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Abstract: Objectives: This study aimed to use deep learning to identify glaucoma and normal
eyes in groups with high myopia using fundus photographs. Methods: Patients who visited Tri-
Services General Hospital from 1 November 2018 to 31 October 2022 were retrospectively reviewed.
Patients with high myopia (spherical equivalent refraction of ≤−6.0 D) were included in the current
analysis. Meanwhile, patients with pathological myopia were excluded. The participants were then
divided into the high myopia group and high myopia glaucoma group. We used two classification
models with the convolutional block attention module (CBAM), an attention mechanism module
that enhances the performance of convolutional neural networks (CNNs), to investigate glaucoma
cases. The learning data of this experiment were evaluated through fivefold cross-validation. The
images were categorized into training, validation, and test sets in a ratio of 6:2:2. Grad-CAM visual
visualization improved the interpretability of the CNN results. The performance indicators for
evaluating the model include the area under the receiver operating characteristic curve (AUC),
sensitivity, and specificity. Results: A total of 3088 fundus photographs were used for the deep-
learning model, including 1540 and 1548 fundus photographs for the high myopia glaucoma and
high myopia groups, respectively. The average refractive power of the high myopia glaucoma group
and the high myopia group were −8.83 ± 2.9 D and −8.73 ± 2.6 D, respectively (p = 0.30). Based
on a fivefold cross-validation assessment, the ConvNeXt_Base+CBAM architecture had the best
performance, with an AUC of 0.894, accuracy of 82.16%, sensitivity of 81.04%, specificity of 83.27%,
and F1 score of 81.92%. Conclusions: Glaucoma in individuals with high myopia was identified from
their fundus photographs.

Keywords: glaucoma; myopia; artificial intelligence; fundus photographs

1. Introduction

In recent years, the prevalence of myopia has increased rapidly particularly in East
and Southeast Asian countries, such as Singapore, China, Taiwan, Hong Kong, Japan, and
South Korea [1]. Based on surveys, since 2015 [2], approximately 1.406 billion people (22.9%
of the total population) globally can develop myopia. Further, approximately 163 million
people (2.7% of the total population) have high myopia (spherical equivalent refraction
[SER] of <−5.0 D). According to the development trend of high myopia, considering
environmental and lifestyle changes, the incidence of high myopia worldwide can reach
approximately 10% by 2050. Thus, it is a public health issue that cannot be ignored.
Glaucoma is a progressive optic neuropathy [3]. Injured optic nerve causing visual field loss
is commonly irreversible [4,5]. Globally, >76 million people are diagnosed with glaucoma,
which reduces the quality of life, impairs vision, and has an increasing incidence [6,7].
The severity of visual field defects will further increase with age [8,9]. Patients with
glaucoma require long-term treatment and examination to avoid continued degradation
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and loss of visual field. Myopia is an important risk factor for glaucoma. The risk of
developing glaucoma increases alongside myopia severity [10,11]. A meta-analysis study
by Ahnul Ha et al. included seven studies reporting risk estimates for high myopia and
revealed that the pooled odds ratio for developing glaucoma was 4.142 (95% confidence
interval [CI]: 2.567–6.685) [12]. As the population of individuals with high myopia increases,
it is extremely important to accurately diagnose glaucoma. However, clinicians often
encounter challenges when diagnosing patients with glaucoma who present with high
myopia. This is caused by the structure and function similarities between glaucoma and
myopia [13].

Axial elongation because of high myopia changes the retinal structure and function,
including morphology similar to that seen in patients with glaucoma, such as disc size,
shape, neuroretinal rim shape, and pallor [14,15]. As high myopia worsens, the axial length
of the eye elongates, and the optic disc stretches horizontally into an oval shape on fundus
photography. Further, the condition may cause sagittal rotation of the optic disc, which
is referred to as “tilted disc”. The normal optic disc shape and glaucoma are vertically
elliptical. The cup-to-disc ratio in nonglaucoma high myopia is approximately 1.5 times
higher than that without myopia [16]. However, previous research has shown that the
optic disc size is not an important risk factor for the development of glaucoma [17]. In
myopia, the height between the neuroretinal edge and the base of the optic cup is reduced
by flattening the optic cup. Simultaneously, the Bruch’s membrane opening expands, and
the retinal edge becomes thinner. The neuroretinal edge loss in glaucoma progresses as
inferotemporal, supratemporal, infranasal, and supranasal as the disease progresses [18–20].
High myopic glaucoma is more difficult to diagnose because of the abnormal shape of
the optic retinal edge, which no longer conforms to the inferior–superior–nasal–temporal
rule [21,22]. High myopia and glaucoma cause thinning of the retinal nerve fiber layer.
High myopia is mainly caused by the excessive elongation of the eyeball, and RNFL
thinning is mainly observed in the superior and inferior temporal regions. Meanwhile,
glaucoma is attributed to optic nerve damage caused by increased intraocular pressure.
Further, the thickness of the RNFL and ganglion cell complex decreases significantly over
time [23,24]. According to the progression of visual field defects in myopia and glaucoma,
non-myopic glaucoma usually manifests as Bjerrum area defects and nasal steps in the
early stage. Further, central visual field defects develop over time. In the early stage of
myopic glaucoma, central or paracentral darkening is more common [25]. High myopia
can be interpreted as false-positive glaucoma when diagnosing glaucoma [26,27]. Fundus
photography, optical coherence tomography (OCT) is usually required to compare the
results of long-term tracking changes with those of visual field examination. Therefore,
diagnosing glaucoma in highly myopic eyes is difficult.

In recent years, artificial intelligence has made significant progress in the field of
medical imaging. In particular, the application of convolutional neural networks (CNNs)
is extremely suitable for processing spatial patterns and performing tasks, such as image
classification and object detection, thereby promoting the development of deep-learning
technology for image classification and pattern recognition [28]. Deep-learning algorithms
require a large amount of data for training, which is particularly challenging when clinical
data are limited. At this point, transfer learning can often leverage models pretrained
on the dataset, thereby reducing training time and improving performance [29]. Several
ophthalmologic diseases, such as diabetic retinopathy [30], glaucoma [31,32], macular
degeneration [33], and myopia [34], have been evaluated via artificial intelligence medical
imaging. The artificial intelligence-assisted diagnosis of glaucoma mainly involves ana-
lyzing OCT, visual field test results, and fundus photography. Fundus photography has
significant advantages in related applications as they are accessible, have a high quality,
and are cost-effective [35].

In the study by Li et al. [36], ophthalmologists classified 48,116 fundus photographs.
Glaucoma was defined as a vertical cup-to-disc ratio of ≥0.7. In the Inception-v3 ar-
chitecture, the AUC was 0.986, the accuracy was 92.9%, the sensitivity was 95.6%, and
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the specificity was 92.0%. In the study by Kim et al. [37], 747 myopic healthy eyes and
1860 myopic glaucoma eyes were included, using macular vertical OCT to evaluate the
glaucoma diagnostic ability of patients with high myopia. In the EfficientNet architecture,
the external test dataset showed an AUC of 0.984 using macular vertical OCT scans and
an AUC of 0.983 using individual data combinations. Asaoka et al. analyzed the visual
field of the first diagnosis of evident glaucoma and the visual field of healthy people. Deep
learning can be used to predict the development trend of glaucoma and achieve good
outcomes (AUC: 92.6%) [38]. Regarding fundus photography medical imaging detection of
glaucoma, previous studies focused more on the cutting of the optic disc and the structure
of the optic nerve head, although they all have excellent performance [38–42]. However,
fundus photos with a viewing angle of 45◦ are not always used, and other signs in the eye
map may be ignored.

Previous deep-learning studies have used non-highly myopic or OCT parameters for
deep learning, or overly focused on the optic nerve head structure. Moreover, currently, no
study has utilized fundus photos for evaluating high myopia glaucoma. Herein, several
novel issues were explored. First, this is the study to specifically use fundus photographs
for detecting glaucoma in patients with high myopia. Second, we develop a deep-learning
framework incorporating convolutional block attention modules (CBAMs) to enhance the
performance of CNN glaucoma detection. Finally, the use of Grad-CAM visualization
improves the interpretability of CNN results and helps comprehend how the model makes
predictions. The use of fundus photographs can prevent issues related to the inability
to convert data between different machines such as OCT. The fundus photographs are
also available easily and are time-saving [39,40]. This study aimed to use deep learning
to detect glaucoma on the fundus photographs of individuals with high myopia. We
believe that this method can assist ophthalmologists in achieving an accurate diagnosis or
other professionals, such as optometrists, family physicians, and non-ophthalmologists, in
making early referrals.

2. Materials and Methods
2.1. Ethics, Consent, and Permissions

This study obtained ethical approval from the research ethics committee of the Tri-
Service General Hospital (TSGHIRB No. C202305105) and adhered to the principles of the
Declaration of Helsinki.

2.2. Datasets Collection

We retrospectively reviewed patients who visited Tri-Services General Hospital from
1 November 2018 to 31 October 2022. Initially, there were 35,327 patients with 126,955 fundus
photographs. All patients underwent visual acuity assessment, refractive error, and slit-lamp
biomicroscopy. All patients with high myopia underwent non-mydriatic fundus photography
(AFC-330; Nideck Co. Ltd., Gamagori, Aichi, Japan), whereas all patients with glaucoma
underwent central 24-2 threshold testing using a standard Humphrey Field Analyzer (Carl
Zeiss Meditec, Dublin, CA, USA) and optical coherence tomography (RTVue-100; Optovue
Inc., Fremont, CA, USA). OCT was used to measure optic disc cupping, circumpapillary
retinal nerve fiber layer thickness, and macular layer thickness. All clinical records were
deidentified and anonymized before analysis in this study.

The inclusion criteria for people with high myopia were (1) age of >20 years at baseline
examination and (2) SER of ≤−6.0 D [41]. SER is a measure of the refractive error of the
eye and is calculated using the following formula: spherical power + 0.5 * (cylindrical
power). This study excludes patients with pathological myopia, those who have undergone
cataract surgery, refractive surgery, diabetes, and macular degeneration, any other ocular
or systemic disease affecting the retinal nerve fiber layer, and other diseases impacting the
visual field (e.g., neuroophthalmic disease, uveitis, retinal, or choroidal disease, trauma), as
well as those with severe media opacity that interferes with fundus photography or OCT
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image acquisition. High myopia includes axial myopia and refractive myopia, and the axial
length of the eye is not used as a single inclusion criterion.

Patients with glaucoma were selected after excluding those who did not meet the
criteria. All patients with glaucoma were diagnosed after long-term follow-up by profes-
sional ophthalmologists. The inclusion criteria for patients with glaucoma were as follows:
first, changes that indicate glaucomatous optic nerve or nerve fiber layer defects, such
as increased narrowing of the neuroretinal rim (change in a sector of the neuroretinal
rim from narrow to complete loss or from a homogeneous neuroretinal rim to a narrow
sector) and a significant expansion of a retinal nerve fiber layer defect on OCT. Second,
automated visual field testing showed glaucomatous visual field progression defined using
the Anderson–Patella criteria, i.e., the Glaucoma Hemifield Test (GHT) result was outside
normal limits. There was a cluster of three or more non-edge points in the typical location
of the glaucoma, all of which were depressed on the pattern deviation plot at a p value
of <5%, with at least one of these points depressed at a p value of <1%. In addition, the
corrected pattern standard deviation was abnormal at a p value of <5%. All patients with
glaucoma are receiving antiglaucoma treatment, such as the following eye drops: beta
blockers, alpha-2 adrenergic agonists, prostaglandin analogs, and carbonic anhydrase in-
hibitors. Finally, they were categorized into high myopia and high myopia with glaucoma
groups. Different image categories are described in the Supplementary Material. Figure 1
shows the Flowchart of patient inclusion and exclusion.
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2.3. Model Building

A CNN retrieves image features for classification tasks through its deep structure,
which greatly improves the accuracy and efficiency of disease diagnosis in medical image
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classification [42]. Our study used two CNN architecture models: EfficientNet_V2-S [43],
which was proposed by Tan and Le in 2021, and ConvNeXt_Base [44], which was intro-
duced by Liu et al. in 2022. Additionally, we used transfer learning. Previous literature
has revealed that pretrained parameters improve classification capabilities more quickly.
The weights are derived from pretraining on the ImageNet visual recognition challenge
dataset [45]. The last layer of the model (the fully connected layer) is replaced, and the
output is ultimately classified into two categories. The training setup for all model archi-
tectures features a batch size of 8 across 30 epochs. Initially, the learning rate starts from
0.01 and decays by 0.3 times every 6 epochs. This configuration used the Cross-Entropy
Loss function and the AdamW [46] optimizer with a learning rate of 10−5 and weight decay
of 10−5. Additionally, it includes a StepLR scheduler with a step size of 10 and incorporates
a dropout rate of 0.2.

The CBAM (Figure 2) is used in the model to improve the performance of the CNN to
improve the accuracy of target detection and object classification. The attention mechanism
module [47] CBAM sequentially applies channel and spatial attention mechanisms to
progressively refine the attention distribution of feature maps.
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Figure 2. Convolutional neural network (CNN) and the convolutional block attention module
(CBAM) attention mechanism. The image is input after preprocessing. Different CNN architectures
were replaced.

The channel attention mechanism assigns a weight to each channel, emphasizing
important channels and suppressing less important ones. This is expressed as follows:

Mc(F) = σ(MLP(AvgPool (F)) + MLP(MaxPool(F)) (1)

F denotes the input feature map. AvgPool and MaxPool indicate the average and
max pooling operations across the channel dimension, which capture the channels’ global
statistical information. MLP stands for multilayer perceptron. The symbol σ signifies the
sigmoid activation function, which produces the channel attention weights Mc.

The spatial attention mechanism emphasizes important spatial regions within the
feature maps. This is expressed as follows:

Ms(F) = σ
(

f 7×7 ([AvgPool(F); MaxPool(F)])
)

(2)
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F indicates the input feature map. First, the feature map independently undergoes
average and max pooling across each channel, followed by stacking the two pooling results
along the channel dimension. f 7×7 represents a convolution operation with a 7 × 7 kernel,
capturing contextual information in the spatial domain. Finally, the sigmoid function σ
generates the spatial attention weights Ms.

2.4. Image Preprocessing

We evaluated the learning data for this experiment through fivefold cross-validation.
The dataset is randomly divided into five equal subset sizes in the fivefold cross-validation,
and the images are categorized into training, validation, and test sets in a ratio of 6:2:2
(Figure 3). Fundus photographs of each patient are not repeated. Each image will appear in
only one of the subsets and will not be repeated. In particular, it only exists in the training
set, but not in the validation or test sets. The image was resized to 3 × 224 × 224 and
augmented with data, including horizontal flipping and random rotation within 20◦. The
execution system uses an Intel Core i7-11370H 3.3 GHz (TSMC, Hisnchu, Taiwan) processor
with 40 GB memory and an NVIDIA GeForce RTX-3070 with 8 GB DDR6 (Asus, Taipei,
Taiwan) distinct graphics card. The implementation of the deep neural network is based on
the PyTorch platform version 2.1.0+cu121.
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2.5. Visualization of the Imaging Features

Heatmap visualization using Grad-CAM [48] improves the comprehensibility of CNN
outcomes. Every image produces heat maps that highlight the areas of focus for the deep-
learning model. This method involves calculating the derivative of the CNN architecture’s
final convolutional layer output relative to each pixel of the input image. Pixels in the
image with a higher influence appear nearer to the red spectrum on the heatmap, whereas
those with a lesser influence are aligned closer to the blue spectrum.

2.6. Statistical Methods

Statistical Package for the Social Sciences version 22.0 (Chicago, IL, USA) was used for
statistical analyses. Demographic comparisons between patients with high myopia group
and those with high myopia glaucoma group were performed using independent t-tests or
chi-square tests. p values of 0.05 were considered statistically significant. The metrics used
to assess the model’s efficacy encompass the area under the curve (AUC) of the receiver
operating characteristic (ROC), accuracy, sensitivity, specificity, and F1 score. The ROC
curve depicts the balance between sensitivity and the complement of the false positive
rate (1—specificity). The AUC under the ROC curve was computed. An AUC value of 1.0
signifies flawless differentiation, whereas a value of 0.5 indicates discrimination equivalent
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to random chance. Accuracy is a metric that measures the proportion of correctly predicted
instances among the total instances in a classification model. The F1 score is a metric that
combines precision and sensitivity to evaluate the performance of a classification model,
with values ranging from 0 to 1, where a higher score indicates a better model performance.
The results of the fivefold cross-validation are averaged to assess generalizability.

3. Results

This study initially included 35,327 patients with 126,955 fundus photographs and
16,423 images with high myopia. After excluding patients who did not meet the conditions
(n = 12,913) and those with poor image quality (n = 422), 1637 met the criteria. In total, there
were 3088 fundus images, including those of 796 patients in the high myopia glaucoma
group, with 1540 fundus images. Women accounted for 48.77% and 59.04% in the high
myopia glaucoma and high myopia groups, respectively, in terms of gender (p < 0.001).
The average age was 47.6 ± 12.0 and 46.4 ± 14.2 (p = 0.01). The average diopter was
−8.83 ± 2.9 D and −8.73 ± 2.6 D (p = 0.30) (Table 1). The OCT parameters of the high
myopia glaucoma group were as follows: average RNFL, 78.17 ± 15.2 µm; rim area,
0.9 ± 1.4 mm2; disc area, 2.20 ± 2.9 mm2; cup volume, 0.38 ± 0.38 mm3; and average
C/D area ratio, 0.71 ± 3.2. The VF parameters of the high myopia glaucoma group were
as follows: average MD, −6.15 ± 7.5 dB and average VFI, 84.88% ± 22.6% (Table 1).
Table 2 shows the number of images in the training, validation, and test sets in the fivefold
cross-validation.

Table 1. Baseline demographics and clinical characteristics.

Variables HM Glaucoma HM p Value

Patient 796 841 -
Eye (n) 1540 1548 -

Age (year) 47.6 ± 12.0 46.4 ± 14.2 0.01
Female (%) 48.77 59.04 <0.001
SE (diopter) −8.83 ± 2.9 −8.73 ± 2.6 0.30

OCT parameters
Average RNFL (um) 78.17 ± 15.2 - -

Rim area (mm2) 0.9 ± 1.4 - -
Disc area (mm2) 2.20 ± 2.9 - -

Cup volume (mm3) 0.38 ± 0.38 - -
Average C/D area ratio 0.71 ± 3.2 - -

VF parameters
Average MD (dB) −6.15 ± 7.5 - -
Average VFI (%) 84.88 ± 22.6 - -

RNFL: retinal nerve fiber layer; VF: visual field; VFI: visual field index; C/D: cup/disc. All data are presented as
mean ± standard deviation, unless otherwise stated. Statistically significant values are denoted in bold.

Table 2. Fivefold cross-validation data distribution.

Train Validation Test

HMG HM HMG HM HMG HM

Fold-1 924 930 308 309 308 309

Fold-2 924 930 308 309 308 309

Fold-3 924 930 308 309 308 309

Fold-4 924 927 308 312 308 309

Fold-5 924 927 308 309 308 312
HMG: high myopia glaucoma; HM: high myopia.

Table 3 presents the classification performance of the various learning networks.
The two different model architectures, EfficientNet_V2-S and ConvNeXt_Base, demon-
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strated AUCs of 0.86 and 0.870, accuracy of 79.34% and 78.85%, sensitivities of 79.22%
and 74.67%, and specificities of 79.46% and 83.01%, F1 score of 79.27% and 77.89%, respec-
tively. The results of using CBAM in the model architecture (EfficientNet_V2-S+CBAM
and ConvNeXt_Base+CBAM) indicated AUCs of 0.885 and 0.894, accuracy of 81.38% and
82.16%, sensitivities of 76.56% and 81.04%, and specificities of 86.18% and 83.27%, F1
score of 80.40% and 81.92%, respectively. The results after using CBAM in the model
architecture and adding patient characteristics (EfficientNet_V2-S+CBAM+Meta and Con-
vNeXt_Base+CBAM+Meta) showed AUCs of 0.879 and 0.893, accuracy of 80.38% and
81.77%, sensitivities of 77.62% and 77.60%, and specificities of 84.11% and 85.95%, F1 score
of 79.57% and 80.93%, respectively. Figure 4 illustrates the ROC curves and AUC values of
various learning networks.

Table 3. Classification performance of convolutional neural networks.

Model AUC Accuracy Sensitivity Specificity F1 Score

EfficientNet_V2-S 0.861 79.34% 79.22% 79.46% 79.27%
ConvNeXt_Base 0.870 78.85% 74.67% 83.01% 77.89%

EfficientNet_V2-S+CBAM 0.885 81.38% 76.56% 86.18% 80.40%
ConvNeXt_Base+CBAM 0.894 82.16% 81.04% 83.27% 81.92%

EfficientNet_V2-S+CBAM+Meta 0.879 80.38% 76.62% 84.11% 79.57%
ConvNeXt_Base+CBAM+Meta 0.893 81.77% 77.60% 85.92% 80.93%

Meta, gender, age, and diopter.
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Figure 5 shows the confusion matrix of each classifier under different CNN architec-
tures. The confusion matrices of EfficientNet_V2-S and ConvNeXt_Base were as follows:
TP = 1220, 1150 images; FN = 320, 390 images; FP = 318, 263 images; and TN = 1230,
1285 images, respectively. The confusion matrices of EfficientNet_V2-S+CBAM and Con-
vNeXt_Base+CBAM were as follows: TP = 1179, 1248 images; FN = 361, 292 images;
FP = 214, 259 images; and TN = 1334, 1289 images, respectively. The coefficient matrices
of EfficientNet_V2-S+CBAM+Meta and ConvNeXt_Base+CBAM+Meta were as follows:
TP = 1180, 1195 images; FN = 360, 345 images; FP = 246, 218 images; and TN = 1302,
1330 images, respectively. Figure 6 shows the visual image heat map under the Con-
vNeXt_Base+CBAM architecture. The upper row (a, b) shows high myopia and the lower
row (c, d) exhibits high myopia glaucoma.
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Figure 6. (a–d) Visual image heat maps. (a) Highly myopic left eye: diopter = −8.00 D, average RNFL 
= 105 um, average C/D area ratio = 0.34, average MD = 0.78 dB, and normal GHT. (b) Highly myopic 
right eye: diopter = −8.50 D, average RNFL = 101 um, average C/D area ratio = 0.41, average MD = 
1.32 dB, and normal GHT. (c) High myopic glaucoma in the right eye: diopter = −10.25 D, average 
RNFL = 81 um, average C/D area ratio = 0.56, average MD = −2.50 dB, and GHT outside the normal 
limits. (d) High myopic glaucoma in the right eye: diopter = −7.00 D, average RNFL = 76 um, average 
C/D area ratio = 0.36, average MD = −2.21 dB, and GHT outside normal limits. 
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in the EfficientNet_V2-S+CBAM and ConvNeXt_Base+CBAM models, respectively, indi-
cating that CBAM improves model accuracy and exhibits good performance, which is 
consistent with previous research results [47]. EfficientNet_V2-S+CBAM+Meta and Con-
vNeXt_Base+CBAM+Meta added with more patient characteristics, including gender, 
age, and diopter, demonstrated AUC values of 0.879 and 0.893, respectively. Surprisingly, 
model performance decreased after adding patient characteristics. A significant difference 
in the male-to-female ratio was found between the high myopia group and the high my-
opia glaucoma group (p < 0.001), but the model performance did not improve after adding 
gender characteristics, and it did not affect the model performance in this study. 
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Figure 6. (a–d) Visual image heat maps. (a) Highly myopic left eye: diopter = −8.00 D, average
RNFL = 105 µm, average C/D area ratio = 0.34, average MD = 0.78 dB, and normal GHT. (b) Highly
myopic right eye: diopter = −8.50 D, average RNFL = 101 µm, average C/D area ratio = 0.41, average
MD = 1.32 dB, and normal GHT. (c) High myopic glaucoma in the right eye: diopter = −10.25 D,
average RNFL = 81 µm, average C/D area ratio = 0.56, average MD = −2.50 dB, and GHT outside the
normal limits. (d) High myopic glaucoma in the right eye: diopter = −7.00 D, average RNFL = 76 µm,
average C/D area ratio = 0.36, average MD = −2.21 dB, and GHT outside normal limits.
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4. Discussion

This study investigates glaucoma through fundus photographs of highly myopic indi-
viduals and reveals good results in CNN deep learning. Glaucoma is the second leading
cause of blindness globally after cataracts [49,50]. Screening for glaucoma is essential.
OCT and visual field examination require ample time; thus, our study uses deep learning
to provide a simple way to screen for glaucoma. This study indicates two differences.
First, the use of fivefold cross-validation does not only use the model performance val-
idation for a single test set, so the generalization ability and reliability of the model can
be effectively improved during the training process. Second, we placed the CBAM be-
hind the image input layer and in front of the fully connected layer, two positions used
to enhance features. EfficientNet_V2-S and ConvNeXt_Base use ImageNet pretrained
weights, with AUCs of 0.861 and 0.870, respectively. Table 3 shows that ConvNeXt_Base
demonstrated a better performance. The use of CBAM demonstrated the AUC values of
0.885 and 0.894 in the EfficientNet_V2-S+CBAM and ConvNeXt_Base+CBAM models, re-
spectively, indicating that CBAM improves model accuracy and exhibits good performance,
which is consistent with previous research results [47]. EfficientNet_V2-S+CBAM+Meta
and ConvNeXt_Base+CBAM+Meta added with more patient characteristics, including
gender, age, and diopter, demonstrated AUC values of 0.879 and 0.893, respectively. Sur-
prisingly, model performance decreased after adding patient characteristics. A significant
difference in the male-to-female ratio was found between the high myopia group and the
high myopia glaucoma group (p < 0.001), but the model performance did not improve after
adding gender characteristics, and it did not affect the model performance in this study.

Although the incidence of high myopia is low, deep learning requires a large amount
of data to improve performance of the model. Hence, pretraining was used, and it was
combined with CBAM. Based on previous research [51–54], we utilized CNN models
with different architectures, such as EfficientNet_V2-S, ConvNeXt_Base, ResNet50, and
ViT_B_16. The model with a higher accuracy in ImageNet Top-1 image classification was
used as a basis for the initial training. Finally, EfficientNet_V2-S and ConvNeXt_Base,
which have a better performance, were selected as the final model architecture. Among
the models, ConvNeXt_Base+CBAM had the highest sensitivity. Thus, it can be useful
in providing assistance to professional ophthalmologists to obtain an accurate diagnosis.
However, ConvNeXt_Base+CBAM and EfficientNet_V2-S+CBAM differ, EfficientNet_V2-
S+CBAM has the best sensitivity and can assist other professionals, such as optometrists,
family physicians, and non-ophthalmologists in screening patients who may have high
myopia glaucoma.

Li et al. [36] and Cho et al. [55] included a C/D ratio of >0.7 to evaluate glaucoma and
normal eyes. The AUCs of large-scale data sets were 0.986 and 0.975, both of which had a
good performance. Previous studies have shown that a C/D ratio of >0.7 is characteristic
of glaucoma [56], which may be one of the reasons why the model can improve glaucoma
diagnosis. Among the inclusion conditions of this study, patients with high myopia and
glaucoma were not restricted to a C/D ratio of >0.7. The C/D ratio of patients with high
myopia is larger than that of people with normal eyes [14]; therefore, this is not specifically
included in the condition. Shibata et al. [54] included only 55 patients with high myopia in
a deep learning study. The images of high myopia with glaucoma can be diverse, and our
research data can be more reliable when the number of images increases. Islam et al. [57]
used four different deep-learning algorithms to diagnose glaucoma from cropped eye cup
and fundus photographs. Among them, EfficientNet_b3 had the best test results, with
an AUC score of 0.9512. In addition, satisfactory results were achieved using the U-net
model for blood vessel segmentation on the full-eye color base map. However, although
the cropped eye cup image can increase the training speed, it will sacrifice the possible sign
impact of the images around the fundus. Therefore, the use of the whole fundus in our
study can include more imaging parameters. Due to the black box effect in deep learning,
we cannot fully understand the internal mechanism of the model. However, the accuracy of
image diagnosis can be improved using the Grad-CAM technology. Further, an improved
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image quality can help improve diagnostic accuracy. In addition, we tried to verify the
results of the ConvNeXt_Base+CBAM training model with the external data REFUGE test
set. [58] The result had an AUC of 0.921, showing a certain degree of accuracy. We have
demonstrated the use of deep learning to detect high myopic glaucoma, but there is still
room for improvement. Kim et al. [37] used OCT data and combined demographic and
ophthalmic characteristics, such as age, sex, axial length, and MD, to detect high myopic
glaucoma. Therefore, a large amount of data resources and good results, with an AUC of
0.995, can be achieved. However, due to high equipment requirements, it is not easy to
quickly screen and widely promote this method in clinical practice.

The study performed a Grad-CAM visual analysis of fundus photographs. The red
areas in Figure 6a,c represent the pixels that contribute the most to the diagnostic results.
Most pixels are located in the cup/disc area and neuroretinal rim and a few are located
in the center of the macula, blood vessels, and other locations. This is consistent with the
findings of ophthalmologists check when diagnosing glaucoma. In particular, the thermal
imaging in parts of Figure 6a,b also focuses on the RNFL area. Additionally, it focuses on
the highly myopic checkerboard-shaped fundus in Figure 6b,d.

In particular, this study excluded patients with pathological myopia, as there is a close
relation between pathological myopia and glaucoma. Pathological myopia is defined as the
presence of a myopic macula that is equal to or worse than diffuse chorioretinal atrophy.
For local lesions [59], fundus features may be challenging to assess because the optic disc is
severely tilted, deformed, and the optic nerve become thin. These features are similar to the
pathological features of glaucoma, thereby making diagnosis more difficult. Future studies
should consider including this patient population to completely evaluate the efficacy of
deep-learning techniques in glaucoma diagnosis.

To the best of our knowledge, this is the first deep learning study to detect high
myopic glaucoma from a large number of fundus photographs. Diagnosing glaucoma
in ophthalmology requires multiple reference data and structural changes (intraocular
pressure, OCT data, visual field data, fundus photographs, etc.), and diagnosis is only
made after long-term observation. According to the myopia rate prediction report for
2050 [2], the incidence rate of high myopia among older adults will increase annually,
and more people will develop age-related glaucoma. Consequently, glaucoma in highly
myopic eyes will be challenging to diagnose and, currently, is a major public health issue.
Our research used deep-learning methods and the fundus photography technology to
address this difficulty. AI-assisted diagnosis can be applied in the field of ophthalmology
in the future. For example, it can help non-ophthalmologists, such as optometrists and
family physicians, make referrals or directly assist ophthalmologists in making accurate
and rapid diagnoses. Overall, our study provides a feasible option for deep learning of
fundus photographs to differentiate high myopia from glaucoma.

This study has some limitations. First, this study only included one ethnic group
of Asians, and thus results should be interpreted with caution when applied to other
ethnic groups. Second, we have not classified the degree of glaucoma. Different degrees
of glaucoma are structurally different. Third, our data included no externally verified
fundus photographs data; therefore, we cannot infer other image types, which reduce the
generalization ability of the model. Fourth, there are insufficient OCT and visual field
parameters in the high myopia group based on a medical record review. Although we have
been extremely cautious in screening, these cases may still be misclassified. It is possible
to increase sensitivity; however, glaucoma specialists should examine more eyes. Finally,
patients with pathological myopia were excluded from the study. Hence, more clinicians
will find it challenging to distinguish pathological myopia from glaucoma. Therefore,
future studies should focus on this direction.

5. Conclusions

Glaucoma in individuals with high myopia was identified from their fundus photographs.
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