
Citation: Toosi, A.; Shiri, I.; Zaidi, H.;

Rahmim, A. Segmentation-Free

Outcome Prediction from Head and

Neck Cancer PET/CT Images: Deep

Learning-Based Feature Extraction

from Multi-Angle Maximum Intensity

Projections (MA-MIPs). Cancers 2024,

16, 2538. https://doi.org/10.3390/

cancers16142538

Academic Editor: Dania Cioni

Received: 31 May 2024

Revised: 9 July 2024

Accepted: 10 July 2024

Published: 14 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Segmentation-Free Outcome Prediction from Head and Neck
Cancer PET/CT Images: Deep Learning-Based Feature Extraction
from Multi-Angle Maximum Intensity Projections (MA-MIPs)
Amirhosein Toosi 1,2* , Isaac Shiri 3,4 , Habib Zaidi 4 and Arman Rahmim 1,2,5,6

1 Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
arman.rahmim@ubc.ca

2 Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
3 Department of Cardiology, University Hospital Bern, CH-3010 Bern, Switzerland; isaac.shirilord@insel.ch
4 Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital,

CH-1211 Geneva, Switzerland; habib.zaidi@unige.ch
5 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
6 Department of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
* Correspondence: amirhosein.toosi@ubc.ca

Simple Summary: Head and neck cancer is a serious health concern that affects millions of people
across the globe. Predicting how patients will respond to therapy is critical for providing optimal care.
To make these predictions, one may first manually identify tumour boundaries on medical imaging
in order to obtain the necessary information. Manually establishing tumour borders, however, is both
costly and time-consuming, and prone to error and disagreement. Our AI-based research provides
a unique method for predicting patient outcome that eliminates the need for manual delineation
steps. Instead, we collect information from the patient’s whole head and neck area on PET scans as
"looked upon" from a variety of angles. Our technique is faster, more consistent, and more precise
than existing methods, with the potential to help doctors deliver better care to patients.

Abstract: We introduce an innovative, simple, effective segmentation-free approach for survival
analysis of head and neck cancer (HNC) patients from PET/CT images. By harnessing deep learning-
based feature extraction techniques and multi-angle maximum intensity projections (MA-MIPs)
applied to Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) images, our proposed
method eliminates the need for manual segmentations of regions-of-interest (ROIs) such as primary
tumors and involved lymph nodes. Instead, a state-of-the-art object detection model is trained
utilizing the CT images to perform automatic cropping of the head and neck anatomical area, instead
of only the lesions or involved lymph nodes on the PET volumes. A pre-trained deep convolutional
neural network backbone is then utilized to extract deep features from MA-MIPs obtained from
72 multi-angel axial rotations of the cropped PET volumes. These deep features extracted from
multiple projection views of the PET volumes are then aggregated and fused, and employed to
perform recurrence-free survival analysis on a cohort of 489 HNC patients. The proposed approach
outperforms the best performing method on the target dataset for the task of recurrence-free survival
analysis. By circumventing the manual delineation of the malignancies on the FDG PET-CT images,
our approach eliminates the dependency on subjective interpretations and highly enhances the
reproducibility of the proposed survival analysis method. The code for this work is publicly released.

Keywords: artificial intelligence; deep learning; outcome prediction; positron emission tomography;
head and neck cancer

1. Introduction

Head and neck cancer (HNC) is the seventh most common cancer worldwide. It
encompasses malignancies involving the anatomic sites that compose the upper aerodiges-
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tive tract, including the oral cavity, pharynx, larynx, nasal cavity, paranasal sinuses, and
salivary glands [1]. In 2016, over 1.1 million new cases and 4.1 million prevalent cases were
reported, resulting in approximately 500,000 deaths worldwide [2]. Although the median
diagnosis age for HNC is around 60 years, in recent years the incidence of these cancers has
increased in adults younger than 45 years, mainly due to higher numbers of oropharyngeal
cancers associated with oncogenic human papillomavirus (HPV) [3].

Accurate prognosis and staging is crucial for improving patient care, treatment
planning, and disease management, ultimately leading to improved survival rates [4].
Recurrence-free survival (RFS) analysis is a common outcome prediction method used
to assess the effectiveness of treatments for HNC. RFS measures the length of time after
treatment during which the cancer does not recur. RFS plays a vital role in the management
of HNC patients by providing information on the durability of treatment effects and helps
to determine the optimal treatment strategy for individual patients [5]. RFS analysis is
typically performed utilizing clinical and pathological features like tumor stage, grade,
histological sub-type, and nodal involvement. However, relying solely on these factors
may not fully capture the complex tumor heterogeneity and dynamic changes in the tumor
micro-environment, which can limit the accuracy of prognostication [6].

Biomedical imaging methods such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and positron emission tomography (PET) can provide valuable
information in various steps of HNC management [7]. Specifically, PET imaging plays an
active role in staging, treatment planning, monitoring response, recurrence detection and
surveillance for HNC patients [8,9]. Several quantitative parameters could be extracted
from fluorodeoxyglucose (FDG) PET and CT images, providing information about the
metabolic activity and aggressiveness of the tumor. This information can be helpful in
predicting treatment response, disease progression, and patient survival. Some commonly
used imaging biomarkers are Standardized Uptake Value (SUV) thresholds, such as SU-
Vmean, SUVmax, SUVpeak, volumetric measures, such as Metabolic Tumor Volume (MTV)
and Total Lesion Glycolysis (TLG) [10]. Additionally, the high-throughput extraction of
radiomics features from PET-CT image modalities provides massive amount of hidden
information that could help personalized management of the HNC [11,12].

Imaging biomarkers and radiomics features are tumor specific; i.e., they need to be ex-
tracted from the tumor region of intertest (ROI). Therefore, accurate manual segmentation
of ROIs within medical images is a crucial step for extracting these features. Manual seg-
mentation has been the fundamental step in various medical imaging analysis tasks [13,14].
However, it presents several challenges that can impact the accuracy, reproducibility, and
efficiency of the analysis. Some of the key challenges of manual segmentation can be
categorized as follows:

• Manual segmentation is a subjective task. Every expert can have their own obser-
vation of the imaging data. These differences in the observations lead to different
interpretations of the same medical image, resulting in the inconsistencies in the de-
lineation of regions of interest. The difference in the manual delineations made by
different expert annotators is known as inter-observer variability. This phenomena
can significantly affect the reliability and reproducibility of any analysis made based
on the manual annotations, such as survival analysis [15].

• Manual segmentation is highly time and labor intensive. Unlike most of the publicly
available non-medical image datasets, manual segmentation of biomedical image
datasets needs significant human effort and expertise. The process of precisely delin-
eating complex anatomical structures, tumors, or any other malignancies is tedious
and prone to errors, requiring a great deal of time and precision [16] On the other hand,
the availability of experts for performing manual segmentation is limited, especially
in clinical settings with a large cohort of patients [17].

• Manual segmentation is not easily scalable. Being highly labor-intensive, as men-
tioned earlier, performing manual segmentation is not an easily scalable process to a
large cohort of patients. This process is even more complex especially in case of co-
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horts composed of multiple centers [18]. Employing multiple annotators with different
levels of expertise or training can amplify the inter-observer variabilities, limiting the
generalizability of the analysis across different centers or different populations [19,20].

• Manual segmentation of HNC tumors is prone to errors. HNC tumors’ characteristics
can be highly diverse. Despite being located in a relatively constrained anatomical
location, HNC tumors can represent irregular shapes, high heterogeneity in intensity
patterns, and highly variable contrast uptakes [21]. These can make the process of
HNC tumor delineation more challenging, leading to higher uncertainties and errors
in the process [22].

• Manual segmentation of a single HNC tumor as a whole can be suboptimal. Unlike
tumors in other types of cancers, like prostate cancer primary tumors, where the expert
annotator might delineate different regions of the tumor as a single ROI, HNC tumors
are normally segmented as a whole as a single ROI. As mentioned earlier, this can
neglect the distinct characteristics of different subregions within the tumor. However,
different subregions of a tumor can contribute differently to the prognosis task [23,24].

To address these challenges, we propose a segmentation-free approach for recurrence-
free survival analysis in HNC. By circumventing the manual segmentation step, our
approach eliminates the dependency on subjective interpretations and enhances the re-
producibility of the analysis. Instead, our method utilizes a deep learning-based object
detection model to automatically crop the head and neck region in the FDG PET volumes,
enabling a more efficient, objective, and reproducible analysis.

The main contributions of the present work can be summarized as follows:

• We proposed a completely segmentation-free approach for survival analysis in head
and neck cancer patients using FDG-PET images.

• We utilized an object detection model to automatically crop the head and neck region
in PET images, and as a result, eliminated the need for time and labour intensive task
of manual tumor/metastatic lymph nodes segmentation.

• We introduced a novel technique for feature extraction from PET images, using multi-
angle maximum intensity projection (MA-MIP) to enhance feature representation.

• We used pre-trained deep convolutional neural networks on large natural datasets,
without any fine-tuning, to extract deep features from MA-MIPs.

• We explored of variety of feature fusion methods to aggregate information extracted
from multiple MA-MIP projection views.

• We successfully demonstrated that our proposed segmentation-free survival analysis
method outperforms existing approaches for recurrence-free survival analysis of the
head and neck cancer patients on the HECKTOR 2022 challenge dataset.

• We comprehensively compared different CNN architectures, different pooling meth-
ods, and multiple fusion techniques to identify optimal combinations for the task of
survival analysis in our proposed pipeline.

• We developed a highly reproducible and computationally efficient survival anal-
ysis pipeline that can potentially be deployed in settings with limited resources
(GPUs, etc.).

In the subsequent sections, we describe the methodology employed to automatically
crop the PET volumes (Sections 2.2–2.4), generate multi-angel maximum intensity projec-
tions of the cropped PET volumes (Section 2.5), extract deep features using a pre-trained
deep convolutional neural network (Sections 2.6–2.8), and perform recurrence-free survival
analysis (Section 2.9). We present the results of our study in Section 3, discuss their implica-
tions, and highlight the advantages of the segmentation-less approach in overcoming the
challenges associated with manual segmentation in medical imaging analysis in Section 4.
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2. Materials and Methods
2.1. Dataset

For this work, we used the training dataset of the third MICCAI Head and Neck Tu-
mor segmentation and outcome prediction (HECKTOR2022) challenge [22,25]. The dataset
comprises FDG PET/CT images, along with the clinical and survival data for a cohort
of 489 patients with histologically proven H&N cancer located in the oropharynx region.
Scans were gathered across 7 different medical centers, with variations in the scanner
manufacturers and acquisition protocols [26] (See Table 1). All 489 patients underwent
radiotherapy treatment planning and had complete responses to the treatment (i.e., dis-
appearance of all signs of local, regional and distant lesions). CT images had an original
median voxel size of 0.98 × 0.98 × 2.80 mm3, and the PET images had a median voxel size
of 4.00 × 4.00 × 3.27 mm3. To ensure consistency, for all PET/CT images, both CT and
PET volumes were resampled to a voxel size of 1.0 × 1.0 × 1.0 mm3 using a third-order
spline method.

Table 1. Summary of the dataset used in this work.

Center Acronym PET/CT Scanner Number of Cases

Hôpital général juif,
Montréal, CA HGJ Discovery ST,

GE Healthcare 55

Centre hospitalier
universitaire de Sherbooke,

Sherbrooke, CA
CHUS GeminiGXL 16, Philips 72

Hôpital
Maisonneuve-Rosemont,

Montréal, CA
HMR Discovery STE,

GE Healthcare 18

Centre hospitalier de
l’Université de Montréal,

Montréal, CA
CHUM Discovery STE,

GE Healthcare 56

Centre Hospitalier
Universitaire Vaudois, CH CHUV Discovery D690 TOF,

GE Healthcare 47

Centre Hospitalier
Universitaire de Poitiers, FR CHUP Biograph mCT 40 ToF,

Siemens 44

MD Anderson Cancer Center,
Houston, Texas, USA MDA

Discovery HR, Discovery
RX, Discovery ST,

Discovery STE
(GE Healthcare)

197

2.2. Method Overview

Here we describe our proposed segmentation-free outcome prediction method in detail
(see Figure 1). First, we train the object detection model [27] on manually drawn bounding
boxes containing the anatomical region of patients’ head and neck, on both coronal and
sagittal maximum intensity projections of CT images, as described in Section 2.4. The
trained network is then used for cropping the head and neck region of the corresponding
registered FDG PET image volume of the patient, as described in Section 2.3 (See Figure 1A).
Then, we employ a pre-trained CNN network with frozen weights to extract so-called “deep
features” from 72 maximum intensity projections computed from 5-degree steps of axial
rotations of the cropped head and neck PET volumes, resulting in 72 feature vectors per
each patient, as elaborated in detail in Sections 2.6 and 2.7. Next, we aggregate the extracted
feature vectors of all views (MIPs) and process them through an ML pipeline for outcome
prediction (Figure 1B). All the steps are described in detail in the following subsections. The
code developed for this work is publicly available at: https://github.com/Amirhosein2c/
SegFreeOP.

https://github.com/Amirhosein2c/SegFreeOP
https://github.com/Amirhosein2c/SegFreeOP
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Figure 1. Overview of the proposed method for fully automated segmentation-free outcome predic-
tion for head and neck cancer patients. (A) Overall representation of the automated head and neck
region detection and cropping. (B) Extracting deep features from MA-MIP projections followed by
feature fusion step.

2.3. Automatic Cropping of the Head and Neck Region

HNC tumors mainly affect the upper aerodigestive tract. In the early-stage disease,
the risk of distant metastasis is very low, where only approximately 10% of patients
have distant metastasis at the time of diagnosis [28]. Given that, in order to focus on the
main site of the disease affection, we employed a deep learning-based object detection
model to automatically locate the anatomical upper aerodigestive region. To this end,
we first generate a coronal and a sagittal maximum intensity projection of the CT scan
of each patient for the whole dataset. Then, we manually annotate the anatomical head
and neck region bounding boxes on both coronal and sagittal CT MIPs, using LabelImg
annotating toolbox [29]. On the coronal MIP, we placed a bounding box vertically between
the sternoclavicular (SC) joint (the link between the clavicle or collarbone, and the sternum,
or breastbone) and the top of the head, or the top of the image, if the full skull is not
covered in the CT scan image, and horizontally between the left and right acromioclavicular
(AC) joint (the joint where the scapula or shoulder blade, articulates with the clavicle or
collarbone). (See Figure 2). We target the clavicle bone to extend the oropharyngeal region
down, mainly to contain all the primary tumors and the involved local lymph nodes in the
anatomical region of interest. Since we defined the anatomical region of interest based on
the regional bones, for generating coronal and sagittal CT MIPs, we clipped all CT voxel
values in the corresponding range of hard tissue (bone) hounsfield units (700–2000).
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Figure 2. Visual summary of the proposed bounding box definition and cropping for locating the
anatomical head and neck region on the PET volumes of the patients based on the coronal and sagittal
MIP CT projections. Locating the bounding boxes on coronal and sagittal CT MIPs based on the AC
and SC clavicle joints (left), and the 3D bounding box cropping on the PET volume based on the
two 2D bounding boxes on the CT mips (right).

2.4. Training the Object Detection Model on CT Projections

For the object detection architecture we used TridentNet [27]. TridentNet is a multi-
stage deep learning-based 2D object detection model initially proposed for handling the
highly variating object scales. Utilizing deformable convolution in its “Trident” blocks,
TridentNet extracts multi-scale features with different receptive fields for different object
scales from features of the same semantic layers. Based on our previous experience with this
architecture for detecting very small and highly ambiguous objects in PET images [30,31],
here we picked the same architecture for localizing the anatomical head and neck region in
CT coronal and sagittal MIPs. To this end, first the training set was divided into 5 folds,
4 for training a network and 1 for testing. Both coronal and sagittal MIPs were fed to the
networks for training, along with the manually made bounding boxes as ground truth. The
predicted bounding boxes per each patient in 5 testing folds were then used for cropping
the head and neck region on the corresponding PET volumes.

2.5. PET Multi-Angle Maximum Intensity Projections (MA-MIPs)

After cropping the head and neck region on the PET volume, the cropped regions
underwent the feature extraction step. The common practice for extracting features from
biomedical volumetric images are either extracting features directly from the the 3D volume,
or the pixels of the transaxial layers. However, in our proposed method, we instead extract
image features from multiple maximum intensity projections (MA-MIPs) of the axial
rotations of the cropped PET volume. To this end, we rotate the cropped PET volume axially
for 5 degrees step by step, and per each rotation a MIP is captured from the rotated volume.
This step is repeated 72 times in every 5 degrees to cover one complete axial rotation (see
Figure 1B). This enables us to leverage strong 2D convolutional neural network backbones
pre-trained on large-scale public datasets like ImageNet, for extracting “deep” features.

2.6. Deep Feature Extraction from MA-MIP Projections

The vast size and diversity of ImageNet, with millions of natural images belonging to
thousands of categories, have allowed training of models with robust image recognition ca-
pabilities that can effectively generalize across different visual domains, capturing complex
patterns, textures, and structural relationships. By training a deep neural network on this
dataset, the model learns to recognize features that are not specific to any particular class
or modality, but rather generalize well across different visual domains.

Through transfer learning, the knowledge gained from one task can be transferred to
another related task. By doing so, the model can leverage the knowledge it has acquired and
adapt it to the new task, leading to improved performance compared to training a model
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from scratch. When using a pre-trained CNN backbone for biomedical image analysis,
the early layers can capture low-level features like texture, color, and shape, while higher
layers can capture more abstract features like organs, tissues, or lesions. This hierarchical
representation enables the model to capture both local and global information in medical
images, leading to better performance in various tasks [32].

In spite of the significant variability of medical images, mainly due to factors like
patient demographics, acquisition protocols, and pathological conditions, the robustness
of pre-trained CNN backbones on ImageNet can translate to medical images, helping the
model to generalize across different populations, modalities, and diseases [33].

EfficientNet as the Feature Extraction CNN Backbone

Looking at the trends of the proposed convolutional neural network architectures on
the ImageNet [34], from the emergence of AlexNet [35] in 2012 till the present, the proposed
CNN architectures are becoming larger in order to gain higher accuracy. However, the
more the architectures get larger, the higher the number of parameters they reach, so much
that it seems they have hit the hardware limits [36].

The most common approach for scaling the convolutional neural networks is increas-
ing the depth, in order to help the network to learn more complex features throughout
the depth and to generalize well on new tasks. This comes with the cost of difficulties
in terms of training such deep models due to the well-known problems such as gradient
vanishing [37]. Despite the proposed techniques to overcome this issue, such as batch
normalization and skip connections, the accuracy of deeper networks seems to saturate at
a certain point [38].

Among the state-of-the-art architectures designed for ImageNet, EfficientNet [39]
is an attempt to achieve higher accuracy by uniformly scaling the CNN architecture’s
depth, width, and resolution, forming a compound scaling framework. In order to scale
up the CNN network while keeping the number of parameters of the network low, as the
main building block, EfficientNet uses Inverted Bottleneck Block previously proposed in
MobileNetV2 architecture [40], along with squeeze and excitation optimization [41]. The
essence of Inverted Bottleneck Block is using the Depthwise separable convolution layer
instead of a regular convolution block, which splits the convolution operation into two
separate operations, a depth wise convolution and a pointwise convolution. This splitting
allows the model to perform the same convolution operation in each block with much less
computation. First introduced in MobileNet architecture [42], the depthwise separable
convolution enables the EfficientNet architecture to scale up and gain higher accuracy with
a much lower number of parameters.

Building on top of a baseline model, called EfficientNetB0, seven scales of EfficientNet
are provided with different uniform scales (EfficientNet B1–B7) which could achieve higher
accuracies compared to the state-of-the-art CNN architectures with same depth on the
ImageNet dataset, while having lower parameters and being faster. Besides the superior
performance on the ImageNet, EfficientNets also achieved state of-the-art accuracy on many
other widely used datasets by transfer learning, while having up to 21× less parameters
compared to other CNNs [39].

The remarkable performance of the EfficientNet architecture in terms of transfer
learning, along with the uniform scale-up of the baseline architecture, motivated us to
apply this model for feature extraction in our work. To this end, we selected 3 different
scales of the EfficientNet pre-trained on ImageNet, namely B1, B4, and B7 (small, medium,
and large) for deep features extraction from the MA-MIPs of the cropped PET volumes,
to compare the effect of model scale on the effectiveness of the extracted features for the
outcome prediction task.

2.7. Deep Features Preparation

The output of the pre-trained EfficientNet used for feature extraction is the last convo-
lutional block before the classifier head of the network which is in the shape of a 4D tensor
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(a batch of 3D tensors). In order to make a feature vector from the 3D feature tensor for each
image in the batch, different methods are commonly used. The most common approach is
to apply a global pooling layer on the output of the convolution block, either an average
pooling or a max pooling, to summarize the feature tensor to a one-dimensional feature
vector. The global max pooling operation essentially computes the maximum value over
the entire height and width of a 2D convolutional block’s channel in the 3D tensor output’s
depth. The global max pooling operation can be formulated as maxh,w(Tc,h,w).

Here, T ∈ RC×H×W represents the 3D tensor output of the 2D convolutional block,
and the index c corresponds to the channels dimension. The indices h and w iterate over the
spatial dimensions of the tensor. The “max” operation finds the maximum value among all
the spatial locations in each channel for every instance. In global average pooling, similar
to the global max pooling operation, the “mean” operation computes the average over all
the spatial locations in each channel, formulated as 1

h×w ∑h
i=1 ∑w

j=1 Tc,i,j.
In this work we also extended the global pooling layer to the median and also standard

deviation pooling in order examine different possible global pooling operators.

2.8. MA-MIPs Extracted Deep Features Fusion

Features extracted from MA-MIPs taken from different rotations of the cropped PET
volume can be seen as the information extracted from different views of the PET volume.
Therefore, combining the information extracted from different views could give a more
informative set of information about the region.

In order to aggregate the feature vectors extracted from 72 MA-MIPs from different
views of the cropped PET volume, feature fusion methods are applied. Multiple feature
fusion methods are used in this work in order to aggregate feature vectores from multiple
views into a single feature vector. The utilized methods can be categorized into three main
groups: statistical summarizing methods, linear transformation methods, and non-linear
transformation methods.

Statistical summarizing methods leverage simple statistical measures to aggregate
information from the 72 feature vectors into a single feature vector. To this end, the index-
wise (channel-wise) maximum, mean, median, and standard deviation of the feature vectors
are computed after stacking all the 72 feature vectors of the different views. The maximum
value represents the most prominent feature across all views, while the mean, median, and
standard deviation capture different aspects of the overall statistical distribution of features
from different views. These methods simplify the representation of the data by distilling it
down to key statistical characteristics.

Linear transformation methods, on the other hand, encompass dimensionality reduc-
tion techniques applied index-wise (channel-wise) to the stacked feature vectors. Initially,
the 72 feature vectors are stacked vertically to form a matrix, similar to the statistical
summarizing methods, where each row represents a feature from one view, and there are
72 columns, each corresponding to a specific feature index (channel). Independent com-
ponent analysis (ICA) is then individually applied to each column of the stacked feature
vectors. This process summarizes the 72 cells within each feature index into a single value.
By applying these linear transformations to each index separately, a reduced-dimensional
representations for each feature index is obtained, in order to capture essential patterns
and reduce dimensionality, while preserving unique characteristics specific to each view.
This approach analyses how each feature contributes to the fused representation.

As for non-linear transformation methods, we used an auto-encoder. This learning-
based method is applied on the concatenated 72 feature vectors to learn a compact, lower-
dimensional representation in an unsupervised end-to-end manner. The auto-encoder
comprises an encoder network that maps the input data into a reduced-dimensional latent
space and a decoder network that reconstructs the input from this latent representation.
By training the auto-encoder, it learns to capture the most salient features in the data
while discarding noise and redundancies, resulting in an optimized fused feature vector
that retains essential information. These three categories of fusion methods represent a
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well-rounded approach to fusing feature vectors from multiple views of the HNC PET
images. Each category offers unique advantages and insights into the data, allowing for a
comprehensive analysis that may enhance the predictive power of the proposed model for
outcome prediction.

2.9. ML Prediction Pipeline for Recurrence-Free Survival Analysis

Fused multi-view features are then fed to an outcome prediction pipeline in order
to perform recurrence-free survival prediction. Feature vectors of all 489 patients first
underwent a standard scaling by removing the mean and scaling to unit variance. Samples
were divided with a 80/20 ratio using nested 5-fold cross validation with 20 times repetition
to evaluate the outcome prediction pipeline. Per each inner fold, highly correlated features
were eliminated, then an independent component analysis (ICA) was applied on the
remaining features to further reduce the dimensionality of the features and also to avoid
over-fitting. The Cox proportional hazard survival method was employed on the reduced
dimension features to predict the survival risk of each patient. Grid search was used for
parameter tuning. The trained models were tested on each of the outer unseen testing
folds and the performance of the trained outcome prediction models are reported in terms
of the mean and the standard deviation of the concordance index (c-index) of the five
unseen test folds. In the next section we report the results of our proposed pipeline for
recurrence-free survival analysis, and evaluate the effect of using different methods for
each step throughout the proposed segmentation-free outcome prediction pipeline.

3. Results

In this section we report the result of our proposed segmentation-free outcome predic-
tion model for recurrence-free survival prediction of HNC patients using the multi-angle
maximum-intensity projections of their FDG PET images. Table 2 summarizes the result of
all possible combinations of the feature extraction backbones, pooling methods, and deep
feature fusion methods, over all five test folds, in terms of mean and standard deviation
c-index. Rows of Table 2 are divided into four sections each corresponding to one of four
global pooling methods. On average, over all three different sizes of the feature extraction
method (EfficientNet B1, B4, and B7), and using all six different feature fusion methods,
global average pooling seems to be slightly more effective compared to other pooling
methods, with the mean c-index of 0.659 compared to 0.653, 0.645, and 0.630 for standard
deviation, median, and max pooling, respectively. However, the difference is minimal.

Comparing feature fusion methods, the independent component analysis (ICA) method
seems to work poorly with respect to other fusion methods (0.519 on average over four
pooling methods and three backbone sizes). Among two other fusion methods, on average,
statistical summarization methods seems to outperform non-linear transformation method
(auto-encoder) with the mean value over all five channel-wise methods equal to 0.674
compared to 0.668 for the auto-encoder. Between the four statistical summarization fusion
methods, channel-wise maximum fusion with the mean c-index of 0.686 outperforms other
methods with mean c-indices of 0.673, 0.672, and 0.668 for channel-wise standard deviation,
mean, and median, respectively. Comparing the effect of using the EfficientNet as a feature
extraction backbone with different sizes, looking at the average of the c-index values over
all the proposed pooling and fusion methods, EfficientNet Large (B7) and EfficientNet
Small (B1) with mean c-indices of 0.658 and 0.654 respectively, slightly outperform the
EfficientNet Medium (B4) with the mean c-index of 0.630, with the large size performing
minimally better than EfficientNet Small.
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Table 2. This table summarizes the result of all combinations of feature extraction CNN backbones,
pooling methods, and deep feature fusion methods, over all five test folds, in terms of mean and
standard deviation c-index. Rows of the table are divided into four sections, each corresponding
to one of four global pooling methods. Columns are also divided into three separate sections
each corresponding to one fusion method, from left to right channel-wise statistical summarization
methods, linear transformation method, and non-linear transformation method.

Feature Fusion Methods

Feature Extractors CW-Mean CW-Median CW-Max CW-Std-Dev ICA AutoEncoder

Global Average Pooling
EfficientNet Small 0.706 ± 0.05 0.707 ± 0.05 0.707 ± 0.05 0.678 ± 0.04 0.593 ± 0.06 0.689 ± 0.08
EfficientNet Medium 0.615 ± 0.03 0.638 ± 0.03 0.626 ± 0.05 0.640 ± 0.04 0.590 ± 0.08 0.644 ± 0.05
EfficientNet Large 0.718 ± 0.03 0.710 ± 0.03 0.719 ± 0.03 0.705 ± 0.04 0.455 ± 0.10 0.721 ± 0.03

Global Max Pooling
EfficientNet Small 0.613 ± 0.08 0.613 ± 0.07 0.703 ± 0.06 0.680 ± 0.03 0.541 ± 0.03 0.639 ± 0.06
EfficientNet Medium 0.650 ± 0.07 0.633 ± 0.06 0.667 ± 0.04 0.646 ± 0.04 0.576 ± 0.07 0.673 ± 0.05
EfficientNet Large 0.625 ± 0.03 0.634 ± 0.03 0.697 ± 0.05 0.665 ± 0.04 0.459 ± 0.03 0.651 ± 0.03

Global Median Pooling
EfficientNet Small 0.684 ± 0.06 0.666 ± 0.07 0.679 ± 0.04 0.666 ± 0.04 0.501 ± 0.08 0.671 ± 0.05
EfficientNet Medium 0.652 ± 0.02 0.663 ± 0.03 0.651 ± 0.04 0.641 ± 0.05 0.491 ± 0.03 0.630 ± 0.06
EfficientNet Large 0.688 ± 0.06 0.678 ± 0.05 0.701 ± 0.04 0.697 ± 0.04 0.556 ± 0.07 0.698 ± 0.06

Global STD-Dev Pooling
EfficientNet Small 0.702 ± 0.05 0.701 ± 0.06 0.701 ± 0.06 0.709 ± 0.02 0.456 ± 0.05 0.685 ± 0.08
EfficientNet Medium 0.674 ± 0.04 0.655 ± 0.03 0.669 ± 0.04 0.655 ± 0.05 0.503 ± 0.03 0.649 ± 0.03
EfficientNet Large 0.708 ± 0.04 0.706 ± 0.04 0.713 ± 0.04 0.689 ± 0.06 0.506 ± 0.04 0.665 ± 0.04

Picking the EfficienNet Large as the better performing feature extraction method, in
order to compare the effectiveness of the proposed pooling methods, Figure 3 shows box
plots of the c-index values of five test folds. Each plot shows the results using one of the four
proposed pooling methods, for EfficientNet large, and all six different fusion techniques.
Looking at the median and the variability of the box plots, the channel-wise maximum fu-
sion method seems to perform slightly better than other statistical summarization methods
and the auto-encoder method. However, for the global average pooling method, as the best
pooling method among all proposed poolings, auto-encoder-based fusion seems to perform
on par with the channel-wise maximum and mean fusion techniques. This is not true
in other three diagrams showing results of methods using other pooling techniques. On
the other hand, looking at the four statistical summarization methods and the non-linear
transformation method (auto-encoder) in all four diagrams of the Figure 3, it seems that
boxes are more compact with relatively higher median c-index values and lower variability
compared to the boxes in other three diagrams corresponding to other pooling methods.

Likewise, Figure 4 shows in box plots the performance of the channel-wise maximum
fusion technique and the auto-encoder as the two best fusion methods over all four different
global pooling methods, over all five testing folds. Here as can be seen, global average
pooling has a higher median c-index and lower variability compared to the other three
pooling methods on both channel-wise maximum fusion and the auto-encoder.

Table 3 shows the results of the method proposed in [43] who won the best place in
the HECKTOR 2022 challenge leaderboard for recurrence-free survival analysis task, on the
training part of the dataset, in terms of mean, maximum, and minimum c-index over the
test folds. Using global average pooling over the deep features extracted using EfficientNet
with large size, all statistical summarization and non-linear transformation fusion methods
outperform the result reported by [43] on the dataset.
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Figure 3. Box plots of the c-index values over all five test folds. Each plot shows the results using one
of the four proposed pooling methods, for EfficientNet large as the feature extraction method, and all
six different fusion techniques. Global average pooling (top left). Global max pooling (top right).
Global median pooling, (buttom left), and global standard deviation pooling on the (buttom right).

Figure 4. Box plots summarizing the performance of channel-wise maximum fusion technique
(left) and the auto-encoder (right) as the two best fusion methods over all four different global
pooling methods, and all five testing folds.

Table 3. Comparison of the results of our proposed method, using global average pooling and
EfficientNet large as feature extractor, to the baseline method [43] winner of the HECKTOR 2022
challenge for recurrence-free survival analysis task, on the training part of the dataset, in terms of
mean, maximum, and minimum c-index over the test folds.

Outcome Prediction Method Mean C-Index Max Min

L. Rebaud et al. [43] 0.688 0.732 0.642

EfficientNet Large + GAvgPool + CW-Mean (Ours) 0.718 0.749 0.662
EfficientNet Large + GAvgPool + CW-Median (Ours) 0.710 0.736 0.655
EfficientNet Large + GAvgPool + CW-Max (Ours) 0.719 0.751 0.682
EfficientNet Large + GAvgPool + CW-std-dev (Ours) 0.705 0.748 0.657
EfficientNet Large + GAvgPool + AutoEncoder (Ours) 0.721 0.742 0.668
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We have also tried a few other well-known pre-trained CNN backbones for deep
feature extraction in order to compare to the EfficientNet used in our proposed method.
Table 4 summarizes the results of using nine other pre-trained CNN backbones in terms
of mean c-index over the five test folds. For all these feature extractors, we used global
average pooling and then the channel-wise maximum fusion method for the PFS prediction
pipeline. While EfficientNet with small and large sizes seem to outperform all the other
feature extractors, other backbones perform better or on par with EfficientNet medium. We
report the result of all used CNN backbones, using all the proposed pooling methods and
feature fusion methods in Table 5.

Table 4. Result of using other architectures as feature extractors compared to EfficientNet in terms of
mean c-index over the five test folds.

Feature Extractor C-Index

InceptionResNetV2 + GAvgPool + CW-Max 0.641 ± 0.06
InceptionV3 + GAvgPool + CW-Max 0.649 ± 0.05
Resnet-152 + GAvgPool + CW-Max 0.662 ± 0.06
VGG16 + GAvgPool + CW-Max 0.640 ± 0.07
VGG19 + GAvgPool + CW-Max 0.635 ± 0.03
Xception + GAvgPool + CW-Max 0.615 ± 0.09
DenseNet-201 + GAvgPool + CW-Max 0.663 ± 0.06
NASNet-Large + GAvgPool + CW-Max 0.644 ± 0.04
ConvNeXt-Base + GAvgPool + CW-Max 0.660 ± 0.06

EfficientNet Small (B1) + GAvgPool + CW-Max 0.707 ± 0.05
EfficientNet Medium (B4) + GAvgPool + CW-Max 0.626 ± 0.05
EfficientNet Large (B7) + GAvgPool + CW-Max 0.719 ± 0.03

Table 5. Complete result of all used pre-trained CNN backbones, using all the four proposed pooling
methods and five feature fusion methods from two groups of channel-wise statistical summarization
fusions and non-linear transformation fusion method in terms of mean and std-dev of c-index over
all five test folds.

Feat. Ext. Method CW-Mean CW-Median CW-MAX CW-STD-Dev AutoEncoder

Global Max Pooling
InceptionResNetV2 0.604 ± 0.071 0.613 ± 0.047 0.549 ± 0.061 0.559 ± 0.070 0.630 ± 0.071
InceptionV3 0.640 ± 0.056 0.627 ± 0.041 0.643 ± 0.049 0.638 ± 0.037 0.637 ± 0.050
Resnet 0.672 ± 0.064 0.673 ± 0.058 0.654 ± 0.058 0.666 ± 0.056 0.675 ± 0.062
VGG16 0.644 ± 0.051 0.644 ± 0.044 0.686 ± 0.032 0.631 ± 0.066 0.599 ± 0.026
VGG19 0.637 ± 0.027 0.624 ± 0.042 0.625 ± 0.023 0.625 ± 0.054 0.638 ± 0.045
Xception 0.613 ± 0.064 0.607 ± 0.068 0.608 ± 0.051 0.615 ± 0.054 0.618 ± 0.071
DenseNet201 0.685 ± 0.060 0.679 ± 0.053 0.689 ± 0.054 0.612 ± 0.037 0.683 ± 0.026
EfficientNetB1 0.613 ± 0.083 0.613 ± 0.068 0.703 ± 0.056 0.680 ± 0.033 0.639 ± 0.056
EfficientNetB4 0.650 ± 0.068 0.633 ± 0.055 0.667 ± 0.036 0.646 ± 0.044 0.673 ± 0.053
EfficientNetB7 0.625 ± 0.031 0.634 ± 0.032 0.697 ± 0.052 0.665 ± 0.041 0.651 ± 0.033

Global Average Pooling
InceptionResNetV2 0.605 ± 0.066 0.612 ± 0.065 0.641 ± 0.059 0.627 ± 0.070 0.612 ± 0.078
InceptionV3 0.635 ± 0.052 0.630 ± 0.049 0.649 ± 0.048 0.654 ± 0.043 0.651 ± 0.050
Resnet 0.676 ± 0.076 0.675 ± 0.076 0.662 ± 0.055 0.658 ± 0.053 0.680 ± 0.077
VGG16 0.641 ± 0.052 0.624 ± 0.056 0.640 ± 0.072 0.614 ± 0.092 0.655 ± 0.061
VGG19 0.641 ± 0.053 0.646 ± 0.080 0.635 ± 0.034 0.652 ± 0.046 0.636 ± 0.047
Xception 0.614 ± 0.080 0.593 ± 0.081 0.615 ± 0.088 0.614 ± 0.080 0.640 ± 0.077
DenseNet201 0.668 ± 0.061 0.665 ± 0.066 0.663 ± 0.064 0.653 ± 0.055 0.683 ± 0.074
EfficientNetB1 0.706 ± 0.048 0.707 ± 0.051 0.707 ± 0.051 0.678 ± 0.035 0.689 ± 0.076
EfficientNetB4 0.615 ± 0.028 0.638 ± 0.029 0.626 ± 0.051 0.640 ± 0.041 0.644 ± 0.048
EfficientNetB7 0.718 ± 0.033 0.710 ± 0.033 0.719 ± 0.032 0.705 ± 0.036 0.721 ± 0.034

Global Median Pooling
InceptionResNetV2 0.628 ± 0.062 0.636 ± 0.063 0.635 ± 0.033 0.641 ± 0.048 0.630 ± 0.045
InceptionV3 0.632 ± 0.038 0.655 ± 0.044 0.660 ± 0.036 0.645 ± 0.065 0.628 ± 0.057
Resnet 0.613 ± 0.070 0.625 ± 0.100 0.645 ± 0.093 0.633 ± 0.090 0.596 ± 0.078
VGG16 0.571 ± 0.038 0.574 ± 0.025 0.557 ± 0.041 0.556 ± 0.049 0.582 ± 0.055
VGG19 0.524 ± 0.091 0.531 ± 0.056 0.544 ± 0.069 0.553 ± 0.101 0.561 ± 0.061
Xception 0.579 ± 0.073 0.595 ± 0.080 0.612 ± 0.095 0.606 ± 0.092 0.613 ± 0.058
DenseNet201 0.644 ± 0.066 0.653 ± 0.068 0.634 ± 0.088 0.618 ± 0.065 0.665 ± 0.061
EfficientNetB1 0.684 ± 0.061 0.666 ± 0.056 0.679 ± 0.038 0.666 ± 0.041 0.671 ± 0.051
EfficientNetB4 0.652 ± 0.017 0.663 ± 0.027 0.651 ± 0.040 0.641 ± 0.045 0.630 ± 0.055
EfficientNetB7 0.688 ± 0.057 0.678 ± 0.048 0.701 ± 0.042 0.697 ± 0.041 0.698 ± 0.057
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Table 5. Cont.

Feat. Ext. Method CW-Mean CW-Median CW-MAX CW-STD-Dev AutoEncoder

Global STD-Dev Pooling
InceptionResNetV2 0.620 ± 0.070 0.624 ± 0.046 0.572 ± 0.083 0.546 ± 0.069 0.638 ± 0.062
InceptionV3 0.634 ± 0.634 0.635 ± 0.058 0.643 ± 0.040 0.638 ± 0.040 0.639 ± 0.066
Resnet 0.677 ± 0.071 0.679 ± 0.072 0.643 ± 0.061 0.663 ± 0.058 0.641 ± 0.053
VGG16 0.654 ± 0.046 0.648 ± 0.035 0.661 ± 0.064 0.630 ± 0.051 0.628 ± 0.042
VGG19 0.644 ± 0.055 0.635 ± 0.073 0.627 ± 0.058 0.629 ± 0.056 0.638 ± 0.024
Xception 0.607 ± 0.066 0.618 ± 0.082 0.622 ± 0.077 0.606 ± 0.067 0.617 ± 0.082
DenseNet201 0.670 ± 0.049 0.664 ± 0.032 0.657 ± 0.045 0.655 ± 0.031 0.682 ± 0.045
EfficientNetB1 0.702 ± 0.051 0.701 ± 0.058 0.701 ± 0.058 0.709 ± 0.015 0.685 ± 0.075
EfficientNetB4 0.674 ± 0.041 0.655 ± 0.032 0.669 ± 0.044 0.655 ± 0.047 0.649 ± 0.026
EfficientNetB7 0.708 ± 0.041 0.706 ± 0.038 0.713 ± 0.036 0.689 ± 0.062 0.665 ± 0.040

4. Discussion

Head and neck cancer (HNC) is a worldwide health concern that demands sophis-
ticated diagnostic, prognostic, and management procedures. Recent advancements in
AI have created new opportunities to enhance HNC management through processing
different available imaging modalities [44]. AI-driven methods have been developed for
tasks such as HNC cancer identification [45,46], tumor detection [47–49], classification of
different types of HNC tumors and malignancies [50–53], automatic segmentation of HNC
tumors [54–56], and outcome prediction [49,57,58] for HNC patients.

The present study proposed a segmentation-free outcome prediction method for HNC
patients from PET/CT images. Instead of relying on manual segmentations, this work
utilizes an object detection method that is trained to find the anatomical head and neck
region of the patient on both coronal and sagittal MIPs of the patient’s CT scan. The benefit
of using such a method for automatically cropping the anatomical head and neck region is
that, compared to the time- and resource-demanding task of manual delineation of all the
tumors and involved lymph nodes, detecting the anatomical site of the primary disease is
a less time- and resource-demanding task. Defining the manual bounding boxes used in
training the object detection method does not demand an expert physician. Constraining
the entire space of the patient’s body to only the primary site of the disease has also
the advantage of helping the feature extraction methods to focus more on the relevant
information, in such a way that no delineation of the disease related uptakes on the FDG
PET will be needed.

This point also can be seen in previous works on the second round of MICCAI’s
HECKTOR challenge, where all the DICOM volumes were accompanied with 3D bounding
boxes with size of 144 × 144 × 144 voxels containing the extended oropharyngeal region
of the patients. The provided bounding boxes not only facilitated the use of 3D methods
for automatic tumor segmentation due to the high computation and memory demands of
such methods, but also made room for proposing outcome prediction methods extracting
information directly from the given bounding box, instead of relying on the segmentation
masks of the primary tumors, which resulted in the first and second best performing meth-
ods for the outcome prediction task [59,60] outperforming methods relying on predicting
the segmentation masks of the primary tumors. It is worth noting that thanks to the recent
success of methods such as TotalSegmentator [61], training an object detection network to
crop the region is not necessarily needed. Instead, targeting the bones used in this work
for defining the anatomical head and neck site (Section 2.3) one can use the segmentation
masks of TotalSegmentator and use it to crop the ROI.

Beside using a bounding box of the entire disease site for extracting information
(rather than manual delineations of the tumors/lymph nodes), in the present study, instead
of extracting image features from the voxels of the 3D volumes of interest, or pixels of
trans-axial slices of the 3D volume, feature extraction was performed on multiple maximum
intensity projections of the VOI from different trans-axial angels. MIP projections from
multiple axial angles can potentially enhance the representation of the malignancies (tumor
and involved lymph nodes) and capture a broader view of its metabolic activity, while
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this information could be lost in common radiomics workflows. We have experienced the
effect of enhanced representation of the malignancies in previous works for detection and
segmentation of small metastatic lesions of biochemically recurrent prostate cancer [30,31].
The present work follows the idea of using multi-angle PET MIPs in cancer diagnosis tasks,
but here specifically for the task of outcome prediction.

MIPs have been used in the literature for the task of outcome prediction. FDG PET
coronal and sagittal MIPs were used in [62] for calculating two surrogate features to be
replaced by their 3D equivalents, TMTV and Dmax, which were shown to be highly
predictive in lymphoma cancer management. In [63], a CNN network was trained on
MIP projections of FDG PET scans to predict the probability of 2-year time-to-progression
(TTP). However both mentioned works used only the coronal and sagittal MIPs compared
to 72 multi-angle MIPs in our work. In [62], MIPs were used indirectly as a means for
estimating volumetric-based biomarkers through defining surrogate biomarkers, while
our proposed method uses the information extracted from the MA-MIPs directly for the
task of outcome prediction. Moreover, efforts in both [62,63] were either explicitly or
implicitly aware of tumor segmentation masks, while our proposed method is completely
segmentation-free.

Beyond the aim of our work in proposing a segmentation-free approach for HNC
outcome prediction, there is a body of research on segmentation-free methods but for other
aims. For instance, ref. [64] proposed a segmentation-free method for directly estimating
the tumor volume and total amount of metabolic activity from patient PET images, which
are two important imaging biomarkers in disease management and survival analysis of the
patients. However, our present work bypasses the step of estimating the aforementioned
biomarkers and directly predicts the outcome of the patients.

One of the main benefits of the proposed method in this work is the use of pre-
trained CNN backbones with frozen weights for feature extraction. This property has
multiple benefits. Firstly, using the pre-trained CNN backbones with frozen weights and
without fine-tuning on the target dataset, makes the outcome prediction pipeline highly
reproducible. This property is perfectly aligned with efforts such as the Image Biomarker
Standardization Initiative (IBSI) for standardising the extraction of image biomarkers for
high-throughput quantitative image analysis (radiomics) [65]. Moreover, it can also be
beneficial in terms of computational resources.

Using the pre-trained CNN backbones as a pure transfer learning method, without
the need for training on the target domain dataset, will make the outcome prediction
pipeline highly portable, without need of high-end computational resources like GPUs.
This helps the proposed methods be more generalizeable from limited training data and
thus applicable in the clinic, using limited computational resources or embedded/edge
devices. In any case, we plan to also study fine-tuning of the CNN backbones before feature
extraction to evaluate the effect of domain adaptation on the target dataset on the task of
outcome prediction.

Despite the promising results in our study, certain limitations exist that need to be
addressed in future work: First, to better assess the generalizability of our proposed
method, our experiments could benefit from an investigation of an external validation
set. Secondly, given our inability to have access to the MICCAI HECKTOR challenge’s
test set, we were unable to undertake a more extensive assessment against the baseline
and all other competing approaches. This limits our ability to explicitly demonstrate the
superiority of our suggested strategy over other solutions to the problem. Finally, while
our deep learning-based feature extraction method has shown to be predictive, it still lacks
explainability. Understanding the clinical or biological interpretation of these traits remains
a challenge. Future research should be conducted on establishing tools for explainable
AI and to confirm their importance in the context of head and neck cancer prognosis.
Addressing these limitations in future investigations can help pave the way to clinical
deployment of our proposed segmentation-free strategy.
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5. Conclusions

We successfully developed an easy-to-perform segmentation-free outcome prediction
method, specifically for predicting progression-free survival of head and neck cancer
patients from their FDG PET-CT image volumes. We found that by using multiple rotation
maximum-intensity projections of the PET images, and focusing the anatomical head and
neck region guided by CT scan images of the patients, outcome prediction is not only
feasible, but is also able to outperform conventional methods, without the need of manual
segmentation of the primary tumors or the involved/metastatic lymph nodes by the expert
nuclear medicine physicians.

Our proposed approach produced promising results; the top-performing configuration
employed global average pooling, channel-wise maximum feature fusion method, and
EfficientNet Large as the deep feature extractor, yielding a mean concordance index (c-
index) of 0.719 ± 0.032 over five test folds. On the HECKTOR 2022 challenge dataset, our
proposed approach performed better than the previous best performing method in the
literature, with a mean c-index of 0.688. Additionally, the proposed segmentation-free
method proved to be robust in a variety of configurations, employing several feature
extractors, poolings, and feature fusion combinations that produced c-index values greater
than 0.70.

The performance of our segmentation-free framework suggests higher reproducibility,
by removing the subjectivity involved in the manual tumor delineation process, while
simultaneously increasing the efficiency of the outcome prediction process. This approach
has the potential to lead to better treatment planning and patient care by streamlining
clinical procedures and providing more reliable prognostic information for patients with
head and neck cancer.
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The following abbreviations are used in this manuscript:

FDG Fluorodeoxyglucose
PET Positron Emission Tomography
HNC Head and Neck Cancer
SUV Standard Uptake Value
ICA independent component analysis
MA-MIP multi-angle maximum intensity projection
ROI Region Of Interest
VOI Volume Of Interest
HPV human papillomavirus
RFS Recurrence-free survival
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TTP time-to-progression
MTV Metabolic Tumor Volume
TLG Total Lesion Glycolysis
C-index Concordance Index
IBSI Image Biomarker Standardization Initiative
CW Channel-Wise
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