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Abstract: Fibroblasts are typical mesenchymal cells widely distributed throughout the human body
where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of
soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other
and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in
tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental
heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of
the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions
and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g.,
in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the
informative potential of high-throughput assays for the study of fibroblasts under different disease
contexts for personalized healthcare and regenerative medicine applications.
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1. Introduction

In 1858, Virchow firstly described “spindle-shaped cells of the connective tissue” [1],
but it was Ziegler who, 40 years later, used the term “fibroblast” to describe the cells
depositing new connective tissue in wounds [2].

Fibroblasts are typical mesenchymal cells widely distributed throughout the human
body, where they (1) synthesise and maintain the extracellular matrix (ECM), ensuring the
structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) com-
municate with each other and with other cell types, acting as signalling source for stem cell
niches; and (4) are involved in tissue remodelling, fibrosis, wound healing, and cancer [3].
Indeed, from the functional point of view and with a partially overlapping phenotype,
it is possible to recognize fibrosis-associated fibroblasts (FAF), wound healing-associated
fibroblasts (WAF), cancer-associated fibroblasts (CAF) and aging-associated fibroblasts
(AAF). Therefore, although fibroblasts isolated from different tissues exhibit similarities in
appearance, suggesting that they can be considered interchangeable, they indeed unveil
differences depending on the morpho-functional specificities of the environment where
they are located and on their origin [4].

Fibroblasts are considered one of the most widely used model systems to understand
comparative physiology, to investigate pathologic conditions through reductionist ap-
proaches, and for applications in biomedicine since they are easily isolated from tissues and
can be grown in culture on artificial surfaces such as glass and plastic or on natural and/or
bioengineered materials [5]. Similarly to the spontaneously immortalized 3T3 fibroblast
cell line, originally derived from mouse embryo [4], fibroblasts are widely used in basic
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cellular and molecular biology studies since they retain excellent growth capabilities for
several passages and exhibit high environmental plasticity, offering the possibility to be
reprogrammed to become pluripotent stem cells for a wide spectrum of applications in
regenerative medicine [6,7].

2. Origin of Fibroblasts and Their Heterogeneity

Despite their conventional morphological description as spindle- or stellate-shaped
cells with an oval nucleus and a distinct endoplasmic reticulum (Figure 1), it is now well
known that fibroblasts have distinctive embryological origin, differently interact with other
cells and play multiple roles in many pathologic contexts [8].
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populate postembryonic developmental tissues. These cells, also described as “resident 
quiescent fibroblasts”, are the major contributor of extracellular matrix homeostasis, 
migrate, and respond to stimuli, exhibiting features of pluripotency. A subset of 
mesoderm-derived cells, known as mesenchymal stem/stromal cells (MSCs), are present 
in peripheral niches of adult tissues where they exhibit high manipulability, especially in 
terms of regeneration potential, and provide an additional supply of resident fibroblasts 
[9] (Figure 2). Beyond “resident quiescent fibroblasts”, also “non-resident fibroblasts” 
have been described, which may derive from direct conversion from one somatic cell type 
into another (e.g., bone marrow-derived mesenchymal stem cells or cellular trans-
differentiation) (Figure 2).  

Figure 1. Representative images of dermal fibroblasts. Fibroblasts in 2D (A) and 3D (B) culture
observed by light microscopy. Fibroblast in culture (C) and in healthy skin (D), observed by trans-
mission electron microscopy. Fibroblast in culture observed by atomic force microscopy (E) and by
confocal microscopy (F). Images are from authors’ laboratory.

Indeed, fibroblast heterogeneity already starts during development through evolu-
tionary conserved mechanisms. Fibroblasts, known as “primary fibroblasts”, derive from
the mesenchyme following epithelial mesenchymal transition of epiblasts, giving rise to
“resident fibroblasts”. The primary mesenchyme is the source of the mesoderm from which
originate different mesenchymal cell types, including fibroblasts that populate postembry-
onic developmental tissues. These cells, also described as “resident quiescent fibroblasts”,
are the major contributor of extracellular matrix homeostasis, migrate, and respond to
stimuli, exhibiting features of pluripotency. A subset of mesoderm-derived cells, known as
mesenchymal stem/stromal cells (MSCs), are present in peripheral niches of adult tissues
where they exhibit high manipulability, especially in terms of regeneration potential, and
provide an additional supply of resident fibroblasts [9] (Figure 2). Beyond “resident quies-
cent fibroblasts”, also “non-resident fibroblasts” have been described, which may derive
from direct conversion from one somatic cell type into another (e.g., bone marrow-derived
mesenchymal stem cells or cellular trans-differentiation) (Figure 2).
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alter fibroblast characteristics cannot be excluded [19].  

Figure 2. Developmental origin of fibroblasts. ECM, extracellular matrix; CAF, cancer-associated
fibroblasts; FAF, fibrosis-associated fibroblasts; WAF, wound-associated fibroblasts; AAF, aging-
associated fibroblasts.

Fibroblasts from different body sites display distinct gene expression profiles (e.g., cell–
cell signalling, matrix remodelling), highlighting the concept of “fibroblast topographical
heterogeneity”. Therefore, age as well as the anatomical site of human dermal fibroblasts
have been shown to affect functional differences, such as the ability to promote epidermal
differentiation and to contribute to wound healing [10]. Indeed, dermal fibroblasts from
the same topographic sites, even if isolated from different individuals, are more similar
compared to those from different regions, although in the same subject. This “anatomical
imprinting” is not modified by passages in cell culture, or by environmental changes [11].
Similarities and differences have been further highlighted by a seminal study by Chang
and coworkers, who analysed the transcription profiling of fibroblasts from different sites
and from different donors [12]. Whereas only a few genes were uniquely expressed by
fibroblasts isolated from different sites, most of the genes showed a different expression
grade depending on the fibroblast line. For instance, the expression levels of growth
and differentiation molecules (e.g., members of transforming growth factor (TGF-β), Wnt,
receptor tyrosine kinase and phosphatase families) were determined by the anatomic site
(e.g., lung vs. skin). A similar trend was observed for extracellular matrix genes such as
matrix metalloproteinase (MMP)-9, collagen type I and V, disintegrin and metalloproteinase
domain-containing protein 12 (ADAM-12), ADAMTS like-1, perlecan, fibronectin 1, and
fibrillin 1 [12].

Interestingly, it has been demonstrated that changes in the gene expression profile of
fibroblasts depend not only on the organ (e.g., skin vs. lung vs. liver), but also on their
position along the anterior/posterior, proximal/distal axes [11,13]. Indeed, during embryo-
genesis, site-specific cellular differentiation and tissue morphogenesis are associated with
the expression of specific homeotic gene (HOX) [14]. For instance, HOXD gene expression
is exclusively limited to dermal fibroblasts, thus suggesting that it is possible to determine
the anatomic position of a fibroblast by looking at specific HOX gene expression [11]. Once
established, the specific HOX gene expression is retained in the original pattern by “main-
tenance proteins” such as Polycomb-Group (PcG) and trithorax-Group (trxG) proteins
acting as silencers or activators, respectively, of HOX and of many other genes [15]. The
demonstration that these transcription factors specify site-specific transcriptional programs,
conserved in adult cells and also after extensive ex vivo cell divisions [12], suggested
the involvement of epigenetic mechanisms [16] or of noncoding RNAs [17]. Similarly to
regulatory mechanisms observed in Drosophila [18], HOX proteins in adult fibroblasts
modulate the expression of genes endowing fibroblasts with site-specific activities and
inductive properties, although local influences that plastically alter fibroblast characteristics
cannot be excluded [19].
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The heterogeneity of fibroblasts may reflect the variety of cell markers that have
been described in the literature. Although no universal fibroblast markers have been
identified yet, some markers are considered “typical” of fibroblasts (e.g., ECM compo-
nents such as vimentin or procollagen Iα2 chain; platelet-derived growth factor receptor
alpha or CD34) [20,21], whereas others are more context-specific (e.g., discoidin domain
receptor 2 (DDR2) in cardiac fibroblasts) [22]. According to the database CellMarker 2.0
(http://117.50.127.228/CellMarker/) (accessed on 6 June 2024), fibroblasts may express
several mesenchymal markers which can differ depending on the tissue [23] (Table 1),
and which are actually not unique, being shared with other cell types, including neurons,
immune cells, epithelial cells, endothelial cells and adipocytes.

Table 1. Fibroblast markers according to the database CellMarker 2.0. Data were filtered for human
tissue, normal cell and fibroblast.

Tissue Marker

Adipose tissue CD45, CD91

Articular cartilage COL1A1, COL3A1, COL5A1, S100A4

Bile duct FAP, PDGFR-b

Bladder COL1A1, COL1A2, COL3A1, DCN, PLA2G2A, S100A4

Blood vessel COL1A1, COL3A1, DCN, PDGFRb

Brain BRACHYURY, COL1A1, DCN, IGFBP5, KCNT2, LGALS3, PDGFRA, SNAI1, THY1

Breast CK18, CK19, CK8, POSTN

Capillary ACTA2, MYH11

Cardiac atrium ADAMTS4, AXL, VCAN

Dermis CD34, CAM1, IL6, PDPN

Esophagus ACTA2, COL1A1, COL3A1, CTGF, PDGFRa, PDGFRb, PLN, SERPINE1, TAGLN, VIM, WNT2B

Eye MGP, MYOC

Eye choroid COL1A1, FBLN1

Heart ACTA2, ALDH1A1, CADH2, CKAP4, COL1A1, COL2A1, COL3A1, DCN, DDR2, FN1, ITA4, LTBP2,
PDGFRA, POSTN, TGF-21, THY1

Intestine

C7, COL1, POSTN, ALKAL2, BMP2, BMP3, CCL21, CD24, CENPF, CLEC2B, COL28A1, COL6A5,
COL9A3, CXCL10, CXCL13, DLK1, EBF2, EBF3, FBLN1, GDF10, GINS2, GPX3, GREM1, HAND1,
HMGA2, IFIT3, INSC, LXN, MBP, MKI67, MMP11, NPY, NR2F1, OLFM3, OSR2, PCLAF, PDLIM3,

POSTN, PRRX1, PTGDS, PTN, RAMP1, SCN7A, SCUBE2, TFPI2, THY1, TNFSF11, TOP2A, THYMS,
WNT4, WNT5B, CD90

Kidney COL1A1, COL3A1, DCN, DDR2, FSP1, LUM, MYL12B, SPP1, VIM

Limb skin CCL19, CCL2, COL18A1, COL6A5, DCN, TNC

Liver FSP-1, NDUFA4L2, RGS5, S100A4

Lung
COL1A1, COL3A1, PDGFRa, CC2512, alpha-SMA, ACTA2, CD34, CD36, CD90, CD97, CDKN1A, CTGF,
DDR2, Desmin, DKK3, FBN1, GAS6, GSN, KMT2B, LUN, MIF, MYC, OSR1, P4HA1, PDGFRB, PDGFRA,

PLIN2, PRRX1, S100A4, SNAI1, TCF21, VCAN, VIM, VIT

Muscle MYH1, MYH7,

Myocardium TGF-β1

Ovary BGN, COL1A1, COL1A2, DCN, POSTN

Oviduct DCN

Pancreas ACTA2, COL1A1, COL1A4, SPARC

Periodontium COL1A1, DCN

http://117.50.127.228/CellMarker/
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Table 1. Cont.

Tissue Marker

Peritoneum COL1A2, LUM, MMP2, DPGFR

Prostate APOD

Skin
APCDD1, APOD, APOE, CCL19, CD26, CD36, CD90, CFD, COL1A1, COL1A2, COL2A2, COL6A2,

COL6A5, CXCL12, CXCL14, DCN, FAP, FB, FBLN1, FN1, KRT14, LUM, LYVE1, MEG3, MMP2, MXRA8,
PAX1, PCOLCE, PDGFRA, PLA2G2A, PLPP3, SDC2, SERPINH1, SFPR4, SMA, TRIL, VIM

Spleen C11orf96, CALD1, COL4A1, CXCL13, IGFBP2, IGFBP7, PTGDS, SPARCL1, TAGLN, TIMP1

Stomach POSTN, SMA

Synovium COL3A1, VIM, CD55, GGT5, CD90, ISLR, PDGFRA, PDPN,

Thymus ALDH1A2, COLEC11, FAP, FBN1, GDF10, PDGFRA, PI16, S100A4, SEMA3D

Uterus SFRP2, APOD

Vagina FBLN1, LUM

Vocal fold CD105, Cd14, CD29, CD31, CD34, CD44, CD45, CD73, CD90

Undefined
α-SMA, BGN, CD10, CD105, CD11b, CD121a, CD140a, CD140b, Cd19, CD29, CD34, Cd44, CD45, CD47,

CD73, CD81, CD90, CD91, COL1A1, DDR2, ECM2, FBLN1, HLA-DR, MFAP5, PDGFRA, PDGFRB,
S100A4, TGF-β1, VEGF, vimentin

3. Fibroblasts and the Extracellular Environment

Recent studies revealed the heterogeneity and the plasticity of fibroblasts dependent
on the different skin areas, which have implications for cutaneous diseases and tissue engi-
neering. As a matter of fact, early embryonic dermal fibroblast progenitors can potentially
differentiate into several cell types, such as papillary or reticular fibroblasts, dermal papilla,
and intradermal adipocytes [24]. Indeed, experimental studies have shown that, in vitro,
papillary and reticular fibroblasts produce different amounts and types of ECM molecules,
such as decorin and versican and similar amounts of biglycan [25,26].

The skin, depending on the areas, exhibits also differences in structural organization,
balance between tensile strength and elasticity, and in the response to intrinsic and/or
extrinsic stimuli. Therefore, fibroblasts, being the major producer of collagen and elastic
fibres as well as of hundreds of molecules comprised within the so called “ground sub-
stance” [22], actively regulate tissue homeostasis and tissue repair [9]. Indeed, fibroblasts
secrete and continuously remodel the ECM modulating the expression/activity of crosslink-
ing enzymes (e.g., lysyl oxidase), of degrading enzymes (e.g., MMPs, tissue inhibitors of
metalloproteinases) in response to specific stimuli and functional requirements [27]. To
better understand the complexity of the ECM and the key role exerted by fibroblasts, a
brief overview of the major groups of matrix molecules is provided.

3.1. Collagens

Collagens belong to a wide family of XXIX molecules characterized by a complex
supramolecular structure exhibiting highly diverse morphologies across different tissues
(Table 2).

All members of this family exhibit (i) the amino acid repeating sequence [Gly–X–Y]n
with and without interruptions; (ii) the presence of proline and hydroxyproline in the
X and Y positions of the typical basic sequence; and (iii) the supramolecular structural
organization characterized by a right-handed triple helix formed from three left-handed
polyproline α-chains of identical length, which gives collagen a unique quaternary structure.
Collagen type I (approximately 70% of dry weight) and type III (8–11%) are the most
represented in the adult skin with a ratio of collagen I:III of 4:1, in contrast to a 1:1 ratio in
foetal and healing skin. Interestingly, the ratio between these two collagens regulates fibril
width and stiffness, which are inversely related to the binding affinity of cells to the matrix.
Indeed, hybrid molecules of collagen type I and type III, compared to fibrils made only
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of collagen type I or type III, are the most effective in terms of fibroblast activation, cell
polarization and collagen synthesis [28]. Therefore, these fibrillar collagens (Figure 3) are of
fundamental importance not only for their structural role in providing the required tensile
strength to tissues, but also for triggering signalling events through the interactions with
cell-surface receptors such as integrins, DDR, immunoglobulin receptors and leukocyte
receptor complex [29].

Table 2. Collagen types can be divided according to their supramolecular organization (in bold are
the collagens localized in the skin). MACIT, membrane-associated collagens with interrupted triple
helices; FACIT, fibril-associated collagens with interrupted triple helices; MULTIPLEXINS, multiple
triple-helix domains and interruptions.

Collagen Family

Fibril Forming
Collagens

Network Forming
Collagens MACIT Collagens FACIT Collagens MULTIPLEXINs

Collagens
Other

Collagens

I
II
III
V
XI

XXIV
XXVII

IV
VI
VII
VIII

X

XIII
XVII
XXIII
XXV

IX
XII
XIV
XVI
XIX
XX
XXI
XXII

XV
XVIII

XXVI
XXVIII
XXIX
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Figure 3. Transmission electron microscopy of collagen dermal fibrils cut transversely (A) and
longitudinally (B). In longitudinal section, the fibrils show alternating light and dark bands. Images
are from authors’ laboratory.

Other minor collagens represented in the dermis are collagen type V, VI, VII, XII
and XIV. Collagen type IV and XIX are mainly expressed in the basement membranes,
whereas collagen type XIII, XVII and XXIX contribute to the epidermal strength [30]. Due
to the their abundance, stability and biocompatibility properties, collagens, regardless
of type and structure, are widely used as natural biomaterials to promote, for instance,
wound healing, osteoblast migration and growth [31]. Collagen-based biomaterials have
also attracted increased interest for their pharmaceutical potential for reconstructive and
general surgery, cosmetology, drug delivery systems, tissue repair, and nutritional and
therapeutic uses [32,33].

3.2. Elastic Fibres

Elastic fibres are typically present in higher vertebrates where they confer elasticity to
soft connective tissues such as skin, vessels and lungs. The fibres are mainly composed of
two components: the amorphous elastin and the microfibrillar scaffold, which are 10–12 nm
wide filaments made of fibrillins, a group of glycoproteins enriched in Cys and representing
the scaffold required to assemble mature functional elastic fibres (Figure 4) [34].
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Inside the cells, the elastin precursor, tropoelastin, is transported to the membrane
by the elastin binding protein (EBP), a 67 kDa protein that, binding to 61 and 55 kDa
integral membrane proteins, forms a complex acting as the elastin receptor [35]. Outside
the cells, due to the tropoelastin high hydrophobicity, it has been proposed that several
other molecules may play a role in guiding tropoelastin monomers in the extracellular
space favouring the assembly of the fibres, namely fibulins, glycosaminoglycans such as
heparan sulphate, latent TGF-β binding proteins (LTBPs), ADAMTS (a disintegrin-like
and metalloprotease- reprolysin type—with thrombospondin type I motif), microfibril-
associated glycoproteins, minor collagens (e.g., collagen type VI, VIII, XVI, XVIII) [36,37].
In the skin, elastic fibres represent 2–4% of dermal dry weight, although their amount and
distribution depend on the dermal areas, differing between subjects and with age [38].
Moreover, the reticular dermis contains thick, horizontally arranged elastic fibres with a
prominent amorphous core, whereas the papillary dermis contains thinner perpendicular
elastic fibres (elaunin fibres) connected with bundles of microfibrillar structures (oxytalan
fibres) close to the dermal–epidermal junction [39]. Elastin secretion starts late in the foetus
life, reaches very high levels during the neonatal stages, and then rapidly decreases after
birth up to a point when elastogenesis is almost absent in adult life. Therefore, the extremely
low turnover of elastin (approximately 70–75 years) makes this component the most resis-
tant to stress and to damaging insults [40]. Nevertheless, several proteolytic enzymes can
degrade elastin and/or its precursor tropoelastin (e.g., neutrophil and pancreatic elastases,
cathepsins, MMP-2, 7, 9, 12 and 14) [41], leading to the formation of bioactive peptides
called elastokines [42]. Interestingly, chemically synthesised or naturally derived elastin
peptides, according to their specific sequences, can retain at least some properties of the
whole molecules, thus suggesting that they can be used as bioinspired [43,44] or cosmetic
biomaterials [45].

3.3. Glycosaminoglycans (GAGs) and Proteoglycans (PGs)

GAGs are complex polysaccharides ubiquitously expressed by mesenchymal cells.
The different types of GAGs include heparin (HP), heparan sulphate (HS), chondroitin
sulphate (CS), dermatan sulphate (DS), keratan sulphate (KS), and hyaluronic acid (HA)
that, apart from HA, bind to core proteins, forming a wide spectrum of PGs. More than
50% of total HA in the body is present in the skin, either in the dermis (~0.5 mg/g wet
weight) and in the epidermis (~0.1 mg/g) [46]. HA as well as other GAGs, due to their
chemical structure and ability to interact with a wide range of cells and molecules, can be
prepared and used in different formulations such as hydrogel, dermal filler, intradermal
injection, scaffolds, creams, films, foams, and gels to regulate tissue water balance and to
provide signals for different biological processes such as tissue regeneration, skin repair,
cancer, wound healing, and inflammatory and immune responses [47]. Most GAGs bind a
core protein (about 50 individual protein cores have been described), forming PGs, which
are localized into the ECM, on the cell surface as well as intracellularly [48]. Versican,
decorin, and biglycan, belonging to CS/DS-PGs, are highly expressed in the skin [49] and
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undergo dramatic changes in aging, photoaging and in cutaneous diseases [50]. As an
example, KS-PGs, such as lumican, osteoglycin, and fibromodulin, play important roles
in collagen fibrillogenesis, whereas HS-PGs, such as perlecan, endostatin, syndecans, and
glypicans, are also expressed in the basement membrane, being essential for the survival
and proliferation of keratinocytes [51].

3.4. Glycoproteins

Within the complex extracellular environment, two glycoproteins are greatly involved
in regulating signal transduction mechanisms through cell attachment and adhesion:
laminin, typically localized on basement membranes, and fibronectin, abundantly found
in both interstitial and basement membranes [52]. Laminins, in particular, are a large
group of non-collagenous components of basement membranes at the interface between
the epidermis and the dermis ensuring firm adhesion of the epidermis and protecting it
against shearing forces [53]. Fibronectin has a different structure if it is secreted in the
plasma or if synthesised by resident cells to form the extracellular network. After skin
injury, fibronectin creates the so called “temporary fibronectin scaffold” serving as inducer
of chemotaxis, angiogenesis and opsonisation of cell debris by inflammatory cells [54].

4. Fibroblasts, Mechano-Sensing, Mechano-Transduction and Mechano-Memory

Cells communicate with their environment, and the environment, in turn, may strongly
influence cellular behaviour and cell fate, regulating tissue development and contributing
to pathologic conditions [55]. Fibroblasts, for instance, “sense” the mechanical proper-
ties of the substrate (i.e., mechano-sensing) and transduce these signals (i.e., mechano-
transduction) intracellularly, converting them into biochemical signals to modulate the
cellular response, mainly through the “integrin adhesome” [56]. At the same time, cells can
exert forces across the cell membrane against the underlying matrix through a continuous
interplay that involves the cytoskeletal network and the transcriptional regulation [57].
Fibroblasts are known to respond to forces as well as to deformations exerted on the ECM.
Therefore, during development, aging and/or diseases, changes occurring in the composi-
tion and in the extent of cross-links of matrix proteins (collagen, elastin, fibronectin, and
matricellular proteins such as proteoglycans) regulate ECM topology and stiffness. Diverse
mechanical cues can trigger distinct downstream signalling pathways, thus driving matrix
stiffness-dependent cell migration [58]. Indeed, beyond chemotactic signals, the motility
is also modulated by physical parameters, as clearly indicated by the process known as
“durotaxis”, when fibroblasts migrate from soft to stiff substrates, being guided by the
gradients of extracellular rigidity [59]. Indeed, mechanical stress, occurring for instance
during the healing process, was observed already over 200 years ago, leading to the defini-
tion of the “ideal directionality of incisions” (i.e., Langer’s lines) to minimize the tension
around the wound and consequently to limit scar formation [60,61]. Within this context, the
“ECM-integrin-cytoskeleton-nucleus axis” has gained increased attention, hence promoting
a better understanding of how cell extrinsic shear, tensile, or compressive forces regulate
many aspects of development and pathology [62]. The rapid advances in the areas of
molecular biology, biomechanics, and tissue engineering paved the way to the concept of
“mechanotherapy” that is based on the employment of mechano-transduction mechanisms
to stimulate tissue repair and remodelling [63]. Interestingly, it has been demonstrated that
cultured fibroblasts, when grown on a soft substrate after a period on a stiff surface and
vice versa, retain their previous behaviour at least for several days, indicating the existence
of a “mechanical memory” [64].

Investigations on the biological and the biochemical role of the sustained effects
exerted by mechanical stimuli have broadened the spectrum of possible mediators [65].
Evidence was provided indicating that the mechanical microenvironment, regulating mem-
brane tension and disturbing the equilibrium between phospholipid molecules in the lipid
bilayer, modulates, for instance, the activity of Piezo 1. This ion channel is a key mediator
of the rigidity-dependent Ca2+ signalling [65], since it contributes to increase mitochondrial
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oxygen consumption rates and mitochondrial ATP production [66]. In turn, extracellular
ATP modulates cell proliferation, migration, and differentiation, as well as contraction and
relaxation [67]. Indeed, ATP is detected on cell membrane by P2Y purinergic receptors
that favour the release of inositol 1,4,5-triphosphate (IP3) into the cytoplasm, the release
of Ca2+ from the endoplasmic reticulum, and consequently, the diffusion of signalling
molecules [66]. The regulation of ATP results from the balance between intracellular ATP
(ranging from 1 to 3 mM) and extracellular ATP (ranging from 1 nM to 1 µM), which
has a half-life of few seconds due to the activity of nucleotidases and of other hydrolytic
enzymes, which degrade ATP, generating ADP, AMP and adenosine. ATP, at physiolog-
ical pH, is largely anionic, and the concentration gradient favours the extrusion of ATP
from the cell. Released ATP can initiate signalling pathways at concentrations that do
not alter the intracellular energy stores [68]. Indeed, mechanical stretch can be intimately
connected to ATP-related metabolism, calcium homeostasis, changes in integrin and cy-
toskeletal interactions [61]. It has been demonstrated that mitochondria activity as well as
transcriptional and metabolic programs [69] can be modulated by the Hippo signalling
pathway through the activation of the Yes-associated protein (YAP) and the transcriptional
coactivator with PDZ-binding motif (TAZ) [70]. Indeed, nucleo-cytoplasmic shuttling
of YAP/TAZ is strongly influenced by the composition of the ECM. Matrix stiffness, for
instance, promotes the translocation of YAP/TAZ into the nucleus, leading to the activation
of connective tissue growth factor transglutaminase-2, runt-related transcription factor 2
(RUNX2) and molecules related to the TGF-β signalling pathway, such as mothers against
decapentaplegic homolog (Smad) -2, Smad-7, and p21. These molecules could be important
for survival and regeneration, including dermal wound healing, for the development of
fibroproliferative diseases and for cellular differentiation towards a pro-osteogenic phe-
notype [71–73]. On the contrary, miRNA-21, one of the most studied regulators of the
pro-fibrotic transcriptional programme [74], was shown to inhibit the transcription of genes
with anti-fibrotic actions, such as Smad7 and TGF-β receptor type III, and has been therefore
proposed as a potential therapeutic target to control fibrosis and tissue repair [75].

Evidence has been provided from in situ and in vitro studies that disruption of
mechano-signalling can alter fibroblast functions [76], and that matrix stiffness modulates
chromatin accessibility, eventually regulating the epigenetic state and the transcriptional
responsiveness of these cells to mechano-activation [77]. Indeed, mechanical cues can be
remembered by cells for long- or short-term periods. While YAP/TAZ may act as a memory
storage pathway on the shorter time scales, miRNA-21 may provide long-term storage of
mechanical memory [78]. On the contrary, YAP/TAZ have a turnover rate of approximately
1–3 h and can shuttle in and out of the nucleus within minutes after exposure to different
mechanical stimuli, thus indicating that these proteins regulate a short-term memory [78].

5. Fibroblasts and Skin Repair

Skin represents the first barrier against the external environment; therefore, any damage
must be rapidly repaired, ensuring reconstitution of adequate structural resiliency. Wound
repair is a complex, although well-orchestrated, process in which fibroblasts exert a major
role, not only providing an exchange of signals between cells, but also secreting new ECM
(Figure 5). Within this context, fibroblasts contribute to secretion and assembly of matrix
components required for cell migration, provide signals for re-epithelialization, produce
bioactive mediators promoting cellular differentiation, and regulate the immune response.

It is general assumed that fibroblasts involved in tissue repair originate from three
different sources: resident fibroblasts that can be rapidly induced to proliferate, myofibrob-
lasts, and circulating progenitor cells either differentiating into fibroblasts or endothelial
cells [79,80]. Circulating fibroblasts (also known as fibrocytes) represent a group of bone
marrow-derived mesenchymal progenitor cells migrating to sites of injury in response to
cytokines and to matrix-derived chemokines. In the early 1960s, the names fibroblasts and
fibrocytes were used to identify connective tissue cells in either the active or quiescent stage,
respectively, as suggested by investigating the role of mesenchymal cells in wounding and
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healing processes [81]. Since then, interest has progressively grown over the role of fibrocytes
also in pathologic conditions, and currently, there is a general, although not yet definite,
consensus that cultured fibrocytes are long spindle-shaped cells with an oval nucleus which
derive from peripheral blood monocytes and express several hematopoietic markers and low
levels of collagen, whereas fibroblasts are stellate-shaped cells derived from connective tissues,
producing ECM proteins and not expressing hematopoietic markers [82].
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Although wound healing is always associated with scar tissue formation, it has been
observed, already several decades ago, that foetus heals cutaneous injuries by regenerating a
scarless dermal architecture [83]. This finding promoted countless studies aiming to identify
the factor(s) capable of maintaining this regenerative potential during life. Indeed a complex
interplay may contribute to the results of foetal wound healing, such as specific growth
factor profiles (e.g., lower expression of bFGF (basic fibroblast growth factor), platelet-
derived growth factor, TGF-β1 and 2 and higher expression of VEGF (vascular endothelial
growth factor) and TGF-β 3 compared to postnatal healing), low inflammatory response,
high content of collagen type III and hyaluronan in the newly deposited extracellular matrix,
reduced biomechanical stress and the role of stem cells [84]. On the other hand, research
on postnatal wound repair gained increased interest through the deepest understanding
of fibroblast heterogeneity. In 2013, Driskell et al. showed that dermal fibroblasts arise
from two different lineages [24]. The upper dermal lineage (i.e., papillary fibroblasts)
is more involved in maintaining the epidermal structures, while the lower lineage (i.e.,
reticular fibroblasts) synthesises ECM, expresses higher amounts of α-smooth muscle actin
and is largely responsible for dermal repair with the formation of scar tissue lacking hair
follicles [85,86]. Interestingly, already in 2015, Rinkevich et al. described the presence of the
‘scarring fibroblast’ lineage associated with matrix deposition in the dorsal scar tissue in
mice [87]. These cells were positive for both CD26 (also known as DPP4), a glycoprotein
possibly involved in glucose metabolism, immunomodulation and tumorigenesis [88], and
the homeobox protein engrailed-1 (EN1) that has been suggested to modulate inflammatory
signals, survival and resistance to cell death [89]. More recently, Hu et al. found that the
transcription factor paired related homeobox 1 (Prrx1) is activated and expressed in murine
scar-producing fibroblasts in the ventral dermis [90]. These data further highlighted the
importance of the areas of mesodermal origin of fibroblasts and suggested that the fibroblast
origin may influence, for instance, the fibrotic behaviour in postnatal life. As a matter
of fact, Wnt1 lineage-positive fibroblasts can contribute to scarless healing in specific
contexts, such as the oral mucosa, whereas En1 or Prrx1 lineage-positive fibroblasts lead to
scarring and healing in the dorsal and ventral skin, respectively [87,90]. Strengthening and
stiffening of the ECM to form the mature scar takes place during the last stage of wound
repair when fibroblasts continue to crosslink and replace some of the initially deposited
collagen type III with collagen type I [91]. However, the altered balance of different matrix
molecules may cause either chronic wounding or excessive scarring. Despite the countless
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studies performed in the last few decades, an area of significant unmet medical need is still
represented by delayed wound healing that affects 1–2% of the population in countries of
the developed world [92].

Several in vivo models, such as zebrafish or xenopus embryos, display regenerative
healing [93] similar to that described in human embryos, where scar-free healing occurs
until the 24 week of gestation [94]. Even though these animals represent interesting model
organisms, mice and rats are, due to their well-known physiology, their manageable size
and availability of adequate housing facilities, the most frequently used animal models
for the study of different types of wound healing (e.g., excisional or incisional healing, ear
and scalp wounds, chronic pressure ulcers, pathologic wounds, hypertrophic scarring).
Nevertheless, they do not represent the best model for human wound repair because
of their lower skin thickness (<25 µm vs. >100 µm of human samples), the abundance
of hair follicles, loose skin, subcutaneous panniculus carnosus, and greater proportions
of lymphocytes [95,96]. Interestingly, mouse wounds on the dorsal or ventral surfaces
contract rapidly [97], thus resulting in a substantially smaller scar [96]. On the contrary,
full-thickness wounds produced on the dorsal tail skin exhibit minimal contraction, causing
a delay in wound closure, thus representing a suitable experimental model to investigate
delayed healing processes [98]. In addition to the rodent wound healing model, rabbits
and pigs are used to simulate acute or altered wounds such as in diabetic conditions or
associated with malnutrition [99]. In particular, pig skin, due to its greater similarity to
human skin in terms of structural characteristics and mechanical properties, is considered
more appropriate than that of rodents to investigate wound healing for translational
perspectives [100].

Although the various animal models have provided important insights into the pro-
cess of wound repair in different experimental contexts, in vivo models are expensive
and require adequate housing facilities, skilled personnel, and many animals to achieve
statistically significant data. The 3Rs of animal experimentation (i.e., reduction, refinement
and replacement) prompted researchers to intensify the search for alternatives to in vivo
experimentation [101]. Several in vitro models have been developed over the years to
evaluate cell proliferation and migration and test the efficacy of growth factors and/or of
bioactive molecules for wound closure. In standard cell culture approaches, fibroblasts
are grown on 2D surfaces, typically glass or plastic, with surfaces modified to favour
cell adhesion. This approach has the advantages of obtaining a high number of cells for
biochemical/biomolecular analyses and to visualize cells by imaging techniques [102].
In the scratch assay, for instance, a full-thickness scratch, introduced in the middle of
the fibroblast monolayer, allows the quantification of the rate at which cells migrate and
proliferate to close “the wound” [103]. However, 2D cell culture systems do not adequately
mimic the tissue complexity; therefore, three-dimensional (3D) cell culture models were
developed [104] (Table 3) to study cell–cell and cell–matrix interactions, investigate the
paracrine effects of secreted molecules, and evaluate the amount and organization of newly
deposited ECM [105,106].

In 3D matrix systems, to guarantee biocompatibility and non-immunogenicity, and
with the aim to support, for instance, epidermis attachment, maintenance and stratification,
to favour fibroblast migration and ECM deposition and to promote the blood vessels’
influx when implanted, different materials can be used. Natural components (e.g., gelatin,
chitosan, fibronectin, hyaluronic acid, collagen, glycosaminoglycans, elastin, cellulose,
alginate, silk, fibrinogen) or synthetic molecules (e.g., polylactic acid-PLA, polyglycolic
-PGA, polyprolactine-PCL, polylactic-glycolic acid—PLGA) are utilised, either alone or in
combination, based on their specific mechanical and biological properties [107,108]. More-
over, porosity, pore diameter and pore interconnection, depending on the methods used
for crosslinking the polymeric structures (e.g., UV radiation, pH, temperature, chemical
interactions), can further contribute to modulate the behaviour of fibroblasts and their
ability to grow and secrete matrix components.
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Table 3. Comparison of in vitro models showing advantages and disadvantages.

Model Advantages Disadvantages

2D cell culture

- Fast proliferation
- Easy culture set-up
- Very good reproducibility
- Suitable for high throughput
- Relatively low cost

- Monolayer system
- Absent concentration gradient
- Different cellular morphology and

molecular mechanisms vs. in vivo
- Limited cell–matrix interactions

3D matrix cell culture

- Better mimicking of tissue stiffness
- Good cell–matrix interactions
- Possibility of co-culture systems
- Presence of concentration gradients
- Similar morphological and physiological

characteristics compared to in vivo

- Complex culture set-up
- Most models do not fully reconstitute all

cell–cell and cell–matrix interactions, or
functionality, of the skin

- Skilled personnel are required
- Expensive

3D bioprinting

- Custom-made architecture
- Multiple co-culture possibilities
- Better reproduction of tissue heterogeneity
- High-throughput production

- Limited choice of materials which depend
on the bioprinting system

- More expensive

The “skin equivalent” is a classic example of a 3D matrix system, in which fibroblasts
are cultured on gelatin, on collagen, or on composite (e.g., chitosan plus gelatin plus
hyaluronic acid) scaffolds until the formation of a “dermis equivalent” (e.g., fibroblasts
embedded in ECM) [109,110]. Then, keratinocytes are seeded on the top of the dermis,
and after approximately 2–3 weeks, the layer of keratinocytes is in place at the air–liquid
interface to promote stratification of the epidermis (Figure 6).
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Figure 6. Skin equivalent observed by light microscopy (A). By transmission electron microscopy (B),
numerous fibroblasts embedded within a newly deposited extracellular matrix are visible. Images
are from authors’ laboratory.

It has been shown that the skin equivalents, in terms of proliferation, migration,
growth-factor responsiveness and protease expression, better reproduce the in vivo en-
vironment [111], although this model lacks fundamental processes for wound healing,
such as inflammation and angiogenesis [112]. Skin equivalents can be produced in the
laboratory by skilled personnel, but the complexity of the system and the need to ensure
reproducible conditions and environmental features have prompted the development of
automated systems suitable for the generation of complex tissue architectures [113].

Three-dimensional bioprinting is a promising and rapidly expanding technology that
better allows the creation of three-dimensional structures, in a layer-by-layer manner, in
which cells and biomolecules are added to defined positions, forming constructs closely
mimicking native tissue and organ architecture [114,115] (Table 3). Using a wide range
of natural or synthetic polymers, extracellular proteins, and minerals, bioprinting was
demonstrated to efficiently support both cell viability and proliferation [116]. In fact,
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3D bioprinting can produce custom-made skin grafts that match the patient’s wound
geometry, improving integration and healing rates. Indeed, several studies have shown
that bioprinted skin constructs can enhance re-epithelialization, angiogenesis, and collagen
deposition [115,117]. Interestingly, in recent years, 3D has evolved into 4D/5D/6D systems.
”4D” refers to the time dimension, signifying that the product changes shape after printing
due to the stimulus; “5D” implies the ability to create concave or curved shapes to better
maintain cellular and mechanical properties. With the 5D technology, in particular, it seems
feasible to integrate machine learning and artificial intelligence to generate smart materials
for multifunctional, ecological, and biocompatible components [118]. For instance, bio-
patches can be made to identify specific infections through design or to deliver drugs.
Finally, the “6D” identifies the ability of the material to modify its shape and/or exhibit
intelligent behaviour with unique stimulus-response features [119], such as in vascularized
tissue scaffolds [120].

It is well known that the wound healing environment is modulated by several growth
factors locally produced by mesenchymal and inflammatory cells and that their exogenous
administration can counteract delayed and/or impaired wound healing, such as that
observed in aged or diabetic patients [121]. However, exogenous application of growth
factors has demonstrated lower efficacy than expected due to limited in vivo stability,
restricted absorption through skin around wound lesions, and elimination by exudation
prior to reaching the wound area [122]. Currently, several in vitro and in vivo studies
are investigating the role of extracellular vesicles (EVs) derived from mesenchymal stem
cells or from platelets to enhance skin wound repair [123–126]. This approach may be
rather challenging and requires defining and standardising proper sources, extraction
techniques, and storage conditions. Recent studies have demonstrated that platelet-derived
extracellular vesicles (pEVs), providing growth factors and signalling molecules, can
enhance endothelial cell angiogenic potential, as well as also the proliferation rate and
the migration capabilities of dermal fibroblasts. These data supported the first in-human,
double-blind, placebo-controlled, phase I clinical trial on healthy volunteer adults. Result
paved the way to further explore the efficacy of using pEVs in future clinical trials for
treating delayed wound healing [127].

The successful use of platelet-rich plasma for the treatment of chronic skin wounds
or diabetic foot ulcers further underlines the benefits of platelet-derived molecules in
modulating innate and adaptive immunity and inflammation, as well as wound-healing
and tissue-repair mechanisms [128]. Within this context, it is also important to understand
the complex interactions between skin-resident fibroblasts and immune cells [129]. For
instance, in the perinatal period, CD4+ regulatory T cells (Tregs) home into the skin where
they interact with collagen type I through integrin alpha 2 and with hyaluronan through
CD44 to mediate immunotolerance. Therefore, matrix components secreted by dermal
fibroblasts create stromal niches influencing the migration of antigen-presenting cells,
such as Langerhans cells, which migrate from the epidermis to the dermis by interacting
with laminins within basement membranes through integrin alpha 6. The multifaceted
immunomodulatory functions of fibroblasts have been highlighted in the recent years,
demonstrating that they respond to stimuli from inflammatory cells and/or provide signals
to immune cells [130]. Fibroblasts exert their immune regulatory functions mainly via their
inflammatory secretome (e.g., chemokine ligands, interleukins, nitric oxide, prostaglandin,
TGF-β) acting in synergy with angiogenic remodelling growth factors such as VEGF and
with MMPs and their inhibitors [131]. Moreover, fibroblasts, depending on their tissue
origin, can either promote or inhibit the recruitment of leukocytes by modulating the
cytokine-induced expression of adhesion molecules on endothelial cells, and can also
regulate leukocyte behaviour and survival within damaged tissue through a cross talk
mediated by the surface antigen CD40 [132] and toll-like receptors (TLRs) [133]. In addition
to their role in the innate immune response, fibroblasts can also interact with both B and T
lymphocytes, contributing to regulate their activation [134], possibly avoiding unnecessary
immune response. The ability of fibroblasts to act as antigen-presenting cells and to be
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reprogrammed into functional dendritic cells may play an important role in cancer biology,
being able to present antigens to T cells, promote the immune response and possibly
influence anti-tumour immune therapies [135,136].

6. Fibroblasts and Skin Aging

Aging is characterized by a progressive functional decline of organs and tissues and
associated with a 35% reduction in active fibroblasts in old individuals [137,138], together
with an increase in senescent cells. It was in the early 1960s that Hayflick first introduced
the concept of replicative senescence to indicate that normal cultured human fibroblasts
display a finite capacity for cell division [139]. Actually, senescence occurs throughout the
lifespan when a proliferating cell undergoes a stable cell cycle arrest, becoming resistant
to growth-promoting stimuli, typically in response to DNA damage [140]. Therefore,
senescence can be considered either a protective mechanism blocking the proliferation of
damaged cells, or a deleterious process contributing to age-related disorders, including
cancer, neurodegeneration, and metabolic and cardiovascular diseases [141].

The so-called senescence-associated secretory phenotype (SASP) includes a mixture
of molecules such as cytokines, MMPs, miRNAs, chemokines, growth factors, and small-
molecule metabolites that, when released by senescent cells, can exert immunoregulatory
effects and affect the proliferation and motility also of non-senescent cells [142]. Due to its
paracrine and autocrine effects, SASP may contribute to cutaneous aging, such as reduced
thickness, loss of elasticity, progressively increased wrinkles and defective and/or delayed
wound healing [138]. Within this context, it is worth mentioning that a vicious loop exists
between oxidative stress (i.e., unbalanced ratio between reactive oxygen/nitrogen species—
ROS/RNS—and antioxidant systems) and inflammation. ROS/RNS serve as signalling
molecules triggering inflammatory responses, but inflammatory cytokines and chemokines,
in turn, generate more ROS/RNS active on several pathways, including mitogen-activated
protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), TGF-β, and mechanistic target of rapamycin (mTOR), leading to the accumulation
of senescent fibroblasts [143]. As a matter of fact, senescent cells play a critical role in the
development of aging-related changes; therefore, it has been proposed that their elimination
may arrest or even reverse the process.

Senotherapy is an experimental approach that, through senolysis (i.e., destruction
of senescent cells) and senomorphic therapy (i.e., reversal of senescence-related changes),
aims to reduce the number of senescent cells and, consequently, delay and/or reverse,
to some extent, aging [144]. Among the agents that have been tested for their ability to
eliminate senescent cells, metformin is one of the most promising, as suggested by the
Targeting Aging with MEtformin (TAME) study, a randomized controlled study performed
on 3000 patients aged 65–79 without glucose intolerance [145]. More recently, Pep 14 was
demonstrated to be a promising senomorphic molecule since, through the activation of a
serine/threonine phosphatase (PP2A), it decreased the level of senescence markers also in
fibroblasts from a premature aging syndrome (i.e., Hutchinson–Gilford Progeria Syndrome).
Moreover, in 2D and 3D aged skin models, this peptide improved numerous skin health
markers [146].

Dermal fibroblasts, similarly to many other senescent cells, are characterized by mor-
phological changes (e.g., irregularly enlarged and flattened shape) (Figure 7), metabolic
adaptations (e.g., mitochondrial dysfunction, altered redox balance and enhanced lyso-
somal activity), chromatin reorganization associated with a DNA damage response, and
altered signalling pathways such as MAPK, NF-κB, TGF-β, and mTOR. Moreover, modi-
fied gene expression and secretory phenotype lead to cytoplasmic accumulation of lipid
residues (i.e., lipofuscin), secretion of MMPs, release of metabolites and small molecules
with immunomodulatory effects, as well as extrusion of extracellular vesicles that contain
high levels of IL-6 and are less effective on keratinocyte differentiation [138,147].
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The altered balance between synthesis and degradation of ECM components ob-
served in dermal aging is maintained in vitro in human dermal fibroblasts [148], further
supporting the use of these cells to investigate the aging process and to test anti-aging
treatments. An interesting study was performed comparing metabolic and synthetic pa-
rameters in human dermal fibroblasts isolated from young and old subjects (ex vivo aging
model) and cultured from early up to late cumulative population doublings (in vitro aging
model). Data clearly demonstrated that some changes occur in vivo, possibly induced
by the aged environment, and are maintained in vitro, whereas other changes take place
in vitro, being associated with progressive cell doublings and cell senescence. In partic-
ular, fibroblasts from aged donors exhibit impaired redox balance independently from
population doublings, whereas proteins related to heat shock response, or involved in
endoplasmic reticulum and membrane trafficking, appeared differentially expressed only
during in vitro aging, indicating that in approaching senescence, the whole cell machinery
becomes permanently altered [149]. For instance, during aging, soft connective tissues
(e.g., skin and blood vessels) appear more prone to developing ectopic calcification, and
an in vitro study has demonstrated that neonatal dermal fibroblasts, at both low and high
passages, are less responsive to pro-calcifying stimuli compared to fibroblasts isolated
from adult donors [150], once again suggesting that aging fibroblasts can lose their special-
ized identity, leading to altered functions, such as an increased expression of osteogenic
genes [151]. Similar results were obtained in the Genetic and Epigenetic Signatures of
Translational Aging Laboratory Testing (GESTALT) study, where proteins extracted from
fibroblasts isolated from skin biopsies from 82 persons (22 to 89 years old) underwent
liquid chromatography-mass spectrometry analysis. Among the proteins differentially
expressed as a function of donor age, two pathways appeared mainly involved in older
individuals (i.e., autophagy and antioxidant defence), whereas two pathways were less
represented (i.e., ribosome biogenesis and DNA replication and repair) [152]. In agree-
ment with these data, both mitochondrial function and integrity become impaired with
aging [153,154] and not only in skin areas exposed to UV radiation that are known to
induce photoaged-changes [155]. Dysfunctional mitochondria may in fact produce ROS
at a level that exceed the buffering capacity of the antioxidant system. Aberrant redox
balance, in turn, promotes cell cycle arrest and premature senescence [156], affecting mi-
tochondrial respiration through the dysregulation of glycolytic enzymes [157]. It is well
known that dermal aging is typically characterized by loss of elasticity [38]. ROS and RNS
favour post-translational modifications such as glycation, nitrosylation and carbamylation,
also affecting the mechanical behaviour of the elastic component and contributing to the
degradation of elastic fibres. These fibres, especially in pathologic conditions, can become
more susceptible to damaging environmental stimuli, variably interact with other matrix
components or ion species which accumulate inside the fibres, and may release bioactive
peptides [40].
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7. Fibroblasts and Diseases

As fibroblasts can be easily isolated from small skin samples and extensively cultured
in vitro [158], these cells represent one of the best known reductionist approaches to inves-
tigate heritable disorders, test responses to drugs, and dissect signalling pathways and/or
metabolic signatures in a broad spectrum of physio-pathologic conditions ranging from
aging, wound healing, and connective tissue diseases to metabolic disorders and even
psychiatric pathologies [149,159,160].

Indeed, fibroblasts have been widely used to investigate the biochemical defects
associated with heritable connective tissue diseases characterized either by (i) defective
synthesis of matrix components, such as Cutis laxa [161], Ehlers–Danlos and Osteogenesis
imperfecta syndromes [162]; (ii) excessive production/accumulation of matrix molecules
such as mucopolysaccharidoses [163] or altered cellular behaviour such as in fibrotic
diseases [164–167]; (iii) autoimmune diseases [165,168]; or (iv) ectopic calcification [169–
175]. Moreover, the anatomic diversity of human skin is also mirrored in the site specificity
observed in many cutaneous lesions. These differences raise the question of how cells are
capable of maintaining their identity despite the complexity of self-renewing tissues in
which they are located [13].

The functional heterogeneity and unique plasticity of fibroblast origin may operate
through epigenetic memory [176] associated with distinct DNA methylation patterns. Epi-
genetically modified genes modulate fibroblast proliferation and response to exogenous
stimuli. For instance, aberrant methylation of specific promoters leads to transcriptional
silencing of genes such as RASAL1 (RAS protein activator-1), FLI1 (Fli-1 Proto-Oncogene,
ETS Transcription Factor) and PPARγ (Peroxisome Proliferator Activated Receptor Gamma).
Interestingly, PPARγ hypomethylation was observed with liver fibrosis [177]. DNA methy-
lation may also be a consequence of altered redox balance. Indeed, ROS can be associated
with either global DNA hypomethylation or histone modifications leading to oxidation
of basic amino acids such as arginine and lysine, which may affect chromatin relaxation
and accumulation of several transcription factors [178]. Indeed, epigenetic modifications
have also been extensively investigated in recent years to better understand the interaction
between cancer cells and the surrounding stroma.

Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and metas-
tasis. They derive from various cellular sources, including reprogrammed resident fi-
broblasts [179], bone marrow-derived mesenchymal cells [180], adipocytes [181], endothe-
lial cells through endothelial–mesenchymal transition [182], and epithelial cells through
epithelial–mesenchymal transition [183]. The recent description of “cancer as a wound that
does not heal”, although restricted to some aspects of carcinogenesis, nevertheless clearly
underlines the central involvement of fibroblasts [184]. Indeed, CAFs recruit immune cells
and activate angiogenesis by secreting a variety of growth factors (e.g., TGF-β and VEGF),
cytokines (e.g., IL-6), chemokines, extracellular vesicles, and extracellular matrix compo-
nents (e.g., collagen and MMPs) that play a crucial role in tumour growth [183,185]. As an
example, TGF-β is secreted by CAFs and plays a crucial role in the crosstalk between stro-
mal and cancer cells, inducing epithelial–mesenchymal transition and metastasis through
the activation of the transcription of HOX transcript antisense RNA (HOTAIR) [183]. An-
other soluble factor produced by CAFs is FGF, which promotes, in turn, CAF expansion
through transcriptional repression of p53 in skin [186]. Interestingly, FGF and TGF-β,
during tumour development, modulate different processes, inducing inflammation and
epithelial–mesenchymal transition/invasion, respectively [187]. These findings further
underline the complexity of the cancerous environment, but also the importance of the
stroma in modulating tumour expansion. Using single-cell RNA sequencing and spatial
proteomics data, it was demonstrated that, within the tumour microenvironment, there are
different CAF subpopulations characterized by distinct phenotypes and functions which,
depending on the stimulus (i.e., molecules produced, hypoxia, ROS levels), can greatly
influence tumour development [188–190]. It has been recently suggested that different
subtypes of CAF can predict skin cancer malignancy [191]. Immuno CAFs (iCAFs) ex-
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press proinflammatory cytokines (i.e., IL-1β, IL-6) and chemokines, whereas matrix CAFs
(mCAFs) exhibit increased matrix production. These two cell types seem to be mutually
exclusive and possibly associated with skin cancers with higher (iCAFs) and lower (mCAFs)
metastatic potential. In the tumoral environment, ECM remodelling induces biomechanical
and biochemical changes favouring cancer cell survival, invasion and metastasis [192]. In-
deed, solid tumours contain large ECM deposits that can constitute up to 60% of the tumour
mass, the great part being composed of molecules belonging to the collagen family. Altered
ratios between collagen types, increased proteolytic activities (e.g., MMP and ADAMs),
post-translational modifications, such as changes in proline and lysine hydroxylation and
lysyl-oxidase dependent crosslinks, further support the role of CAF and the ECM in con-
ditioning tumour progression and migration, thus paving the way for new therapeutical
targets [193]. In addition to collagen(s), a key role in regulating proliferation, adhesion and
migration is exerted by proteoglycans that can regulate ECM assembly, cellular signalling
and mechanobiology in both normal and transformed tissues. Perlecan, for instance, is
significantly upregulated in CAF, thus creating an environment permissive to cell invasion
and metastasis [194]. By contrast, decorin, a small leucine proteoglycan, acts as a versatile
tumour suppressor, acting on autophagy, mitophagy, angiogenesis, apoptosis, and cell
cycle-arrest, thus providing a potential strategy for cancer therapy [195]. Moreover, decorin
has the ability to sequester the cytokine TGF-β, thereby diminishing its activity [196].
Therefore, it has become increasingly evident that future therapeutic approaches will need
to consider the heterogeneity and functional complexity of CAFs and of their stroma to
effectively treat a specific tumour.

8. Dermal Fibroblasts by High-Throughput Technologies

Given the role of fibroblasts in providing the homeostasis of connective tissues in which
they are embedded, and their spreading use as experimental models, high-throughput
approaches provide highly informative tools to better characterize transcriptional and
protein profiles.

Analysis of the transcriptome profile of skin fibroblasts demonstrated that these cells
maintain proliferative, secretory activity and genomic stability during culture in subsequent
passages, at least up to the tenth passage [197,198], in accordance with the seminal study by
Hayflick and Moorhead, showing maintenance of the genomic stability of human fibroblasts
even after 40 generations [139]. The family of genes mainly involved in the characterization
of skin fibroblasts belongs to the following GO groups: cell adhesion, extracellular matrix
organization, and collagen fibril organization [198]. Recently, transcriptome analysis of
RNA from skin fibroblasts was revealed to be a powerful technique for the detection of
pathogenic splice variants in genetic diseases (e.g., deep intronic changes, transposable
element insertions and postzygotic pathogenic variants) that are missed by routine DNA
sequencing [199]. Furthermore, in psoriatic patients, a combined transcriptome analysis
of skin fibroblasts and of whole blood, followed by analysis of their interactome, revealed
differentially expressed genes related to platelet activation and hippo signalling pathway
capable of discriminating between responders and non-responders as early as one month
after treatment [200]. These findings indicate that investigating the transcriptome of skin
fibroblasts may have diagnostic and prognostic potential in many pathologic conditions.

The Human Genome Project identified about 40,000 genes that are translated into
approximately 300,000 to 1 million proteins considering alternative splicing and post-
translational modifications. However, proteins exhibit different sizes and chemical char-
acteristics thus making their isolation and identification more challenging. Nevertheless,
proteome analyses provide an extraordinary source of data to evaluate and understand
how cells behave and contribute to physiological or pathological conditions, respond
to exogenous stimuli, and undergo changes in protein interactions [201]. For several
years, gel electrophoresis, in particular 2D-PAGE, combined with image analysis and mass
spectrometry (MS) identification, has been widely applied in different experimental con-
ditions [153,202–204], since it is capable, based on the isoelectric point and the molecular
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weight, of separating complex protein mixtures into single protein spots. However, 2D-gel
based proteomics is laborious and time-consuming, and it is unable to separate proteins
that are too large, too small, too acidic or too basic [205]. Within this context, a crucial
step is represented by sample preparation [206]. Therefore, several extraction and frac-
tionation methods have been developed to reduce time and improve reproducibility, thus
increasing throughput, especially in the context of connective tissue complexity [207,208].
Moreover, in recent decades, “shotgun proteomics” has been developed and spread [209].
The shotgun approach refers to the analysis of complex protein mixtures that are digested
into peptides and then separated by liquid chromatographic tandem mass spectrometry
(LC-MS/MS), allowing the identification and quantification of thousands of proteins. In
particular, from whole cell protein extraction, approximately 5000 proteins can be identified
by LC-MS/MS (Figure 8), although this number may increase significantly when analysing
peptides fractionated using high-pH reverse phase-LC fractionation [152].
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Although extracellular proteins can be identified among those in a cell lysate, a
more precise understanding of the extracellular environment in terms of matrix, matrix-
associated proteins (e.g., different collagen types, proteoglycans, metalloproteinases, pro-
tease inhibitors) and extracellular vesicles [172,210] requires analysis of the secretome, i.e.,
proteins released from the cell into the extracellular space. Studying the secretome remains
challenging despite the development of various strategies/methodologies for protein iso-
lation [211]. Nevertheless, several studies have analysed the fibroblast secretome under
different physio-pathological conditions, for example, in wound healing [212], in ectopic
calcification [172] and in skin cancer [213]. Cell cultures are valuable tools for investigating
the biology, biochemistry, physiology and metabolism of cells; however, the in vitro envi-
ronment significantly differs from the natural environment of the human body in which
cells reside. Interestingly, tissue imaging proteomics or imaging mass spectrometry are
emerging tools for identifying and mapping the spatial distribution of proteins across
a tissue without the removal of cells or homogenization of tissue [214]. This label-free
analytical technique has been applied, for instance, to analyse the fibroblasts in their natural
microenvironment and to characterize the extracellular matrix [215,216].

Therefore, transcriptomics and proteomics represent fundamental and complementary
techniques for better investigating and modulating signalling pathways, improving the
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delivery of cells and/or molecules in situ (e.g., smart matrix technology), limiting undesired
effects such as inflammation and fibrosis, and better adapting to tissue specificities and
patient’s conditions [217]. These approaches will have a fundamental impact in the context
of the future development of tissue bioengineering and of regenerative medicine. The
fascinating and widespread area of regenerative medicine has been the subject of an
exponentially increased number of studies in the last two decades better disclosing the
nature and potential of stem cells [218]. Several regenerative medicine-based approaches
have been recently described also for skin regeneration, such as the use of mesenchymal
stem cells (MSC), tissue induced pluripotent stem cells (iPSCs), fibroblast-based products,
and blood-derived components as well as extracellular vesicles/exosomes [219]. However,
their complexity is far beyond the scope of this review, and we invite the readers to
refer to more-specific literature. Meanwhile, tissue engineering has attracted growing
interest at the forefront of biomedical research, with great expectations for personalized
healthcare and regenerative medicine. Integrated in vitro systems have, in fact, expanded
the possibilities for disclosing important cues in the understanding of tissue biology, and
also for replacing diseased and/or damaged tissues [220–222]. In the previous section, we
described the major characteristics of different substrates and scaffolds underlining the
importance of cell–matrix interactions. However, despite the large number of bioengineered
skin substitutes available on the market, the improved knowledge of fibroblast behaviour
in physio-pathological conditions, and the expanding role of the extracellular matrix
as a structural support and a source of signalling molecules, research is still urgently
needed to improve the standardization of production processes and storage as well as the
biomechanical and biological performance of matrices/substrates to closely mimic tissue
architecture and function.

9. Conclusions

Fibroblasts are responsible for the synthesis, deposition and maintenance of soft
connective tissues. Changes in composition and organization of the extracellular matrix
modulate the behaviour of these cells that activate specific signalling pathways sensing the
biomechanical properties of the surrounding environment. Despite their developmental
heterogeneity, fibroblasts, since they can be easily isolated from tissues and grown in
culture on artificial surfaces or on natural and/or bioengineered materials, are and will be
one of the most widely used model systems for understanding skin aging and repair, for
investigating pathologic conditions through reductionist approaches, and for applications
in biomedicine.
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154. Bartosz, G.; Pieńkowska, N.; Sadowska-Bartosz, I. Effect of Selected Antioxidants on the In Vitro Aging of Human Fibroblasts. Int.
J. Mol. Sci. 2024, 25, 1529. [CrossRef]

155. Krutmann, J.; Schroeder, P. Role of Mitochondria in Photoaging of Human Skin: The Defective Powerhouse Model. J. Investig.
Dermatol. Symp. Proc. 2009, 14, 44–49. [CrossRef] [PubMed]

156. Bornstein, R.; Gonzalez, B.; Johnson, S.C. Mitochondrial Pathways in Human Health and Aging. Mitochondrion 2020, 54, 72–84.
[CrossRef]

157. Zwerschke, W.; Mazurek, S.; Stöckl, P.; Hütter, E.; Eigenbrodt, E.; Jansen-Dürr, P. Metabolic Analysis of Senescent Human
Fibroblasts Reveals a Role for AMP in Cellular Senescence. Biochem. J. 2003, 376, 403–411. [CrossRef]

158. Vangipuram, M.; Ting, D.; Kim, S.; Diaz, R.; Schüle, B. Skin Punch Biopsy Explant Culture for Derivation of Primary Human
Fibroblasts. J. Vis. Exp. 2013, e3779. [CrossRef]

159. Juhl, P.; Bondesen, S.; Hawkins, C.L.; Karsdal, M.A.; Bay-Jensen, A.-C.; Davies, M.J.; Siebuhr, A.S. Dermal Fibroblasts Have
Different Extracellular Matrix Profiles Induced by TGF-β, PDGF and IL-6 in a Model for Skin Fibrosis. Sci. Rep. 2020, 10, 17300.
[CrossRef]

160. Millioni, R.; Puricelli, L.; Iori, E.; Trevisan, R.; Tessari, P. Skin Fibroblasts as a Tool for Identifying the Risk of Nephropathy in the
Type 1 Diabetic Population. Diabetes Metab. Res. Rev. 2012, 28, 62–70. [CrossRef]

161. Sephel, G.C.; Byers, P.H.; Holbrook, K.A.; Davidson, J.M. Heterogeneity of Elastin Expression in Cutis Laxa Fibroblast Strains.
J. Investig. Dermatol. 1989, 93, 147–153. [CrossRef] [PubMed]

162. Minor, R.R.; Sippola-Thiele, M.; McKeon, J.; Berger, J.; Prockop, D.J. Defects in the Processing of Procollagen to Collagen Are
Demonstrable in Cultured Fibroblasts from Patients with the Ehlers-Danlos and Osteogenesis Imperfecta Syndromes. J. Biol.
Chem. 1986, 261, 10006–10014. [CrossRef]

163. Matalon, R.; Dorfman, A. Acid Mucopolysaccharides in Cultured Human Fibroblasts. Lancet 1969, 2, 838–841. [CrossRef]
164. Adtani, P.; Narasimhan, M.; Ranganathan, K.; Punnoose, A.; Prasad, P.; Natarajan, P.M. Characterization of Oral Fibroblasts: An

in Vitro Model for Oral Fibrosis. J. Oral Maxillofac. Pathol. 2019, 23, 198–202. [CrossRef] [PubMed]
165. Dadashzadeh, E.; Saghaeian Jazi, M.; Abdolahi, N.; Mohammadi, S.; Saeidi, M. Comparison of a Suggested Model of Fibrosis in

Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in Vitro
Model. Int. J. Mol. Cell. Med. 2022, 11, 31–40. [CrossRef] [PubMed]

166. Karamichos, D.; Guo, X.Q.; Hutcheon, A.E.K.; Zieske, J.D. Human Corneal Fibrosis: An in Vitro Model. Investig. Ophthalmol. Vis.
Sci. 2010, 51, 1382–1388. [CrossRef] [PubMed]

167. Sundarakrishnan, A.; Zukas, H.; Coburn, J.; Bertini, B.T.; Liu, Z.; Georgakoudi, I.; Baugh, L.; Dasgupta, Q.; Black, L.D.; Kaplan,
D.L. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater. Sci. Eng. 2019,
5, 2417–2429. [CrossRef] [PubMed]

https://doi.org/10.1038/s41591-018-0092-9
https://doi.org/10.3390/ijms24097784
https://doi.org/10.1016/j.jgo.2023.101671
https://doi.org/10.1016/j.metabol.2022.155223
https://www.ncbi.nlm.nih.gov/pubmed/35640743
https://doi.org/10.1038/s41514-023-00109-1
https://doi.org/10.1111/febs.15570
https://doi.org/10.1016/j.mad.2014.03.004
https://www.ncbi.nlm.nih.gov/pubmed/24686308
https://doi.org/10.1016/j.mad.2010.08.008
https://doi.org/10.1016/j.jcyt.2017.11.011
https://doi.org/10.1172/jci.insight.131092
https://www.ncbi.nlm.nih.gov/pubmed/31723062
https://doi.org/10.1111/acel.13609
https://doi.org/10.1002/pmic.200300386
https://doi.org/10.3390/ijms25031529
https://doi.org/10.1038/jidsymp.2009.1
https://www.ncbi.nlm.nih.gov/pubmed/19675552
https://doi.org/10.1016/j.mito.2020.07.007
https://doi.org/10.1042/bj20030816
https://doi.org/10.3791/3779
https://doi.org/10.1038/s41598-020-74179-6
https://doi.org/10.1002/dmrr.1287
https://doi.org/10.1111/1523-1747.ep12277389
https://www.ncbi.nlm.nih.gov/pubmed/2745999
https://doi.org/10.1016/S0021-9258(18)67615-X
https://doi.org/10.1016/S0140-6736(69)92289-2
https://doi.org/10.4103/jomfp.JOMFP_28_19
https://www.ncbi.nlm.nih.gov/pubmed/31516223
https://doi.org/10.22088/IJMCM.BUMS.11.1.31
https://www.ncbi.nlm.nih.gov/pubmed/36397805
https://doi.org/10.1167/iovs.09-3860
https://www.ncbi.nlm.nih.gov/pubmed/19875671
https://doi.org/10.1021/acsbiomaterials.8b01262
https://www.ncbi.nlm.nih.gov/pubmed/33405750


Biomedicines 2024, 12, 1586 26 of 28

168. Puricelli, L.; Iori, E.; Millioni, R.; Arrigoni, G.; James, P.; Vedovato, M.; Tessari, P. Proteome Analysis of Cultured Fibroblasts from
Type 1 Diabetic Patients and Normal Subjects. J. Clin. Endocrinol. Metab. 2006, 91, 3507–3514. [CrossRef] [PubMed]

169. Boraldi, F.; Bartolomeo, A.; Di Bari, C.; Cocconi, A.; Quaglino, D. Donor’s Age and Replicative Senescence Favour the in-Vitro
Mineralization Potential of Human Fibroblasts. Exp. Gerontol. 2015, 72, 218–226. [CrossRef] [PubMed]

170. Boraldi, F.; Annovi, G.; Bartolomeo, A.; Quaglino, D. Fibroblasts from Patients Affected by Pseudoxanthoma Elasticum Exhibit
an Altered PPi Metabolism and Are More Responsive to Pro-Calcifying Stimuli. J. Dermatol. Sci. 2014, 74, 72–80. [CrossRef]
[PubMed]

171. Boraldi, F.; Garcia-Fernandez, M.; Paolinelli-Devincenzi, C.; Annovi, G.; Schurgers, L.; Vermeer, C.; Cianciulli, P.; Ronchetti, I.;
Quaglino, D. Ectopic Calcification in β-Thalassemia Patients Is Associated with Increased Oxidative Stress and Lower MGP
Carboxylation. Biochim. Biophys. Acta 2013, 1832, 2077–2084. [CrossRef]

172. Lofaro, F.D.; Costa, S.; Simone, M.L.; Quaglino, D.; Boraldi, F. Fibroblasts’ Secretome from Calcified and Non-Calcified Dermis in
Pseudoxanthoma Elasticum Differently Contributes to Elastin Calcification. Commun. Biol. 2024, 7, 577. [CrossRef]

173. Lofaro, F.D.; Boraldi, F.; Garcia-Fernandez, M.; Estrella, L.; Valdivielso, P.; Quaglino, D. Relationship Between Mitochondrial
Structure and Bioenergetics in Pseudoxanthoma Elasticum Dermal Fibroblasts. Front. Cell Dev. Biol. 2020, 8, 610266. [CrossRef]

174. Ronchetti, I.; Boraldi, F.; Annovi, G.; Cianciulli, P.; Quaglino, D. Fibroblast Involvement in Soft Connective Tissue Calcification.
Front. Genet. 2013, 4, 22. [CrossRef]

175. Huang, J.; Ralph, D.; Boraldi, F.; Quaglino, D.; Uitto, J.; Li, Q. Inhibition of the DNA Damage Response Attenuates Ectopic
Calcification in Pseudoxanthoma Elasticum. J. Investig. Dermatol. 2022, 142, 2140–2148.e1. [CrossRef]

176. Ivanov, N.A.; Tao, R.; Chenoweth, J.G.; Brandtjen, A.; Mighdoll, M.I.; Genova, J.D.; McKay, R.D.; Jia, Y.; Weinberger, D.R.;
Kleinman, J.E.; et al. Strong Components of Epigenetic Memory in Cultured Human Fibroblasts Related to Site of Origin and
Donor Age. PLoS Genet. 2016, 12, e1005819. [CrossRef] [PubMed]

177. Zeisberg, E.M.; Zeisberg, M. The Role of Promoter Hypermethylation in Fibroblast Activation and Fibrogenesis. J. Pathol. 2013,
229, 264–273. [CrossRef] [PubMed]

178. Kietzmann, T.; Petry, A.; Shvetsova, A.; Gerhold, J.M.; Görlach, A. The Epigenetic Landscape Related to Reactive Oxygen Species
Formation in the Cardiovascular System. Br. J. Pharmacol. 2017, 174, 1533–1554. [CrossRef]

179. Kalluri, R. The Biology and Function of Fibroblasts in Cancer. Nat. Rev. Cancer 2016, 16, 582–598. [CrossRef] [PubMed]
180. Raz, Y.; Cohen, N.; Shani, O.; Bell, R.E.; Novitskiy, S.V.; Abramovitz, L.; Levy, C.; Milyavsky, M.; Leider-Trejo, L.; Moses, H.L.;

et al. Bone Marrow-Derived Fibroblasts Are a Functionally Distinct Stromal Cell Population in Breast Cancer. J. Exp. Med. 2018,
215, 3075–3093. [CrossRef] [PubMed]

181. Kidd, S.; Spaeth, E.; Watson, K.; Burks, J.; Lu, H.; Klopp, A.; Andreeff, M.; Marini, F.C. Origins of the Tumor Microenvironment:
Quantitative Assessment of Adipose-Derived and Bone Marrow-Derived Stroma. PLoS ONE 2012, 7, e30563. [CrossRef]

182. Zeisberg, E.M.; Potenta, S.; Xie, L.; Zeisberg, M.; Kalluri, R. Discovery of Endothelial to Mesenchymal Transition as a Source for
Carcinoma-Associated Fibroblasts. Cancer Res. 2007, 67, 10123–10128. [CrossRef]

183. Ping, Q.; Yan, R.; Cheng, X.; Wang, W.; Zhong, Y.; Hou, Z.; Shi, Y.; Wang, C.; Li, R. Cancer-Associated Fibroblasts: Overview,
Progress, Challenges, and Directions. Cancer Gene Ther. 2021, 28, 984–999. [CrossRef]

184. Lujano Olazaba, O.; Farrow, J.; Monkkonen, T. Fibroblast Heterogeneity and Functions: Insights from Single-Cell Sequencing in
Wound Healing, Breast Cancer, Ovarian Cancer and Melanoma. Front. Genet. 2024, 15, 1304853. [CrossRef] [PubMed]

185. Yu, Y.; Xiao, C.-H.; Tan, L.-D.; Wang, Q.-S.; Li, X.-Q.; Feng, Y.-M. Cancer-Associated Fibroblasts Induce Epithelial–Mesenchymal
Transition of Breast Cancer Cells through Paracrine TGF-β Signalling. Br. J. Cancer 2014, 110, 724–732. [CrossRef] [PubMed]

186. Procopio, M.-G.; Laszlo, C.; Al Labban, D.; Kim, D.E.; Bordignon, P.; Jo, S.-H.; Goruppi, S.; Menietti, E.; Ostano, P.; Ala, U.; et al.
Combined CSL and P53 Downregulation Promotes Cancer-Associated Fibroblast Activation. Nat. Cell Biol. 2015, 17, 1193–1204.
[CrossRef] [PubMed]

187. Bordignon, P.; Bottoni, G.; Xu, X.; Popescu, A.S.; Truan, Z.; Guenova, E.; Kofler, L.; Jafari, P.; Ostano, P.; Röcken, M.; et al. Dualism
of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell
Rep. 2019, 28, 2358–2372.e6. [CrossRef] [PubMed]

188. Cords, L.; Tietscher, S.; Anzeneder, T.; Langwieder, C.; Rees, M.; de Souza, N.; Bodenmiller, B. Cancer-Associated Fibroblast
Classification in Single-Cell and Spatial Proteomics Data. Nat. Commun. 2023, 14, 4294. [CrossRef] [PubMed]

189. Wang, Z.; Yang, Q.; Tan, Y.; Tang, Y.; Ye, J.; Yuan, B.; Yu, W. Cancer-Associated Fibroblasts Suppress Cancer Development: The
Other Side of the Coin. Front. Cell Dev. Biol. 2021, 9, 613534. [CrossRef] [PubMed]

190. Yamamoto, Y.; Kasashima, H.; Fukui, Y.; Tsujio, G.; Yashiro, M.; Maeda, K. The Heterogeneity of Cancer-Associated Fibroblast
Subpopulations: Their Origins, Biomarkers, and Roles in the Tumor Microenvironment. Cancer Sci. 2023, 114, 16–24. [CrossRef]
[PubMed]

191. Forsthuber, A.; Korosec, A.; Jacob, T.; Aschenbrenner, B.; Annusver, K.; Frech, S.; Purkhauser, K.; Krajic, N.; Lipp, K.; Werner, F.;
et al. CAF Variants Control the Tumor-Immune Microenvironment and Predict Skin Cancer Malignancy. bioRxiv 2023. [CrossRef]

192. Eble, J.A.; Niland, S. The Extracellular Matrix in Tumor Progression and Metastasis. Clin. Exp. Metastasis 2019, 36, 171–198.
[CrossRef]

193. Borst, R.; Meyaard, L.; Pascoal Ramos, M.I. Understanding the Matrix: Collagen Modifications in Tumors and Their Implications
for Immunotherapy. J. Transl. Med. 2024, 22, 382. [CrossRef]

https://doi.org/10.1210/jc.2006-0274
https://www.ncbi.nlm.nih.gov/pubmed/16822825
https://doi.org/10.1016/j.exger.2015.10.009
https://www.ncbi.nlm.nih.gov/pubmed/26494600
https://doi.org/10.1016/j.jdermsci.2013.12.008
https://www.ncbi.nlm.nih.gov/pubmed/24461675
https://doi.org/10.1016/j.bbadis.2013.07.017
https://doi.org/10.1038/s42003-024-06283-6
https://doi.org/10.3389/fcell.2020.610266
https://doi.org/10.3389/fgene.2013.00022
https://doi.org/10.1016/j.jid.2022.01.022
https://doi.org/10.1371/journal.pgen.1005819
https://www.ncbi.nlm.nih.gov/pubmed/26913521
https://doi.org/10.1002/path.4120
https://www.ncbi.nlm.nih.gov/pubmed/23097091
https://doi.org/10.1111/bph.13792
https://doi.org/10.1038/nrc.2016.73
https://www.ncbi.nlm.nih.gov/pubmed/27550820
https://doi.org/10.1084/jem.20180818
https://www.ncbi.nlm.nih.gov/pubmed/30470719
https://doi.org/10.1371/journal.pone.0030563
https://doi.org/10.1158/0008-5472.CAN-07-3127
https://doi.org/10.1038/s41417-021-00318-4
https://doi.org/10.3389/fgene.2024.1304853
https://www.ncbi.nlm.nih.gov/pubmed/38525245
https://doi.org/10.1038/bjc.2013.768
https://www.ncbi.nlm.nih.gov/pubmed/24335925
https://doi.org/10.1038/ncb3228
https://www.ncbi.nlm.nih.gov/pubmed/26302407
https://doi.org/10.1016/j.celrep.2019.07.092
https://www.ncbi.nlm.nih.gov/pubmed/31461652
https://doi.org/10.1038/s41467-023-39762-1
https://www.ncbi.nlm.nih.gov/pubmed/37463917
https://doi.org/10.3389/fcell.2021.613534
https://www.ncbi.nlm.nih.gov/pubmed/33614646
https://doi.org/10.1111/cas.15609
https://www.ncbi.nlm.nih.gov/pubmed/36197901
https://doi.org/10.1101/2023.05.03.539213
https://doi.org/10.1007/s10585-019-09966-1
https://doi.org/10.1186/s12967-024-05199-3


Biomedicines 2024, 12, 1586 27 of 28

194. Vennin, C.; Mélénec, P.; Rouet, R.; Nobis, M.; Cazet, A.S.; Murphy, K.J.; Herrmann, D.; Reed, D.A.; Lucas, M.C.; Warren, S.C.;
et al. CAF Hierarchy Driven by Pancreatic Cancer Cell P53-Status Creates a pro-Metastatic and Chemoresistant Environment via
Perlecan. Nat. Commun. 2019, 10, 3637. [CrossRef] [PubMed]

195. Hu, X.; Villodre, E.S.; Larson, R.; Rahal, O.M.; Wang, X.; Gong, Y.; Song, J.; Krishnamurthy, S.; Ueno, N.T.; Tripathy, D.; et al.
Decorin-Mediated Suppression of Tumorigenesis, Invasion, and Metastasis in Inflammatory Breast Cancer. Commun. Biol. 2021, 4,
72. [CrossRef] [PubMed]

196. Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: A Guardian from the Matrix. Am. J. Pathol. 2012, 181, 380–387. [CrossRef] [PubMed]
197. Zeng, W.; Zhang, S.; Liu, D.; Chai, M.; Wang, J.; Zhao, Y. Preclinical Safety Studies on Autologous Cultured Human Skin Fibroblast

Transplantation. Cell Transplant. 2014, 23, 39–49. [CrossRef] [PubMed]
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