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Abstract: Elevations in fructose consumption have been reported to contribute significantly to an
increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high
fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the
liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver
disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are
ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although
a large amount of work has summarized the effects fructose exposure within the intestine, liver,
and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and
directly influences immune cell recruitment, activation, and function in metabolic tissues, which
are essential to tissue and systemic inflammation. The most recent literature demonstrates that
direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation.
The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk
between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose
on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to
treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and
identifies new therapeutic targets for treating NAFLD and obesity.
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1. Introduction

Worldwide, approximately 46.9 cases of nonalcoholic fatty liver disease (NAFLD) oc-
cur among 1000 persons per year [1]. In the U.S., 47.8% of the population is diagnosed with
NAFLD, with an average of 30% developing nonalcoholic steatohepatitis (NASH) [1–5].
NAFLD encompasses many pathologies that consist of hepatic lipid accumulation, known
as hepatic steatosis, independent of alcohol consumption or other secondary causes of fatty
lipid accumulation in the liver [6–9]. Hepatic steatosis can progress to NASH, defined by
inflammation and histological evidence of liver injury [10,11]. NASH is the third most com-
mon reason for liver transplants and 5–25% of patients will progress to cirrhosis, with 13%
progressing to hepatocellular carcinoma, one of the most common causes of cancer-related
deaths [10,12–17].

The incidence of NAFLD is increasing each year and is related to several metabolic
and lifestyle factors. The increase in individuals with NAFLD is partly due to a rise in
the number of patients with Type 2 diabetes mellitus (T2DM), with more than 50–70% of
those with T2DM diagnosed with NAFLD [18–21]. NAFLD is also strongly associated
with metabolic syndrome (MetS), as obesity, insulin resistance, and hyperlipidemia are
common risk factors [22–28]. Resmetirom is the only therapy for NASH approved by the
U.S. Food and Drug Administration (FDA), but it remains to be seen if this therapy will lead
to long-term complications or side effects [29]. Therefore, it is necessary to identify new
molecular mechanisms driving the progression of NAFLD to develop effective therapies
with minimal complications.
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Diet plays a key role in the development of NAFLD. The typical Western diet, char-
acterized by excess fat and carbohydrates, mainly from sugars such as fructose, has been
shown to drive obesity and MetS [30–32]. Fructose consumption has increased over the past
40 years among adults and children [33–35]. Dietary fructose is often accompanied by other
sugars which are consumed in excess, such as glucose, sucrose, or high-fructose corn syrup
(HFCS) [36]. Sucrose, commonly known as table sugar, consists of a 50:50 ratio of fructose
to glucose, while HFCS consists of ~50–55% fructose and the remaining glucose. These
sugars are present in yogurts, fast food, and highly consumed sugar-sweetened beverages.
While fructose is often consumed in the form of sucrose, both sucrose and HFCS can elevate
levels of triglycerides, free fatty acids, and insulin release after consumption [37–39].

Fructose metabolism is dependent on the breakdown of adenosine triphosphate (ATP),
generating adenosine monophosphate (AMP) which leads to increased uric acid produc-
tion [40,41]. Zheng et al. recently reported that elevated fructose-to-vitamin C ratios
are positively associated with increased serum uric acid levels among African American
men [42]. Hyperuricemia and high consumption of fructose also are strongly correlated
with the incidence of NAFLD and cardiovascular disease [43–47]. Elevated serum levels
of uric acid are strong predictors of NAFLD among obese adults [48]. Due to the harmful
effects of increased consumption of sucrose or HFCS on human health, it is imperative to
fully distinguish the unique effects of fructose on the development of metabolic disease.

The current dogma regarding fructose metabolism and metabolic disease suggests
hepatocytes and enterocytes metabolize fructose, altering glucose and lipid metabolism.
In addition, intestinal microbiomes exposed to high concentrations of fructose produce
metabolites that contribute to progression of NAFLD. However, there are a number of
other cell types exposed to high concentrations of fructose, including immune cells, that
interact with parenchymal cells in metabolic tissues to control homeostasis. Myeloid cells
and lymphocytes are specifically known to contribute to inflammation and fibrosis in
metabolic tissues. However, a knowledge gap remains in our understanding of the role
of fructose metabolism in immune cells when exposed to an excess of fructose and the
pathogenesis of metabolic diseases, such as NAFLD. The present review highlights the
current literature regarding how fructose regulates inflammation in metabolic tissues, the
implications of fructose metabolism on immune cell phenotypes, and therapeutic targets of
fructose metabolism.

2. Fructose Metabolism and Metabolic Tissues
2.1. Overview of Fructose Metabolism

In healthy adults, normal resting levels of fructose within peripheral blood are 0.04
mM. However, following fructose consumption, peripheral blood levels can increase to
0.4 mM [49,50]. In the small intestine, polysaccharides are broken down into monomeric
forms of glucose, fructose, and galactose. Fructose is taken up into the intestine by glucose
transporters (GLUT) 2 and 5. The process of fructose transport is passive and insulin-
independent, unlike glucose. The knockout of GLUT5 in mouse models leads to a 75%
reduction in fructose absorption in the intestine, highlighting its importance in fructose
metabolism [51]. GLUT5 is developmentally regulated, with GLUT5 gene expression
significantly lower in fetal intestines than in adults [52]. The consumption of fructose
by toddlers leads to cases of malabsorption and early-onset weight gain [53,54]. GLUT5
also is expressed in tissues such as brain, kidney, and skeletal muscle and certain types of
cancers [55–58]. Human monocytes express GLUT5, which increases during macrophage
differentiation and foam cell development [59,60]. It is possible that with increased levels
of fructose consumption, traditionally non-metabolizing fructose cells become subject to
fructose-mediated cell plasticity.

Once taken up into the cells, ketohexokinase C (KHK) phosphorylates fructose. The
KHK gene encodes two isotopes, KHKC and KHKA. KHKC is primarily expressed in
humans and mice in the liver, kidney, and jejunum, with low expression levels in the
pancreas and white adipose tissue [61]. KHKA is ubiquitously expressed and has a slower
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enzymatic rate compared with KHKC, with the Km values being 0.8 mmol/L and 7 mmol/L
for fructose, respectively. Although both isoforms can phosphorylate fructose, the majority
of fructose uptake and metabolism is mediated by KHKC in the intestine and liver [62].
Pharmacological inhibition and global knockdown of both isoforms of KHK reduce fructose
caloric intake, leading to reductions in body weight, adipose tissue expansion, hepatic
lipid accumulation, liver injury, and fibrosis [63,64]. Knockdown of KHK in epithelial
cells of the small and large intestines in mice leads to reductions in fructose caloric intake,
but does not affect chronic fructose-induced lipid accumulation in adipose tissues or the
liver [62]. In contrast, hepatocytes were found to be the primary cells responsible for
driving fructose-induced MetS. Interestingly, during the development of hepatocellular
carcinoma and breast cancer, there is a switch from KHKC to KHKA activity, leading to
the phosphorylation of phosphoribosyl pyrophosphate synthetase 1, driving nucleotide
synthesis [65,66].

Transcriptional regulation of KHK modulates fructose metabolism and mitigates its
effects on intestinal and hepatic lipogenesis and inflammation. Carbohydrate regulatory
element binding protein (ChREBP) is the master transcription factor of KHK. Recently, hy-
poxia inducible-factors alpha-2a (HIF-2α) was discovered to inhibit fructose metabolism by
reducing KHK isoforms and aldolase B expression in hepatocytes. In addition, peroxisomal
biogenesis factor 2 (PEX2), a peroxisomal membrane protein necessary for peroxisome
biogenesis, was also found to control KHK expression in the liver [67]. Fructose metabolism
also involves the enzyme hexokinase (HK) [61]. HK phosphorylates fructose to form
fructose-6-phosphate, using ATP as a phosphate donor. The HK family is a group of
enzymes, including HK I, II, III, and IV which are expressed in liver, while HK I and II
are present in adipose tissue [61]. The interplay between fructose and HK is complex, and
alterations in fructose metabolism can have implications for metabolic health, including
conditions such as NAFLD and MetS.

Unlike HK, the metabolism of fructose by KHK has no regulating feedback loop, thus
allowing for the rapid conversion of fructose. Within the intestine, fructose is converted
to glucose, glycerate, and tricarboxylic acid cycle (TCA) metabolites, which are then re-
leased into the blood. Although the intestine can metabolize low levels of fructose, it can
become overly saturated, and excess fructose is transported through the portal vein and
metabolized in the liver [68]. GLUT8 is responsible for fructose uptake in hepatocytes
and stellate cells, de novo lipogenesis (DNL), and hepatic inflammation [69,70]. Knock-
down of GLUT8 in hepatocytes attenuates DNL and inflammation while increasing fatty
acid oxidation, lipolysis, and inflammation in stellate cells. GLUT2 also is expressed
on hepatocytes and is capable of fructose uptake with a Km ~67 mM [71]. Following
entry into a cell, fructose is further metabolized by KHK and aldolase B [72]. KHK phos-
phorylates fructose to fructose-1-phosphate. Fructose-1-phosphate is then converted to
dihydroxyacetone phosphate and glyceraldehyde by aldolase B, which is further converted
to glyceraldehyde-3-phosphate [73]. Triose kinase expressed in hepatocytes is the enzyme
responsible for converting glyceraldehyde to glyceraldehyde-3-phosphate and directs
fructose metabolites into lipogenesis, gluconeogenesis, and triglyceride accumulation in
hepatocytes [73]. Although fructose is primarily shuttled through the portal vein, it is
projected that 20–30% of ingested fructose may enter systemic circulation, where it can
be deposited into other tissues, including the proximal tubes within the kidney [74]. In
addition, fructose is also metabolized by immune cell populations in tissues and periph-
eral circulation [75,76]. Microglia, the resident macrophages in the brain, also express
GLUT5 and KHK and metabolize fructose to drive cognitive dysfunction and influence
the progression of metabolic diseases [77]. Ultimately, the concentration and frequency of
consumption of dietary fructose determines the metabolic fate of these carbohydrates in
metabolic tissues [68].

Endogenous fructose production depends on the isomerization of glucose, mannose,
or xylose in bacteria and yeast [62,78]. In humans and other mammals, fructose can be
endogenously produced by the polyol pathway, which converts glucose into sorbitol using
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aldose reductase and fructose using sorbitol dehydrogenase [79]. Under hyperglycemic
conditions, fructose is generated through the polyol pathway to increase KHKA activity in
cancer cells, promoting metastasis [80]. Interestingly, the activation of the polyol pathway
in the liver and the intestine are positively associated with complications of diabetes and
the progression of NAFLD [81–83].

2.2. Fructose and Intestine

Under normal intestinal conditions, fructose has the same metabolic fate in the form
of sucrose or fructose alone [13,68]. Fructose carbons are rapidly converted to glucose,
glycerate, and TCA metabolites within enterocytes, the primary cell type within the intes-
tine. These byproducts are typically shuttled through the portal vein to the liver for further
processing and metabolism. In enterocytes, fructose is converted to fructose-1-phosphate by
KHK (Figure 1). Elevated intracellular levels of fructose-1-phosphate can be toxic, leading
to endoplasmic reticulum stress and inflammation, which is reported to induce barrier
deterioration and shorten colon length [84]. Taylor et al. discovered that fructose promotes
hypoxic cell survival via extended villi length, partly through fructose-1-phosphate inhi-
bition of the hypoxic adaptation protein pyruvate kinase isozyme M2 (PKM2) [85]. The
extension of the length of the villi increased weight gain, nutritional absorption, and fat
accumulation. High levels of fructose lead to a misshapen colon and cecum as well as
infiltration of inflammatory macrophages, neutrophils, dendritic cells, and natural killer T
cells into the lamina propria. These cells express the inflammatory cytokines interleukin
1 beta (IL-1β), interleukin 2 (IL-2), and interleukin 6 (IL-6) within the small intestine of
mice [86,87]. In addition, cecal metabolites such as prostaglandin B1 and I2, which are
important for regulating blood pressure, inflammation, and fibrosis, are elevated in male
mice on a fructose diet [88]. Although fructose metabolism begins within the small intestine
at low doses, it can bypass initial metabolism at higher doses and be shuttled through the
portal vein for further processing [89].

Biomolecules 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 
Figure 1. Direct and indirect effects of fructose in metabolic tissues. Fructose exposure can lead to 
recruitment of immune cells to metabolic tissues such as intestine, liver, and adipose. This recruit-
ment leads to increased secretion of pro-inflammatory cytokines, aiding in cell-to-cell signaling. 
Fructose activates adipogenesis via upregulation of proteins involved in differentiation, monocyte 
and macrophage polarization, and cytokine secretion. 

2.3. Fructose and Liver 
Over the last decade, studies have linked monosaccharide fructose to the progression 

of NAFLD, as fructose consumption has increased from the recommended 5% of daily 
energy intake to 17% within sugar-sweetened beverages alone, correlating with the rise in 
obesity-related diseases [101]. As high doses of fructose saturate intestinal metabolism, 
the remaining fructose is metabolized in the liver (Figure 1). The metabolism of fructose 
produces triose phosphates that form acetyl-CoA, the essential building block for fatty 
acid synthesis. Fructose metabolism stimulates DNL through triose phosphate-activated 
fatty acid synthesis and transcriptional regulation of enzymes involved in DNL. Softic et 
al. demonstrate that male mice consuming fructose-sweetened water in the presence of a 
high-fat diet exhibited increased fatty acid synthesis and hepatic insulin resistance com-
pared with glucose-sweetened water in a process dependent on KHK [102]. Fructose sup-
plementation increases the levels of the transcription factors sterol regulatory element 
binding protein 1 (SREBP-1) and ChREBP, as well as the downstream targets acetyl-CoA 
carboxylase (ACC), fatty acid synthase (FAS), and the fatty acid transporter CD36 [103]. 
Fructose metabolism also reduces hepatic ATP levels and the activation of AMP-activated 
protein kinase (AMPK), which impairs insulin signaling and increases DNL [104–106].  

Multiple studies in male mice and rats have demonstrated that a high-fat fructose 
diet leads to increased infiltration of macrophages within hepatic tissues [107–109]. Fur-
thermore, emerging evidence indicates the recruitment of myeloid cells from the bone 
marrow and mature macrophages originating from surrounding tissues, such as perito-
neal and intestinal macrophages [110]. The emergence of single-cell RNA sequencing has 
allowed for the identification of residential and recruited macrophage subsets based on 
gene signatures [111]. In addition, Kupffer cells, residential macrophages of the liver, or 
recruited macrophages may express a fluid phenotype, displaying pro- and anti-inflam-
matory properties. External stimuli such as lipopolysaccharide (LPS) or interferon-gamma 

Figure 1. Direct and indirect effects of fructose in metabolic tissues. Fructose exposure can lead
to recruitment of immune cells to metabolic tissues such as intestine, liver, and adipose. This
recruitment leads to increased secretion of pro-inflammatory cytokines, aiding in cell-to-cell signaling.
Fructose activates adipogenesis via upregulation of proteins involved in differentiation, monocyte
and macrophage polarization, and cytokine secretion.
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High concentrations of fructose reduce the ratio of Bacteroidetes/Firmicutes while in-
creasing the abundance of the bacterial genera Bifidobacterium, Enterococcus, Lactobacilus,
Romboutsia, and Turicibater [86,90]. These microbes metabolize fructose through fructoki-
nase, the phosphoenolpyruvate-dependent sugar phosphotransferase system, and other
hexose metabolism pathways [91–95]. Additionally, the pro-inflammatory metabolites
cresol, arachidonic acid, stearic acid, palmitic acid, and indole sulfuric acid were demon-
strated to be elevated, while anti-inflammatory short chain fatty acids (SCFAs) such as
acetic acid, propionic acid, butyric acid, and pentanoic acid were reduced in male mice and
humans consuming high-fructose diets [86,96]. Among obese and overweight teenagers,
Eubacterium and Streptococcus were found to be negatively correlated with fructose con-
sumption [97]. The gut bacteria of obese youth also are reported to have a higher capability
to ferment fructose compared with microbes in the guts of lean subjects [98]. The abun-
dance of Barnesiella is elevated, while the abundance of Ruminococcus, Faecalibacterium,
and Erysipelatoclostridium are reduced among healthy adult women consuming a HFCS
diet [96]. Fructose malabsorption can occur when dietary concentrations exceed enterocyte
absorption capacity [99]. In addition to increased bacterial growth, Kawabata et al. found
that a high fructose consumption induced a leaky gut by decreasing protein expression of
the tight junction protein occludin in male mice [100]. Ultimately, a leaky gut may lead
to the increased permeability of the epithelial cells lining the digestive tract and induce
inflammatory cell infiltration.

2.3. Fructose and Liver

Over the last decade, studies have linked monosaccharide fructose to the progression
of NAFLD, as fructose consumption has increased from the recommended 5% of daily
energy intake to 17% within sugar-sweetened beverages alone, correlating with the rise
in obesity-related diseases [101]. As high doses of fructose saturate intestinal metabolism,
the remaining fructose is metabolized in the liver (Figure 1). The metabolism of fructose
produces triose phosphates that form acetyl-CoA, the essential building block for fatty
acid synthesis. Fructose metabolism stimulates DNL through triose phosphate-activated
fatty acid synthesis and transcriptional regulation of enzymes involved in DNL. Softic
et al. demonstrate that male mice consuming fructose-sweetened water in the presence
of a high-fat diet exhibited increased fatty acid synthesis and hepatic insulin resistance
compared with glucose-sweetened water in a process dependent on KHK [102]. Fructose
supplementation increases the levels of the transcription factors sterol regulatory element
binding protein 1 (SREBP-1) and ChREBP, as well as the downstream targets acetyl-CoA
carboxylase (ACC), fatty acid synthase (FAS), and the fatty acid transporter CD36 [103].
Fructose metabolism also reduces hepatic ATP levels and the activation of AMP-activated
protein kinase (AMPK), which impairs insulin signaling and increases DNL [104–106].

Multiple studies in male mice and rats have demonstrated that a high-fat fructose diet
leads to increased infiltration of macrophages within hepatic tissues [107–109]. Further-
more, emerging evidence indicates the recruitment of myeloid cells from the bone marrow
and mature macrophages originating from surrounding tissues, such as peritoneal and
intestinal macrophages [110]. The emergence of single-cell RNA sequencing has allowed
for the identification of residential and recruited macrophage subsets based on gene sig-
natures [111]. In addition, Kupffer cells, residential macrophages of the liver, or recruited
macrophages may express a fluid phenotype, displaying pro- and anti-inflammatory prop-
erties. External stimuli such as lipopolysaccharide (LPS) or interferon-gamma (IFNγ)
activate Toll-like receptors (TLR) of macrophages to secrete cytokines such as IL-6 and
tumor necrosis factor alpha (TNFα) to aid in-wound repair through the increased flux
of glycolysis [112]. During prolonged inflammation, macrophages can take on an anti-
inflammatory phenotype, releasing extracellular matrix proteins to signal wound healing.
A chronic fructose diet increases hepatic transitioning monocytes and reduces Kupffer
cells in male mice [75]. In vitro studies demonstrate that Kupffer cells metabolize fructose
through glycolysis and the pentose phosphate pathway. In addition to increased monocyte
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infiltration, Kupffer cells express a wound healing and anti-inflammatory phenotype, indi-
cating fructose regulates Kupffer cell phenotype and viability (Figure 2). This prolonged,
chronic inflammation can lead to tissue damage and, ultimately, result in the development
of NASH.

Figure 2. Fructose metabolism and immune cells. Bone marrow-derived immune cells, such as
macrophages, B cells, and dendritic cells, display a pro-inflammatory phenotype when exposed to
fructose; however, the mechanism for this response is unique for each cell type. Macrophages rely on
oxidative phosphorylation and TCA cycle passes for energy and cytokine production. Interestingly,
B cells and dendritic cells utilize intermediates of glycolysis conversion to keep up with the energy
demands of the cell. Secretion of the cytokines IL-6, TNFα, IL-18, and IL-1β aid in cell-to-cell
communication as well as priming an immune response. This signaling can lead to recruitment of
immune cells within metabolic tissues such as liver, intestine, and adipose, thus increasing overall
inflammation. Cytokine secretion can directly activate T cells through TNFα inducing secretion of
IFNγ. Kupffer cells depend on glycolysis and the pentose phosphate pathway for regulation of genes
associated with wound healing and anti-inflammatory response such as MMP12, GPNMB, RSAD2,
TNFα, and IL1RN.

2.4. Fructose and Adipose Tissue

Adipose tissue is dynamic in cell populations and crosstalk fluidity, thus multiple
cell types are exposed to dietary carbohydrates. Fructose also increases adipogenesis [113]
(Figure 1). Adipocytes depend on GLUT5 to transport fructose and HK for phosphoryla-
tion [114]. Once isomerized to glucose-6-phosphate (G6P), the fate of fructose diverges
through glycolysis. Using C13-labeled fructose, fructose has been demonstrated to be
shuttled into acetyl-CoA and incorporated into the TCA cycle, causing an increase in the
release of fatty acid and palmitate [115]. In the presence of glucose, fructose increases the
production of nicotinamide adenine dinucleotide phosphate (NADP) and carbon dioxide,
which can be utilized for lipid storage. Fructose increases gene expression of peroxi-
some proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha
(C/EBPα), GLUT4, adiponectin, and adipocyte fatty acid binding protein 2 (AP2) in 3T3-L1
preadipocytes [116]. GLUT5 was determined to be essential for adipocyte differentiation,
as knockdown of this transporter reduced the expression of PPARy and AP2, as well as
the ability of adipocytes to store lipids. Fructose also reduces beta-oxidation by decreasing
PPAR beta and delta, leading to increased inflammation in adipose tissue and the liver [117].
Adipocytes maintain homeostasis by secreting cytokines to signal for immune cell recruit-
ment. Fructose increases the secretion of the pro-inflammatory cytokines interleukin 18
(IL-18), IL-1β, and TNFα in the adipose tissue of male and female rats [118]. Interestingly,
the anti-inflammatory proteins interleukin 10 (IL-10) and nuclear receptor factor 2 (Nrf2)
also were elevated, potentially to reduce the pro-inflammatory response [118]. Taken to-
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gether, these studies indicate a direct effect of fructose exposure on energy production and
maturation of adipocytes.

2.5. Fructose Metabolism Regulation of Immune Cell Function
2.5.1. Myeloid Cells

Many studies have examined fructose metabolism in the parenchymal cells of metabolic
tissues, such as the intestine, liver, and adipose tissue. However, macrophages can also
metabolize fructose to regulate their function and phenotype (Figure 2) [59,60,77]. Glucose
is known as the primary fuel source for pro-inflammatory macrophages, with glycoly-
sis providing energy for the production and secretion of cytokines. Peripheral blood
monocytes metabolize fructose and shuttle carbons through oxidative phosphorylation
(OXPHOS) compared with the lactate production that occurs with glucose metabolism [76].
TCA metabolites such as succinate, malate, and fumarate were also elevated to a greater
extent than glucose, most likely to produce energy and reducing agents to maintain in-
creased OXPHOS. The inflammatory cytokines IL-6, IL-1β, IL-18, and TNFα are detected
at higher concentrations in fructose-treated monocytes compared with those treated with
glucose [76]. This response was, in part, mediated by upregulated signaling of mTORC1.
Glutamine carbons mainly contributed to TCA cycle intermediates and cytokine secretion
within fructose treatments. These findings demonstrate that fructose directly regulates
inflammation in monocytes.

Although macrophages regulate inflammation and wound repair, the liver relies on
other immune cells to patrol the environment for damage and infection. Dendritic cells
(DCs) can process and present antigens to surrounding lymphocytes to commence and
regulate an adaptive immune response [119]. In human dendritic cells, 15 mM fructose
treatment induces a chronic inflammatory protein secretion of IL-1β, TNFα, and IL-6 [120].
Fructose-treated DCs stimulate T cell IFNγ secretion more significantly than glucose. This
response was initiated and controlled by the secretion of TNFα from fructose exposed DCs.
The DCs had elevated extracellular acidification rate (ECAR) levels, indicating a metabolic
flux through glycolysis to keep up with the demands of cytokine secretion. This process
is most likely regulated by the activation of nuclear factor kappa b subunit (NFκB) via
advanced glycation end products (AGE) as these proteins were upregulated with fructose
exposure [120].

2.5.2. B Cells

B cells play a critical role in the progression of NAFLD via the regulation of T cells
and fibrosis [121]. However, specific subsets of B cells are known to drive the progres-
sion of NAFLD, while others prevent progression [122,123]. Pathogenic B2 cells produce
pro-the inflammatory cytokines TNFα, IL-6, and IL-1β, which attract other immune cells
to the liver [124]. Additionally, B cells act as antigen-presenting cells to activate T cells
and amplify hepatic inflammation and fibrosis. The antibodies produced by B cells can
trigger liver injury and fibrosis in NASH. Using C13 labeling nuclear magnetic resonance
(NMR), carbohydrate metabolism differs based on the carbon source in B cells isolated
from blood [125]. Fructose at 15mM is phosphorylated by HK in B cells (Figure 2). Inter-
estingly, when fructose and glucose are supplied together, HK-mediated metabolism is
constrained by glucose affinity, leaving fructose metabolism dependent upon the KHK
pathway. This switch in metabolism causes DHAP and lactate buildup from methylglyoxal
partitioning. Fructose supplementation reduces B cell lymphopoiesis in bone marrow
and splenic marginal zone B cells compared with glucose in male mice [126]. Tan et al.
demonstrated that glycolysis and oxidative phosphorylation are the primary metabolic
pathways for the generation of B cells [126]. Currently, only one study has demonstrated
that a chronic fructose diet decreases hepatic B cells in male mice compared with glucose
or control diets [75].



Biomolecules 2024, 14, 845 8 of 22

3. Regulation of Fructose Intake and Metabolism to Prevent Metabolic Disease
3.1. Dietary Modifications and Physical Activity

Reducing fructose intake and metabolism can effectively treat obesity and NAFLD in
men and women [127]. Patients with NAFLD are informed to limit soda, juice, and sports
drinks that are high in sugar, which are associated with higher pro-inflammatory markers,
triglyceride/high-density lipoprotein cholesterol ratios, and intrahepatic lipids [128–130].
In addition, selecting low-fructose-containing fruits and vegetables and avoiding foods
with high concentrations of fructose and HFCS is recommended. Consuming high-fiber
foods, such as vegetables, legumes, and whole grains, slows down the absorption of car-
bohydrates and promotes excretion. Soluble fibers, such as psyllium husk, oats, legumes,
and insoluble fibers, reduce absorption of fructose and improve liver enzymes, intrahep-
atic lipid content, and liver fibrosis [131–134]. Maintaining a balanced gut microbiota
through the consumption of probiotics or prebiotics also may help modulate fructose
metabolism and reduce its detrimental effects on the liver. The fructose and water-soluble
polymer inulin, fermented in the small intestine and colon to SCFAs, provides an energy
source for the growth of protective Bifidobacterium [135–137]. Regular exercise improves
insulin sensitivity and metabolic health and attenuates the fructose-mediated glycemic
response in healthy adults, which can mitigate the negative impact of fructose on liver
metabolism [138–142]. While effective, these interventions can be challenging for patients
to adhere to over time, requiring other therapies to help reduce the harmful effects of
increased fructose consumption.

3.2. Nutritional Supplements

Antioxidants may help to alleviate fructose-induced liver damage, oxidative stress,
and inflammation to improve overall health (Figure 3A). Both vitamin E and resveratrol
attenuate fructose-induced hepatic steatosis and liver damage by reducing lipid peroxida-
tion and inflammation in mice and rats [143–146]. Fisetin, a naturally occurring flavonoid,
has been reported to reduce fructose-induced liver damage in animal models by sup-
pressing NFkB and inducing the transcription factor Nrf2, which regulates antioxidant
enzymes [147]. However, limited studies demonstrate that these antioxidants reduce levels
of liver enzymes and steatosis among patients with NAFLD [148–151].

L-carnitine is critical in transporting fatty acids into the mitochondria, the cellular
organelles responsible for energy production by facilitating beta-oxidation. Studies ex-
ploring the potential benefits of L-carnitine supplementation for NAFLD suggest that
L-carnitine supplementation improves the levels of liver enzymes, reduces the accumula-
tion of liver fat, and even ameliorates insulin sensitivity in hepatocyte, animal, and human
studies [152]. L-carnitine could enhance the transport of fatty acids into the mitochondria,
preventing the excessive accumulation of lipids in liver cells induced by a high fructose
intake. Hepatic long-chain acylcarnitines (LACs) with 18 and 20 carbons are increased
in fructose-fed livers [75]. Serum LACs are positively correlated with the progression of
fibrosis and hepatocellular carcinoma and are elevated with fructose supplementation
in male mice [102,153]. LACs are elevated when triglyceride synthesis is inhibited and
may act in an autocrine or paracrine mechanism to induce inflammation and cell death in
macrophages and hepatocytes. Dietary fructose inhibits fatty acid oxidation in the liver
and impairs mitochondrial function, which correlates with elevations in long-chain acylcar-
nitines [102]. In addition, L-carnitine exhibits antioxidant properties by reducing reactive
oxygen species (ROS) and inducing the expression of the antioxidant enzyme superoxide
dismutase 2 to reduce oxidative stress and the associated inflammation in fructose-treated
hepatocytes [154].
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Figure 3. The hepatic effects of nutritional supplements and pharmacological interventions in fructose-
induced NAFLD. (A) The hepatic effects of nutritional supplements in fructose-induced NAFLD.
Antioxidant supplements, such as vitamin E and resveratrol, are shown to alleviate fructose-induced
hepatic steatosis and liver damage through the attenuation of lipid peroxidation and inflammation. L-
carnitine also facilitates antioxidant properties through increased expression of superoxide dismutase
2 (SOD2), which catalyzes the dismutation of ROS, reducing oxidative stress. L-carnitine also is
suggested to increase levels of liver enzymes and insulin sensitivity in hepatocytes and alleviate
hepatic lipid accumulation. Additionally, the flavonoid fisetin is suggested to alleviate fructose-
induced liver damage and inflammation through suppressing NFkB. Fisetin also activates Nrf2, a
transcription factor that binds the antioxidant response element (ARE), a DNA sequence found in the
promoter regions of several genes encoding antioxidant enzymes, increasing the expression in the
liver. (B) The hepatic effects of pharmacological interventions in fructose-induced NAFLD. Several
pharmacological interventions target fructose-induced hepatic DNL. GLUT5 inhibitors alleviate
fructose-induced DNL through decreasing fructose uptake and metabolism, resulting in increased
insulin sensitivity. Likewise, ketohexokinase (KHK) and hexokinase (HK) inhibitors decrease fructose-
induced DNL by reducing hepatic fructose metabolism, improving insulin sensitivity. Similarly, GLP-1
receptor agonists (GLP-1-RAs) function to decrease hepatic DNL by increasing gene expression of the
transcription factor β-catenin, which translocates to the nucleus and mediates the downregulation of
acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1).
Apart from its effects in increasing insulin sensitivity, metformin plays a protective role against
NAFLD by reducing hepatic expression of TNFα and inhibiting the overactivation of hepatic Kupffer
cells, reducing inflammation.

3.3. Pharmacological Interventions

Targeting fructose metabolism for potential therapeutic interventions in biomolecules
involves various strategies (Figure 3B). The design and development of small molecules
or compounds that selectively inhibit KHK or HK, which could reduce the metabolism of
fructose and its downstream effects on DNL and insulin resistance, are at the forefront of the
field. Targeting fructose metabolism with KHK inhibitors has several potential therapeutic
benefits, including treating obesity, type 2 diabetes, and fatty liver disease [64,155]. In one
study, patients with T2DM treated with KHK inhibitors experienced significant reductions
in blood sugar levels. KHK inhibitors also improve insulin sensitivity and reduce inflam-
mation [64]. Bempedoic acid, an FDA-approved drug for hypercholesterolemia, reduces
high fat and fructose diet-induced hepatic KHK protein expression, fructose uptake, and
hepatic beta-oxidation in female rats [156]. Numerous clinical trials on KHK inhibitors
have yielded opposing results. One of the most promising clinical trials was a Phase 2
trial of PF-06835919, a reversible KHKA/C inhibitor developed by Pfizer [157,158]. In this
trial with 164 participants, PF-06835919 effectively reduced liver fat and inflammation in
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patients with NAFLD at 16 weeks. In addition, patients experienced significant reductions
in insulin concentrations. However, PF-06835919 at 300 mg or 150 mg did not change
fasting plasma cholesterol or low-density lipoprotein cholesterol levels. The KHK inhibitor
had minimum safety concerns, with both placebo group and groups receiving the high and
low concentration of the inhibitor reporting similar treatment-emergent adverse events
ranging from diarrhea to hypoglycemia.

Other enzymes involved in fructose metabolism, such as aldolase B, triokinase, aldose
reductase, and sorbitol dehydrogenase, can be targeted to modulate the overall flux of
fructose metabolism and its impact on liver function. While targeting these enzymes with
inhibitors holds promise as a potential therapeutic agent for targeting fructose metabolism,
there also are limitations and challenges. For example, aldolase B, the enzyme responsible
for breaking down fructose-1-phosphate into glyceraldehyde and dihydroxyacetone phos-
phate, was initially considered a potential therapeutic target for colon cancer as it mediates
the metabolic reprogramming necessary for tumor metastasis [159]. However, patients
with a mutation in the aldolase B gene developed hereditary fructose intolerance (HFI),
leading to liver dysfunction and even failure, making this treatment toxic unless adminis-
tered alongside a fructose-restricted diet [160]. Ultimately, due to these potential harmful
off-target effects, therapeutically targeting aldolase B to regulate fructose metabolism was
deemed undesirable. High selectivity is crucial to avoid off-target effects on other en-
zymes or metabolic pathways. Complete inhibition of these enzymes may disrupt glucose
metabolism and have systemic metabolic consequences beyond the liver. Therefore, careful
assessment of tissue and cell-specific expression patterns and potential off-target effects is
necessary.

3.4. Fructose Transporter Modulators

Fructose transporter inhibitors may selectively target fructose metabolism by reduc-
ing fructose absorption and metabolism, improving hepatic insulin sensitivity. Inhibitors
specifically targeting GLUT5 or GLUT8 could limit fructose availability for metabolism
in the liver. GLUT5 is primarily expressed by intestinal epithelial cells and adipose tis-
sue. However, under NASH conditions GLUT5 gene expression is increased in patients
with NASH compared to those with normal and steatotic livers [63,161]. The increased
expression may be due to infiltrating peripheral monocytes, which are reported to ex-
press GLUT5 [60]. Tripp et al. developed a yeast-based screening system to identify
potential GLUT5 inhibitors [162]. The inhibitors N-[4-(methylsulfonyl)-2-nitrophenyl]-
1,3-benzodioxol-5-amine (MSNBA) and (−)-epicatechin-gallate (ECG) selectively inhibited
GLUT5 without affecting other glucose transporters. Treatment with these inhibitors re-
duced the growth of mutant yeast cells in fructose-rich media [162,163]. ECG attenuates
high-fat-diet-induced hepatic steatosis, ferroptosis, and oxidative stress [164]. MSNBA
prevents the fructose-induced proliferation of colon cancer cells (HT-29) with little impact
on the neighboring, healthy intestinal mucosa [57]. ECG, a flavonoid belonging to the group
of catechins found in tea, cocoa, and fruits, reduces fructose uptake in Caco-2 cells and
high-fat and high-fructose-induced obesity and NAFLD in male mice [165,166]. SW157765
is the only inhibitor reported to bind to GLUT8 and reduces glucose uptake in GLUT8
expressing cancer cells [167].

3.5. Insulin-Sensitizing Agents

The anti-hyperglycemia drug metformin is reported to reduce levels of liver aspar-
tate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with T2DM
and NAFLD [168–174]. In a study conducted by Spruss et al., mice supplemented with
metformin showed significantly lower hepatic steatosis, liver injury, and levels of plasma
leptin and retinol-binding protein 4 (RBP-4) [174]. Additionally, metformin reduced the
hepatic expression of TNFα [175]. The direct target of metformin remains to be determined.
Metformin indirectly activates AMP-activated kinase and reduces mitochondrial function
to reduce hepatic glucose production and lipid metabolism [176,177]. In male mice on a
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47% fructose diet for ten weeks, metformin increased the expression of genes regulating
mitochondria biogenesis and antioxidants and reduced genes associated with DNL [178].
Metformin also prevents LPS-induced M1 macrophage polarization by activating AMPK
reducing ROS production [179–181]. Taken together, these data suggest that metformin pro-
tects the liver from the onset of fructose-induced NAFLD by altering intestinal permeability
and activation of hepatic Kupffer cells.

Glucagon-like-peptide-1-receptor agonists (GLP-1-RA) are another class of drugs de-
veloped to treat type 2 diabetes. GLP-1, the peptide hormone that binds the GLP-1 receptor,
is secreted by the L cells of the jejunum and ileum [182]. Fatty acids and sucrose are known
to increase GLP-1 secretion, and GLP-1 causes the postprandial secretion of insulin in the
pancreas [183,184]. In adult males, acute sucrose consumption causes a smaller increase
in circulating GLP-1 levels compared with females [185]. The GLP-1 receptor is found in
the kidneys, lungs, and hypothalamus [183]. Boland et al. demonstrated that the GLP-1
receptors also are expressed on mouse and human monocytes and macrophages [186].
GLP-1 decreases hunger and food intake [187–189]. GLP-1-RA suppresses appetite through
AMPK inhibition in the hypothalamus [187,188]. Burmeister et al. demonstrated that
intracerebroventricular injections of fructose attenuated the anorectic response induced
by the GLP-1-RA, Exendin-4 (Ex-4) [188]. Fructose can activate AMPK and block the
decrease in appetite and satiety associated with GLP-1 [190]. Likewise, Ghidewon et al.
demonstrated that GLP-1-RA semaglutide decreased the intake of sucrose-enriched pellets
in male mice [191]. GLP-1-RA combats metabolic disease through several mechanisms.
For example, these drugs also increase the expression of GLUT4 receptors in adipose and
muscle tissue, mediate lipid metabolism, and reduce the levels of ROS, leading to inflam-
mation [192]. GLP-1-RA also increase glucose-dependent insulin secretion by pancreatic
β-cells [182].

GLP-1-RAs have shown significant promise in treating NASH. In male rats adminis-
tered fructose, GLP-1-RA significantly reduced hepatic steatosis by increasing b-catenin
nuclear translocation, leading to a reduction in lipid synthesis enzymes, ACC, FAS, and
stearoyl-coenzyme A desaturase-1 (SCD-1) [193]. Liraglutide, a GLP-1RA, reduced serum
AST and ALT levels in hepatic ischemia–reperfusion injury [194]. GLP-1 receptor signal-
ing also prevents M1 macrophage polarization [194]. The GLP-1 and glucagon receptor
dual agonist cotadutide significantly reduced hepatic steatosis, inflammation, and fibrosis
in NASH male mice on a high fructose, trans-fat, and cholesterol diet [195]. Ultimately,
more research is needed to elucidate the effects of GLP-1-RAs on fructose absorption and
metabolism in metabolic diseases. However, these drugs are still promising therapeutic
targets for fructose-associated NAFLD.

4. Limitations and Future Directions

It is important to note that targeting fructose metabolism alone may not be sufficient for
addressing the complexities of NAFLD, and a comprehensive approach involving dietary
modifications, lifestyle changes, and management of metabolic risk factors is required.
Notably, current research on fructose-induced disease progression and cellular metabolism
is limited by the exaggerated concentrations of fructose used in studies. Depending on the
location, specific cells and tissues would not be exposed to such high concentrations of
circulating fructose. Interestingly, a high fructose consumption may be protective during
acute liver injury. In male mice, fructose reduces acetaminophen-induced liver injury
by increasing ChREBP and serum levels of fibroblast growth factor 21 [196]. Although
we gain insight into fructose metabolism within these models, the current gap in our
understanding regarding dietitian-recommended levels of fructose remains large. It is also
necessary to note that human studies have demonstrated no correlation between fructose
consumption and NAFLD development. Among older Finnish older, a high fructose
intake was associated with a lower risk of NAFLD [197]. Similarly, total fructose intake
was not different between patients with steatosis, NASH, or cirrhosis. Both studies were
dependent on food frequency questionnaires and dietary recalls [198], which may lead
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to underreporting dietary intake of fructose. Thus, there is a need for metabolic tracing
studies and biomarkers to track fructose consumption.

In addition, very few groups have identified the effects of fructose on immune cell pop-
ulations other than the plasticity of fructose-induced macrophage and B cell populations.
Collectively, there are differences in fructose metabolism depending on tissue and cell type,
mainly through the actions of KHK or HK. The availability and concentrations of fructose
and glucose limit the initial steps in fructose metabolism. For example, residential intestine
and liver cells utilize KHK-mediated metabolism, which shuttles primarily through gly-
colysis conversion intermediates. However, bone marrow-derived macrophages depend
on oxidative phosphorylation and the TCA cycle to generate intermediates for cytokine
secretion. Because of the differences in metabolism, it is unsurprising that fructose impacts
parenchymal and nonparenchymal cellular function through different mechanisms. As
research on fructose exposure and immune cells in disease increases, we may find novel
metabolic pathways.

The impact of sex on fructose metabolism and metabolic outcomes remains limited.
Sex differences are reported for the effects of fructose metabolism on kidney function
with fructose increasing GLUT5 protein expression in males compared with females [199].
Isotope tracing of fructose in healthy young males and females demonstrated that fructose
is metabolized less efficiently in females, leading to reduced plasma insulin, lactate, and
uric acid levels [200]. In animal models, fructose supplementation in the drinking water
increased the body weight of male rats compared with female rats [201]. In addition,
hepatic TNFα levels are reduced in female rats compared with male rats at 10 weeks of
high-fructose feeding [202]. From the United Kingdom Biobank, fructose consumption
from sugary drinks is associated with a 2% higher risk of hyperandrogenism among
middle-aged women [130]. These findings suggest menopause or age in women alters
fructose metabolism, leading to a possibly higher risk of metabolic diseases such as NAFLD.
Elevations in androgens leads to increased plasma lipids, hepatic steatosis, and insulin
resistance due to mitochondrial dysfunction in female rats [203]. Likewise, supplementation
of 30% fructose in a high-fat diet increases liver weight, inflammation, and injury compared
with high-fat-diet-fed ovariectomized female mice [204]. In males, fructose consumption
causes metabolic disease but reduces testosterone and luteinizing hormone release in
the anterior pituitary [205]. Studies linking mechanisms by which fructose regulates sex
hormones and alters tissue specific fructose metabolism in males and females remain to be
investigated.

5. Conclusions

NAFLD remains a significant health concern and managing its effects on hepatic
lipid accumulation and insulin resistance is critical. To treat this condition effectively and
prevent its progression to severe liver disease, we need a comprehensive approach that
combines dietary modification, weight management, and pharmacological interventions.
The literature discussed in this review defines the cellular and molecular mechanisms
regulating fructose metabolism and the development of NAFLD. Fructose regulates lipid
metabolism, inflammation, and immune cell function in the intestine, adipose tissue, and
liver. Several studies show varying results depending on the concentrations of fructose
supplied and the duration of the animal and clinical studies. These inconsistencies raise
questions about how fructose affects individual cells, tissues, and biological systems. For
example, how does fructose control subsets and functions of T cells, and how does it affect
NAFLD? Also, understanding how fructose modulates intestinal function and identifying
critical cellular and molecular signaling pathways are essential. Therefore, more research
is needed to understand the critical pathways regulated by fructose in metabolic systems
and the pharmacological interventions targeting various steps in fructose metabolism.
By addressing fructose metabolism, we can effectively manage NAFLD and prevent its
progression to more severe liver disease.
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