5 min (h) was
identified and counted by the proficient experimenter. The data are presented as the mean ± SEM of
n = 6 per group. Effects of fructose consumption and Dx treatment were determined by two-way
ANOVA. A value of p < 0.05 was considered statistically significant. Significant between-group
differences from post hoc Tukey test are given as * p < 0.05.

The two parameters used for the assessment of anxiety-like behavior, the time spent
(Figure 2c) and the number of entrances into the central quadrant of the area during 5 min
(Figure 2d), were not significantly affected by the treatments. Still, an increase was noted
for both parameters after Dx treatment near the level of significance (p = 0.07 and p = 0.06,
respectively). Additionally, the data obtained for anxiety-like behavior tested by elevated
plus maze (EPM) are presented in Figure 2f,g. The analyses did not show significant effects
of the treatments on the percentage of entries in the open arms of the apparatus during
5 min (Figure 2f). Nevertheless, two-way ANOVA showed that Dx treatment increased the
time spent in the open arms (F (1, 20) = 6.32, p < 0.05, η2

p = 0.24) (Figure 2g). Estimation
of an array of registered ethological parameters in EPM revealed a stimulating effect of
Dx treatment on head-dipping (F (1, 20) = 6.28, p < 0.05, η2

p = 0.24) (Figure 2h), while the
other ethological parameters (i.e., number of rearings, time spent grooming, c-returns, and
stretched attend posture (SAP)) were not affected by the treatments.

The novelty preference ratio obtained by novel object recognition (NOR) test, which
reflects memory retention, was significantly elevated after Dx treatment (F (1, 20) = 5.71,
p < 0.05, η2

p = 0.22) (Figure 2e).

3.3. Synaptic Plasticity Markers in the Hippocampus

Recognized effects of Dx and fructose overconsumption on cognition prompted us
to evaluate the expression of synaptic plasticity markers in our experimental paradigm.
Protein levels of presynaptic markers, growth-associated protein 43 (GAP-43) and synapto-
physin, together with the postsynaptic marker, postsynaptic density protein 95 (PSD-95)
including its activating form phosphorylated at serine 295 (pPSD-95-Ser295), and the level
of calcium/calmodulin-dependent kinase IIα (CaMKIIα) and its auto-phosphorylated form
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at threonine-286 (pCAMKIIα-Thr286) were analyzed in the hippocampi of the control and
treated animals by Western blot analysis (Figure 3).
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Figure 3. Representative Western blots and relative quantification of (a) GAP43, (b) synaptophysin,
(c) pPSD-95-Ser295, total PSD, and their ratio, (d) pCAMKIIα-Thr286, total CAMKIIα, and their
ratio, in the hippocampi of the prenatally Dx-treated and control rats, drinking water or fructose
after weaning. β-actin and GAPDH were used for the normalization of immune-positive bands of
target proteins. The expression of the target proteins in each experimental group was determined as
the fold change relative to the appropriate controls that were assigned the value 1. The results are
shown as mean ± SEM (n = 6 animals per group). Effects of fructose consumption and Dx treatment
were determined by two-way ANOVA. A value of p < 0.05 was considered statistically significant.
Significant between-group differences from post hoc Tukey test are given as * p < 0.05.

As shown in Figure 3a, two-way ANOVA revealed that Dx treatment increased the
level of GAP-43 (F (1, 20) = 5.41, p < 0.05, η2

p = 0.21). Further post hoc analysis revealed that
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the protein level of GAP-43 was significantly increased in the Dx group compared to the
control group (* p < 0.05, Dx vs. C).

Fructose and Dx treatments did not affect the level of synaptophysin, pPSD-95-Ser295,
total PSD-95 or their ratio as well as p-CaMKIIα-Thr286, total CaMKIIα or their ratio
(Figure 3b, 3c and 3d, respectively).

3.4. Glucocorticoid Receptor in the Hippocampus

Since it is well known that signaling via glucocorticoid receptor (GR) modulates
learning and memory processes, we further proceeded with Western blot analysis of GR
and its stimulatory phosphorylation at Serine 232 (pGR-Ser232). As shown in Figure 4,
a two-way ANOVA revealed that Dx treatment increased the total GR (F (1, 20) = 9.58,
p < 0.01, η2

p = 0.32) and pGR-Ser232 (F (1, 20) = 9.90, p < 0.01, η2
p = 0.33) levels, while

neither of the treatments affected the ratio of pGR-Ser232 to total GR. However, post
hoc analysis did not show significant differences between groups, although the trends
toward GR and pGR elevations in Dx-Fru animals vs. controls were observed (p = 0.07 and
p = 0.06, respectively).
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Figure 4. Representative Western blots and relative quantification of pGR-Ser232, total GR, and
their ratio, in the hippocampi of the prenatally Dx-treated and control rats, drinking water or
fructose after weaning. β-actin was used for the normalization of immune-positive bands of target
proteins. The expression of the target proteins in each experimental group was determined as the
fold change relative to the appropriate controls that were assigned the value 1. The results are shown
as mean ± SEM (n = 6 animals per group). Effects of fructose consumption and Dx treatment were
determined by two-way ANOVA. A value of p < 0.05 was considered statistically significant.

4. Discussion

This study evaluates the influence of Dx prenatal treatment and postnatal moderate
fructose consumption on recognition memory performance, anxiety-like behavior and
general locomotion in Wistar Han male offspring. Hippocampal synaptic plasticity and its
glucocorticoid signaling are common targets for both glucocorticoids and high-fructose-
mediated effects on cognition and behavior. Therefore, we investigated whether alterations
in hippocampal synaptic plasticity and glucocorticoid signaling underlie recognition mem-
ory capacity. In that sense, Wistar Han rats were treated prenatally with clinically significant
doses of the synthetic glucocorticoid Dx, and male offspring were additionally challenged
by prolonged postnatal fructose consumption (~10% w/v). This experimental design origi-
nated from human and animal studies presenting the undesirable outcomes of the prenatal
exposure to synthetic GCs (i.e., lower birth weight, adverse effects on offspring metabolism,
neurodevelopment, cognition, and behavior) [36,37]. Among postnatal factors, increased
fructose consumption during adolescence has also been associated with changes in cogni-
tive capacity, behavior, and hippocampal structure and function [17,19,38]. Therefore, it
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can be assumed that fructose overconsumption might furthermore potentiate maladaptive
behavioral responses induced by fetal programming.

The effect of prenatal Dx treatment and fructose overconsumption after weaning on
learning and memory was evaluated by the NOR test. Prenatal Dx treatment had a stimula-
tory effect on the novelty preference ratio in adult offspring (Figure 2e), indicating a positive
effect of this treatment on recognition learning and memory capacity. A similar effect of
prenatal Dx treatment on cognitive capacity was also found by Zeng et al., who reported
that late gestational exposure of Wistar rats to Dx resulted in greater cognitive flexibility in
male offspring [39]. The registered novelty preference in Dx groups was associated with
increased levels of the synaptic plasticity marker GAP-43 in the hippocampus (Figure 3a),
while the levels of synaptophysin, PSD-95, CaMKIIα, as well as their activatory phosphory-
lations (pPSD-95-Ser295 and pCAMKIIα-Thr286) were not altered. GAP-43 is involved in
the regulation of presynaptic plasticity and memory formation [40], and previous studies
have shown that moderate overexpression of this plasticity-associated protein can improve
memory and regulate information storage [41,42]. While the stimulatory effect of a single
high dose of Dx on GAP-43 levels in the hippocampus of aged rats [43] or of a Dx-releasing
pellet on GAP-43 mRNA levels after peripheral nerve injury [44] is known, this is the first
study showing this effect in prenatally Dx-exposed rats.

Exposure of the fetus to high levels of glucocorticoids, both exogenous and endoge-
nous, can permanently affect GR expression [45]. Since glucocorticoid signaling is involved
in the consolidation of contextual information, filtering, and integration of sensory stim-
uli [46], the novelty preference observed in our study may be related to upregulated
hippocampal GR (Figure 4). Dose-dependent effects of glucocorticoids on memory consoli-
dation were previously demonstrated. While moderate doses improve memory storage [47],
lower and higher doses are less effective or even lead to memory impairment [48]. To
that effect, elevated prenatal stress is associated with cognitive impairment [49,50], while
mild prenatal stress can improve learning and reduce anxiety in offspring [51]. In ad-
dition to the dose, the timing of prenatal glucocorticoid exposure appears to be crucial
for cognitive development. A well-designed longitudinal study in humans found that
elevated cortisol concentrations at the beginning of pregnancy were associated with slower
mental development, while elevated maternal cortisol concentrations at the end of preg-
nancy were associated with accelerated cognitive development [52]. Consequently, we
believe that both the timing (late gestation) and dose (in the recommended clinical range)
of prenatal Dx treatment in our study fall within the favorable range in the context of
cognitive development.

Prenatal Dx treatment also induced an anxiolytic-like effect corresponding to increased
time spent on open arms in EPM tests (Figure 2g). An analogous effect of Dx treatment
detected by two parameters in OF (time spent in center and number of entrances to the
center, Figures 2c and 2d, respectively) was quite near the level of significance. This
finding is consistent with the previously observed inhibition of anxiety-like behavior in
Wistar–Kyoto rats by late gestational exposure to Dx [53]. Moreover, the number of head
dippings as a measure of exploratory–risk assessment behavior in the EPM test [54] was also
increased after prenatal Dx treatment (Figure 2h). A possible explanation is that prenatal Dx
treatment in our experimental paradigm induced changes in reactions to novel situations in
males that might be considered adaptive fetal programming, while increased exploratory
behavior, reduced anxiety, and improved ability to recognize novel objects could improve
survival in an adverse postnatal environment. However, increased exploratory behavior
and lower anxiety may also increase risk of predation, making this phenotype strongly
situation-dependent. On the other hand, in adult female offspring following identical
prenatal Dx treatment, anxiety-like behavior was increased [26], which is in concordance
with previously observed sex-specific differences in stress-related behavior after prenatal
Dx exposure [55]. The behavioral changes observed in this study were not accompanied by
variations in baseline corticosterone levels. This result is consistent with studies of other
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authors who reported that prenatal or neonatal treatment with synthetic steroids did not
alter baseline corticosterone levels in offspring [26,56].

It must be noted that in the aforementioned papers, in which prenatal Dx treatment
induced effects on behavior consistent with our results [39,53], gravid dams received a
similar dosing regimen as ours during late gestation, designed to fall within the range
of clinical human exposure [29]. Additionally, the same strain of Wistar rats were em-
ployed. Contrastingly, most of the adverse effects of the prenatal Dx treatment on cognitive
functions and anxiety-like behavior were reported in Sprague Dawley rats [57,58]. These
discrepancies might point out significance of strain selection in animal studies as well
as caution when extrapolation of results from rodents to human is performed. In line
with this, depending on dosage, time of exposure, sex, test paradigm, age, species, and
strain employed, early glucocorticoid exposure in rodents results in contradictory cognitive
capacity outcomes [57,59–62], as well as different behavioral responses [26,39,53,58,63].

Three months of ad libitum consumption of 10% (w/v) fructose solution in our study,
from weaning to adulthood, which represents moderately increased fructose consumption
mimicking unhealthy dietary habits [64], had no effect on body weight, serum corticos-
terone levels, anxiety-like behavior or novelty preference. The absence of the effect of
moderate fructose consumption on body weight was not surprising, since studies inves-
tigating the effect of consumption of high concentrations of fructose report conflicting
effects considering rodent body weight [65]. The only effect of fructose consumption in
our study was increased locomotor activity. This is consistent with the observed slight
increase in locomotor activity after chronic consumption of 10% fructose solution in young
male Wistar rats [66] and early exposure to a high-fructose diet in Sprague Dawley rats [20].
However, our results are in contrast with previous studies that reported increased serum
corticosterone and anxiety- and depression-like behaviors after consumption of a high-
fructose diet (55% fructose) during adolescence in Wistar rats [17] or impaired recognition
and spatial memory in Sprague Dawley rats after long-term intake of 10% fructose [50],
or 30-day consumption of 11% high-fructose corn syrup [19]. These discrepancies suggest
that the fructose dose and time regimen in our study were probably not strong enough
to provoke changes in corticosterone levels and alterations in anxiety-like behavior or
recognition memory. Since physiological outcomes associated with supraphysiological
concentrations of fructose cannot be used to extrapolate the effects on human health, we
have chosen to analyze the effect of lower-concentration fructose beverage consumption at
concentrations similar to those found in sugar-sweetened beverages, which is reported to
have adverse effects on metabolic health [65]. A recent paper revealed that the long-term
consumption of 10% fructose during adolescence impaired spatial memory associated
with neuroinflammation in male Wistar rats [67]; however, we did not find this effect of
10% fructose on recognition memory in our study. This discrepancy may be explained by
the higher vulnerability of spatial memory to hippocampal dysfunction than recognition
memory [27], implying that moderate fructose consumption does not affect less complex
recognition memory but might harm more demanding spatial memory.

5. Conclusions

This study reveals that prenatal Dx treatment induces increased levels of synaptic
plasticity marker GAP-43 and upregulation of GR in the hippocampus associated with
novelty preference, improvements in exploratory behavior and certain anxiolytic-like
effects. This implies that prenatal Dx treatment promotes changes in reactions to novel
situations in male Wistar Han rats, which represent fetal developmental adaptation to a new
environment. On the other hand, moderate fructose consumption after weaning did not
affect any of the parameters analyzed in our experimental paradigm, except the stimulating
effect on locomotion, suggesting that fetal programming had a prevailing influence.
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Abbreviations

GAP-43 growth-associated protein 43
PSD95 postsynaptic density protein 95
CAMKIIα calcium/calmodulin-dependent kinase IIα
GR glucocorticoid receptor
GCs glucocorticoids
Dx dexamethasone
C control male offspring
F male offspring supplemented with fructose in drinking water
Dx-F male offspring from Dx-treated dams supplemented with fructose in drinking water
OFT open-field test
EPM elevated plus maze
NOR novel object recognition test
SAP stretched attend posture
BSA bovine serum albumin
SEM standard error of the mean

References
1. Fitzgerald, E.; Hor, K.; Drake, A.J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and

the potential for intergenerational consequences. Early Hum. Dev. 2020, 150, 105190. [CrossRef] [PubMed]
2. Flagel, S.B.; Vazquez, D.M.; Watson, S.J., Jr.; Neal, C.R., Jr. Effects of tapering neonatal dexamethasone on rat growth, neurodevel-

opment, and stress response. Am. J. Physiol. Regul. Integr. Comp Physiol. 2002, 282, R55–R63. [CrossRef] [PubMed]
3. Sandman, C.A.; Glynn, L.; Schetter, C.D.; Wadhwa, P.; Garite, T.; Chicz-DeMet, A.; Hobel, C. Elevated maternal cortisol early

in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock.
Peptides 2006, 27, 1457–1463. [CrossRef] [PubMed]

4. Hacking, D.; Watkins, A.; Fraser, S.; Wolfe, R.; Nolan, T. Respiratory distress syndrome and antenatal corticosteroid treatment in
premature twins. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 85, F77–F78. [CrossRef]

5. Fowden, A.L.; Vaughan, O.R.; Murray, A.J.; Forhead, A.J. Metabolic Consequences of Glucocorticoid Exposure before Birth.
Nutrients 2022, 14, 2304. [CrossRef]

https://www.mdpi.com/article/10.3390/biology13070547/s1
https://www.mdpi.com/article/10.3390/biology13070547/s1
https://doi.org/10.1016/j.earlhumdev.2020.105190
https://www.ncbi.nlm.nih.gov/pubmed/32948364
https://doi.org/10.1152/ajpregu.2002.282.1.R55
https://www.ncbi.nlm.nih.gov/pubmed/11742823
https://doi.org/10.1016/j.peptides.2005.10.002
https://www.ncbi.nlm.nih.gov/pubmed/16309788
https://doi.org/10.1136/fn.85.1.F75g
https://doi.org/10.3390/nu14112304


Biology 2024, 13, 547 13 of 15

6. Lewis, A.J.; Galbally, M.; Gannon, T.; Symeonides, C. Early life programming as a target for prevention of child and adolescent
mental disorders. BMC Med. 2014, 12, 33. [CrossRef] [PubMed]

7. Roberts, D.; Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane
Database Syst. Rev. 2017, 3, CD004454. [CrossRef] [PubMed]

8. Bloom, S.L.; Sheffield, J.S.; McIntire, D.D.; Leveno, K.J. Antenatal dexamethasone and decreased birth weight. Obstet. Gynecol.
2001, 97, 485–490. [CrossRef]

9. French, N.P.; Hagan, R.; Evans, S.F.; Mullan, A.; Newnham, J.P. Repeated antenatal corticosteroids: Effects on cerebral palsy and
childhood behavior. Am. J. Obstet. Gynecol. 2004, 190, 588–595. [CrossRef]

10. Asztalos, E.; Willan, A.; Murphy, K.; Matthews, S.; Ohlsson, A.; Saigal, S.; Armson, A.; Kelly, E.; Delisle, M.F.; Gafni, A.; et al.
Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: Multiple courses of antenatal
corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth 2014, 14, 272. [CrossRef]

11. French, N.P.; Hagan, R.; Evans, S.; Godfrey, M.; Newnham, J.P. Repeated Antenatal Corticosteroids (CS): Behaviour Outcomes in
a Regional Population of Very Preterm (VP,<33w) Infants • 1252. Pediatr. Res. 1998, 43, 214. [CrossRef]

12. Trautman, P.D.; Meyer-Bahlburg, H.F.; Postelnek, J.; New, M.I. Effects of early prenatal dexamethasone on the cognitive and
behavioral development of young children: Results of a pilot study. Psychoneuroendocrinology 1995, 20, 439–449. [CrossRef]
[PubMed]

13. Hauser, J.; Feldon, J.; Pryce, C.R. Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA
axis in adult Wistar rats. Horm. Behav. 2009, 56, 364–375. [CrossRef]

14. Luo, M.; Yi, Y.; Huang, S.; Dai, S.; Xie, L.; Liu, K.; Zhang, S.; Jiang, T.; Wang, T.; Yao, B.; et al. Gestational dexamethasone exposure
impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta
Pharm. Sin. B 2023, 13, 3708–3727. [CrossRef]

15. Noorlander, C.W.; Tijsseling, D.; Hessel, E.V.; de Vries, W.B.; Derks, J.B.; Visser, G.H.; de Graan, P.N. Antenatal glucocorticoid
treatment affects hippocampal development in mice. PLoS ONE 2014, 9, e85671. [CrossRef] [PubMed]

16. Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [CrossRef]
[PubMed]

17. Harrell, C.S.; Burgado, J.; Kelly, S.D.; Johnson, Z.P.; Neigh, G.N. High-fructose diet during periadolescent development increases
depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology 2015, 62, 252–264.
[CrossRef] [PubMed]

18. Shapiro, A.L.B.; Wilkening, G.; Aalborg, J.; Ringham, B.M.; Glueck, D.H.; Tregellas, J.R.; Dabelea, D. Childhood Metabolic
Biomarkers Are Associated with Performance on Cognitive Tasks in Young Children. J. Pediatr. 2019, 211, 92–97. [CrossRef]

19. Hsu, T.M.; Konanur, V.R.; Taing, L.; Usui, R.; Kayser, B.D.; Goran, M.I.; Kanoski, S.E. Effects of sucrose and high fructose corn
syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015, 25,
227–239. [CrossRef]

20. Barrett, C.E.; Jiang, M.; O’Flaherty, B.G.; Dias, B.G.; Rainnie, D.G.; Young, L.J.; Menigoz, A. Early life exposure to high fructose
diet induces metabolic dysregulation associated with sex-specific cognitive impairment in adolescent rats. J. Nutr. Biochem. 2023,
114, 109220. [CrossRef]

21. Glover, V.; Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: An
evolutionary perspective. Physiol. Behav. 2012, 106, 736–740. [CrossRef]

22. Bronson, S.L.; Bale, T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific
and ameliorated by maternal antiinflammatory treatment. Endocrinology 2014, 155, 2635–2646. [CrossRef] [PubMed]

23. Van den Bergh, B.R.; Van Calster, B.; Smits, T.; Van Huffel, S.; Lagae, L. Antenatal maternal anxiety is related to HPA-axis
dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed
mood. Neuropsychopharmacology 2008, 33, 536–545. [CrossRef]

24. Alexander, N.; Rosenlocher, F.; Stalder, T.; Linke, J.; Distler, W.; Morgner, J.; Kirschbaum, C. Impact of antenatal synthetic
glucocorticoid exposure on endocrine stress reactivity in term-born children. J. Clin. Endocrinol. Metab. 2012, 97, 3538–3544.
[CrossRef]

25. Li, J.; Olsen, J.; Vestergaard, M.; Obel, C. Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal
bereavement: A nationwide follow-up study in Denmark. Eur. Child. Adolesc. Psychiatry 2010, 19, 747–753. [CrossRef]
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