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Abstract: Signaling pathways are responsible for transmitting information between cells and regu-
lating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with
each other through specific structural domains, playing a crucial role in various biological functions
and cell signaling pathways. Protein–protein interactions (PPIs) within cell signaling pathways are
essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling
pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolec-
ular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization
of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms.
BiFC demonstrates significant potential for application in various areas of biological research, drug
development, disease diagnosis and treatment, and other related fields. This review systematically
summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs
within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and
MAPK. Additionally, it explores the application of this technology in revealing PPIs within the
plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in
conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance
our comprehension of PPIs in cell signaling pathways.

Keywords: bimolecular fluorescence complementation (BiFC); protein–protein interactions (PPIs);
cell signaling pathway

1. Introduction

Cellular signaling pathways are intricate biochemical reactions and play a crucial role
in facilitating information transmission in living organisms, enabling cells to promptly
and accurately respond to external stimuli [1–4]. The transmission of signals in biological
cells is primarily facilitated through molecular interactions, particularly protein–protein
interactions (PPI) [5–8]. The real-time observation of PPI dynamics, alterations, and spatial-
temporal distribution is crucial for elucidating the regulatory interplay among various
genes. Conventional biochemical techniques utilized for the examination of PPI, such as
co-immunoprecipitation (Co-IP) and immunofluorescence (IF), are constrained in their
ability to offer insights into the transient and dynamic nature of interactions as well as to
provide accurate and detailed visualization. In light of the advancements in molecular
biology and biotechnology, researchers have been actively investigating novel approaches
to elucidate these intricate signaling pathways. Notably, bimolecular fluorescence comple-
mentarity (BiFC) has emerged as a valuable tool to explore protein interactions, based on
the division and recombination of fluorescent proteins, which are usually divided into an
N-terminal fragment and a C-terminal fragment [9,10]. When two target proteins interact
with each other, the N-terminal and C-terminal fragments of the fluorescent protein will
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approach each other and recombine to restore the original structure and properties, thus
generating fluorescence signals to reflect the interaction of the target proteins, offering
substantial assistance in the examination of cellular signaling pathways [10–12] (Figure 1A).
BiFC has significantly contributed to the investigation of cellular signaling pathways by
enabling the examination of interactions between signaling proteins and their downstream
effector proteins as well as the analysis of signal transmission within cells [13–15]. This
visualization technique aids in comprehending the composition and structure of signaling
pathways as well as in analyzing the dynamic alterations of signaling pathways in various
physiological and pathological states [16–20]. Its utility extends to the study of fundamental
biological processes including cell signal transduction, gene expression regulation, and
protein complex formation [12,21,22]. By conducting comprehensive investigations into
these processes, valuable insights into the underlying principles and mechanisms govern-
ing life activities can be obtained. Collectively, BiFC allows for the in situ detection of PPIs,
real-time monitoring of cellular activity, and examination of subcellular localization, thus
offering a distinct viewpoint for uncovering critical regulatory relationships and signaling
pathways within gene regulatory networks.
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Figure 1. Technical principles of various forms of BiFC. (A) The principle of traditional BiFC.
Proteins X and Y contain an N-terminal fragment and a C-terminal fragment, respectively, and are
hypothesized to potentially interact with each other. The fusion of X protein and Y protein facilitates
the identification of the interaction between X and Y. If X and Y proteins interact, recombination of
the fluorescent protein fragments is expected to result in fluorescence emission. (B) The principle
of mcBiFC. X protein interacts with Y and Z proteins, respectively, emitting different fluorescence
due to the unique fluorescent protein fragments of Y and Z proteins. (C) The principle of TriFC.
The N-terminal fragment of mCherry is linked to the target mRNA via an RNA-binding protein,
and its C-terminus is linked to a potential RNA-binding protein. Upon interaction between the
candidate RNA-binding protein and the target mRNA, the N- and C-terminal fragments of mCherry
undergo recombination, resulting in the production of a red fluorescent protein (RFP) signal. (D) The
principle of dcas13a-SunTag-BiFC. The fusion of dCas13a with SunTag tags facilitates the recruitment
of fluorescent protein fragments, enabling RNA imaging via the targeted binding of guide RNA
(gRNA). (E) The principle of BiFC-TALE. Transcription activator-like effector (TALE) can bind to
specific DNA sequences and aggregate fluorescent protein fragments for imaging genomic loci.

Since the emergence of BiFC in the 1990s, there have been several notable advance-
ments in this technology. One such advancement is the development of split GFP variants
and other fluorescent proteins with improved brightness and photostability, allowing
for more sensitive and quantitative detection of PPIs [10,15,23–25]. The simultaneous
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expression of two or more fluorescent proteins in a multicolor bimolecular fluorescence
complementation (mcBiFC) system facilitates the concurrent monitoring of multiple pro-
tein interactions and allows for the comparison of their interaction efficiencies [26–28]
(Figure 1B). Another advancement is the use of BiFC in high-throughput screens, en-
abling the rapid identification of PPIs on a genome-wide scale [29–32]. BiFC has also
been developed to visualize the interaction between RNA and proteins, as evidenced
by trimeric fluorescence complementation (TriFC) systems [33] (Figure 1C). TriFC is
optimized by utilizing mNeptune’s good optical properties to image RNA–protein in-
teractions in living animals [34]. The integration of dCas13a with SunTag has been
utilized to enhance the recruitment of Venus fragments, thereby enabling the real-time
visualization of endogenous specific mRNA in cells through the targeted binding of
gRNA with cas13a [35] (Figure 1D). The fusion of BiFC with transcription activator-like
effectors (TALEs) enables precise labeling and visualization of genomic loci through the
specific interaction of TALEs with target DNA sequences [36] (Figure 1E).

BiFC exhibits significant promise in the fields of disease diagnosis and drug screen-
ing. By constructing large-scale PPI networks, researchers can screen for key signaling
pathways associated with specific diseases and further investigate potential drug targets
in these pathways [37–42]. BiFC is a valuable tool for screening potential drug molecules
and investigating the interactions between drugs and target proteins, thereby expediting
the drug development process and enhancing the effectiveness and safety of medica-
tions [37,41,43–46]. BiFC has the capability to identify PPIs associated with various
diseases, thereby offering substantial evidence for the early diagnosis and prognosis
assessment of such conditions [47–49]. Specifically, the identification of distinct PPIs
within cancer cells holds promise for the timely detection and treatment of cancer [49].
BiFC also has the potential to facilitate the creation of novel therapeutic approaches
centered on protein interactions [50–54]. Through the manipulation of molecules that
disrupt pathogenic protein interactions, the progression of diseases can be impeded;
conversely, the promotion of beneficial protein interactions can enhance cellular function
recovery and regeneration. In conclusion, it is anticipated that BiFC will assume a greater
significance in future investigations pertaining to cell signaling pathways, disease di-
agnosis, and drug screening, as a result of ongoing advancements and innovations in
technology. This review aims to explore the recent progress in BiFC, including technical
innovations and applications in investigating PPIs in cell signaling pathways.

2. Overview of BiFC Development

The inception of BiFC technology can be dated back to the early 21st century, when
researchers endeavored to develop a dynamic, real-time way to monitor protein interac-
tions [55,56]. The early researchers primarily concentrated on enhancing the selection and
cleavage techniques of fluorescent proteins to guarantee the stability and specificity of fluo-
rescent signals [55,57]. Concurrently, they were consistently investigating the utilization of
BiFC in various biological systems and cells to broaden its range of applications [56,57]. A
ubiquitin-based split-protein sensor (USPS) was introduced in 1994, enabling the real-time
monitoring of PPIs within a living cell at their endogenous locations [58]. The USPS assay
is capable of detecting a transient in vivo interaction between polypeptides, as exemplified
by a close proximity between Sec62p and a nascent polypeptide chain [59]. The use of
fluorescent proteins in biological studies has greatly increased since the discovery of Green
Fluorescent Protein (GFP) in the 1960s [60]. These important early discoveries laid a solid
foundation for the emergence and development of BiFC. The BiFC technology has under-
gone continuous development over a span of more than two decades since its inception,
with a primary emphasis on the enhancement and advancement of fluorescent proteins,
photopigments, and expression vectors and an expanding range of applications (Figure 2).
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2.1. Fluorescent Protein Used for Investigating Protein–Protein Interactions

The BiFC technology was first introduced in 2002, employing yellow fluorescent
protein (YFP) as a fluorescent marker for investigating PPIs [61]. The GFP gene was first
cloned in 1992 from cnidarian, Aequorea victoria [62], and GFP was then confirmed in 2000
to be characteristic of fluorescence complementation [63]. Fluorescent proteins emerged
as prominent markers in these early assays owing to their high sensitivity, reliability, and
versatility [55–57]. In 2003, the multicolor bimolecular fluorescence complementation
(mcBiFC) system was developed by using eYFP and eCFP [26]. To enhance fluorescence
signals in a physiological culture setting, mutations in Cyan Fluorescent Protein (CFP) and
YFP were employed to create Cerulean and Venus variants, and then fluorescence resonance
energy transfer with fluorescence lifetime imaging microscopy (FRET-FLIM) was integrated
for terrain visualization [64,65]. The development of red fluorescent protein has expanded
the scope of BiFC application. The BiFC system based on DsRed variant monomeric
RFP (mRFP1-Q66T) [66] and mutant monomeric RFP (mCherry) [67] has a bright red
fluorescence excitation and emission wavelength. To facilitate the direct observation of
protein interactions in a physiological environment of mammals, a monomeric lumin
(mLumin) BiFC system was developed utilizing the mKate variant, enabling the detection
of protein interactions at 37 ◦C and providing a more faithful representation of protein
characteristics [68]. To achieve in vivo imaging with an excitation peak above 600 nm,
mNeptune was applied to BiFC [34]. The mScarlet-I-based BiFC assay was developed
using a traditional β-Fos/β-Jun constitutive heterodimerization model and a rapamycin-
inducible FRB/FKBP interaction system, enabling the visualization of diverse PPIs in
distinct subcellular compartments with exceptional specificity and sensitivity, particularly
at the physiological temperature 37 ◦C in live mammalian cells [69]. An orange-colored
BiFC system was established using the Kusabira-Orange (KO) protein isolated from the
stony coral Fungia concinna; as a result, the specificity and sensitivity were enhanced,
thus expanding the potential applications of multicolor BiFC analysis [70]. However, the
auto-fluorescent protein (AFP) fragment of the BiFC complex tends to accumulate and
precipitate in vitro, making it difficult to characterize physical properties, so chimeric AFP
was created by directly fusing different DNA encoding AFP fragments [71]. In summary,
the localization of proteins within cells and their interactions can be ascertained through
fluorescence signals, obviating the necessity for chemical alterations to the proteins.
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2.2. Photosensitive Pigments for In Vivo Imaging

Photosensitive pigments are a type of photoreceptor in bacteria or plants that can
absorb red and near-infrared light and mediate the transmission of light signals [72].
The iRFP–BiFC system, which utilizes the bacterial photosensitive pigment intrinsic red
fluorescent protein (iRFP), emitting long waves, has potential applications for in vivo
imaging [73]. A protein-fragment complementation assay (PCA) was introduced based
on an engineered Deinococcus radiodurans infrared fluorescent protein IFP1.4, enabling
analysis of hormone-induced signaling complexes in living yeast and mammalian cells
at the nanometer resolution [74]. Based on cyanobacterial pigments, mini-red fluorescent
protein 670 nanoparticles (miRFP670 nano) [75] and IFP2.0 [76] with higher signal
intensity and photostability were developed. By activating photosensitive pigments
under specific lighting conditions, fluorescence signals can be generated at specific time
and spatial points, allowing for the observation of precise regulatory mechanisms for a
certain physiological process.

2.3. Vector System Expressing the Fluorescent Fusion Protein

A stable and efficient expression vector of the fusion protein is critical for the BiFC
experiments. Expression vectors based on the pSAT series of vectors allow for determining
the interaction of a “bait” protein and multiple “prey” proteins and are thus advantageous
for the implementation of multicolor BiFC in living plant cells [77]. The Gateway vector
system can be applied to screen interacting proteins on a large scale, as different cDNAs can
be cloned into vectors without the use of restriction enzymes and ligases [78]. However, the
use of multiple vectors will lead to differences in the expression levels of fusion proteins,
making it difficult to interpret the interaction results quantitatively, whereas, using the
improved Gateway-compatible cloning system, multiple target fragments can be transferred
into the same vector to ensure the same amount of expression [79]. Subsequently, a dual-
ORF expression BiFC system (pDOE) was constructed, which ensures that the fusion protein
can be introduced into transformed cells in a 1:1 concentration ratio, but the efficiency is low
when multiple DNA fragments are assembled in a predetermined order [80]. Therefore, the
advantages of Golden Gate and Gateway cloning methods were combined to design a set
of double-compatible pGate vectors, which could assemble multiple destination sequences
in a predetermined order [81]. Furthermore, the creation of an All-in-One fluorescent
fusion protein (AioFFP) vector toolbox using Gibson assembly enables the simultaneous
incorporation of multiple fluorescent fusion protein expression units into a single plasmid,
facilitating the co-expression of multiple genes in BiFC detection [82]. In addition, it is
possible to improve the vector by selecting efficient promoters, inserting linker sequences,
and optimizing the fusion protein configuration to ensure the robust expression of the
fusion protein within the cell.

2.4. The Application of BiFC

The application of BiFC in the field of life science is constantly expanding. To ap-
ply BiFC to all mammalian cells and cells that are difficult to transfect with plasmids,
the gene delivery tool Multiple Bacullovirus and Mammalian (MultiBacMam) combined
with BiFC allows for efficient PPI screening in cells [44]. Through the optimization of
the protoplast-based transient expression system (PTES), enhanced efficiency in obtaining
active protoplasts can be achieved, and when coupled with the BiFC experiment, this
optimized PTES can be effectively utilized for investigating protein interactions in mono-
cotyledonous plants [83]. Modular BiFC (MoBiFC) was developed to observe specific pro-
tein interactions in chlorophylls, and its application was extended to other organelles [84].
Organelles perform biological functions through interactions of key proteins in contact
with membranes [85]. In 2023, the proximity labeling strategy (BiFCPL) was developed to
study the membrane contact proteome between mitochondria and endoplasmic reticulum
(MERCs) [86]. In order to further analyze the structure and protein affinity of the complex,
One Pattern Analysis (OPA) was recently developed by combining FRET-FLIM and BiFC,
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which can be used for protein affinity analysis and provide key information such as distance
relationship and orientation of PPI [87].

BiFC technology can also be used for large-scale screening of interacting proteins.
Lee et al. developed an arrayed screening strategy based on protein complementation,
systematically studied protein–protein interactions in living cells, and conducted large-
scale screening of telomere regulators, revealing the basic molecular niche of human
telomere regulation and providing valuable tools for studying mammalian signaling
pathways in cells [88]. Bischof et al. established a multicolor BiFC library, which covers
most transcription factors of Drosophila and can be used for large-scale identification
and analysis of PPIs in Drosophila [89]. A novel experimental strategy for cell-based
protein complementation assay (Cell-PCA) has been proposed, which is based on BiFC,
combined with high-throughput sequencing methods, and can be used to screen proteins
interacting with different decoy proteins at the whole genome level in the same live-cell
context [90]. More recently, a coupled BiFC/GFP binding peptide (GBP) nanobody-based
technique was utilized to unravel the function of defined dimers of transcription factors
in living cells [91]. In summary, these improvements have diversified and refined the
application of BiFC techniques in biological research.

3. Protein–Protein Interactions Revealed by BiFC in Cell Signaling Pathways
3.1. TOR Signaling Pathway

The target of rapamycin (TOR), a serine/threonine kinase within the phosphatidyli-
nositol 3-kinase-related kinase family, governs a signaling network critical for cell cycle
progression, protein synthesis, autophagy, and other processes necessary for cell viability
and growth (Figure 3A). The TOR signaling pathway is a highly conserved molecular
mechanism that regulates cell growth and metabolism in response to environmental and
nutritional stimuli. Especially, this pathway regulates intracellular autophagy [92–94],
which requires the participation of a group of autophagy-related (ATG) proteins [95,96]
(Figure 3A). A reduction in TOR activity was proven to trigger the autophagy process,
while phosphatidic acid (PA), a negative regulator of autophagy in animals, was found to
activate the mammalian target of rapamycin complex 1 (mTORC1) [97]. In the investigation
of the suppressive impact of PA on autophagy in plants, multiple assay techniques includ-
ing BiFC, yeast two-hybrid (Y2H), glutathione S-transferase (GST) pull-down, Co-IP, and
FRET-FLIM were used to elucidate the interaction of GAPCs (glyceraldehyde-3-phosphate
dehydrogenase), PGK3 (phosphoglycerate kinase 3), and autophagy-related proteins (ATG3
and ATG6) within the endoplasmic reticulum (ER) (Figure 3A), and these complexes were
notably strengthened in the presence of PA, suggesting that the interaction complex may
play a role in the early regulation of autophagy in the ER [98]. When cells experience
disturbances from internal and external stimuli, misfolded proteins accumulate in the ER,
triggering the onset of ER autophagy [99]. Through Y2H and BiFC assays, ATG8-interacting
proteins 1 and 2 (ATI1 and ATI2) were found to interact directly with AGO1 on the ER
in agroinfiltrated tobacco leaves, supporting the involvement of ATI1 and ATI2 in the
Argonaute (Ago)-mediated ER autophagy pathway [100]. Y2H and in vivo BiFC assays
verified that ER-localized MSBP1 (Membrane Steroid Binding Protein 1) interacts with the
selective autophagy cargo receptors ATI1 and ATI2 [101].

Post-translational covalent modification of histones is also involved in the regulation
of autophagy [102], and mTOR can affect the transcription of histone acetyltransferase
and regulate the expression of autophagy genes [103]. By using BiFC and GST pull-down
techniques, it was found in Magnaporthe oryzae that the domain PHD (Plant Home-
odomain) of Snt2 protein binds to acetylated histone H3, and the domain ELM2 binds to
deacetylase Hos2 to regulate the expression of autophagy genes ATG6, 15, 16, and 22,
while the expression of Snt2 is positively regulated by TOR [104] (Figure 3A). In response
to cellular stress or nutrient deprivation, the sucrose non-fermenting protein-1-related
protein kinase (SnRK1) inhibits TOR activity (Figure 3A), leading to the dephospho-
rylation of ATG13 and its subsequent binding to ATG1 to form precursor complexes,
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thereby initiating the process of autophagy [96,105,106]. Y2H and BiFC results showed
that glycoprotein encoded by Rice stripe mosaic cytorhabdovirus (RSMV) interacts with
SnRK1B in Oryza sativa to promote the kinase activity of SnRK1B on ATG6b (Figure 3A),
thereby positively regulating autophagy [107]. Studies have shown that SnRK and TOR
proteins play critical roles in plant sugar metabolism [108,109]. Results of Y2H and BiFC
assays demonstrated that TOR in Vitis vinifera interacts with SnRK1.1 to regulate SUCs
(sucrose transporters), HTs (hexose transporters), HXKs (hexokinases), and other glucose
metabolism-related genes [110] (Figure 3A).
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TOR can also phosphorylate the microtubule-associated protein tau (MAPT), leading
to MAPT aggregation and inhibition of autophagy [111]. However, an anti-depressant
drug, sertraline (Sert), as an autophagy inducer, can activate AMP-activated protein kinase
(AMPK), thereby inhibiting the oligomerization of MAPT in MAPT-BiFC cells [43]. This
negative regulation of the TOR pathway promotes the autophagic degradation of MAPT,
thus suppressing tauopathy [43]. The subunits TOR1, TOR2, and Kog1 form the TOR
Complex 1 (TORC1), which regulates cell growth by modulating autophagy and ribosome
biogenesis processes [112,113]. A genome-wide examination of the TORC1 interactome was
performed in yeast through BiFC assay, resulting in the identification of predominant BiFC
signals localized at the vacuolar membrane, and a subset of these signals were found within
cytoplasmic messenger ribonucleoprotein (mRNP) granules, where TORC1 modulates the
activity of the translation repressor protein Scd6 via phosphorylation, thereby influencing
the regulation of post-transcriptional gene expression [114].

3.2. PI3K/Akt Signaling Pathway

The signaling pathway PI3K/Akt (phosphatidylinositol 3′-kinase and RAC-alpha
serine/threonine-protein kinase or protein kinase B) plays a crucial role in intracellular
signal transduction (Figure 3B), influencing processes such as cell growth, prolifera-
tion, survival, and metabolism [115,116]. In research pertaining to this pathway, the
BiFC technique is primarily utilized for the visualization and analysis of PPIs among
key components. Snail and GSK-3β, integral constituents of the PI3K/Akt pathway,
play a regulatory role in the epithelial–mesenchymal transition (EMT) process [117]
(Figure 3B). Results of immunoprecipitation and BiFC assays showed that overexpres-
sion of ajuba LIM protein (AJUBA) can recruit tumor necrosis factor associated factor 6
(TRAF6), enhance Akt phosphorylation, activate the Akt/GSK-3β/Snail signaling path-
way, and promote the EMT process, thereby enhancing the invasion and metastasis
ability of HCC (Hepatocellular Carcinoma cells) [118] (Figure 3B). Epithelial membrane
protein 3 (EMP3) can affect the PI3K-Akt pathway in cancer cells [119,120]. Y2H screen-
ing identified 10 previously unreported interaction partners of EMP3, eight of which
were further verified through BiFC and Proximity Ligation Assay (PLA); among these
candidate interactors, Flotillin-1 (FLOT1), HIV Tat-interacting protein 2 (HTATIP2),
Ras-related protein 2A (RAP2A), and Proteolipid protein 2 (PLP2) exhibited strong sig-
nals in BiFC and PLA assays [121] (Figure 3B). FLOT1 and PLP2 have been identified
as positive regulators of the PI3K-AKT signaling pathway, as evidenced by previous
studies [122,123]. Conversely, HTATIP2 and CMTM5 (CKLF-like MARVEL transmem-
brane domain-containing member 5) have been shown to exert negative regulatory
effects on this pathway [124,125]. Additionally, RAP2A has been found to exhibit both
positive and negative regulatory capabilities in Akt signaling [126,127] (Figure 3B).

Lysosomes are known to be major organelles involved in autophagy [128,129]. Y2H
and BiFC assays have substantiated the occurrence of an interaction between Akt and
Phafin2 in both the cytoplasm and nucleus; nevertheless, upon treatment of cells with
rapamycin or HBSS (Hank’s Balanced Salt Solution), the Akt-Phafin2 complex is aug-
mented in the lysosome, thereby triggering autophagy [130] (Figure 3B). Subsequently, the
proteins that interact with the Akt complex in the lysosomes after autophagy induction
was further investigated by means of time-of-flight mass spectrometry (TOF/MS), BiFC,
and immunofluorescent assays, and it was revealed that VRK2 (Vaccinia-related kinase 2)
maintains Akt kinase activity by interacting with Akt in the lysosomes, thereby regulating
autophagy and cell proliferation [131] (Figure 3B).

3.3. Wnt/β-Catenin Signaling Pathway

The primary regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β
destruction complex (DC) (Figure 3C), which allows for the degradation of cytoplasmic
β-catenin in the absence of external stimulation. The stability of β-catenin protein is
critical in the regulation of the Wnt signaling pathway [132] (Figure 3C). When the
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Wnt signaling pathway is activated, the Axin/APC/GSK3β destruction complex (DC)
becomes inactive, leading to increased stability of its target protein β-catenin, which
accumulates and then translocates to the nucleus [133–136] (Figure 3C). The BiFC assay
demonstrated that the conformational alteration of DC is triggered by the presence
of Wnt ligands, leading to the inhibition of the Axin–GSK3β interaction in Drosophila,
thereby impeding the degradation of β-catenin [137] (Figure 3C). Subsequently, β-catenin
and T-cell transcription factor (TCF) interact in the nucleus and synergistically regulate
the expression of target genes MYC, CCND1, and CDKN2A to affect cell survival [138]
(Figure 3C), and BiFC signals are strong in the S and G2 phases of cells [20]. The dimeriza-
tion of PAC1 (pituitary adenylate cyclase-activating polypeptide) was confirmed using
BiFC and the bioluminescence resonance energy transfer (BRET) assay [139], and the
PAC1 dimerization is migrated from the plasma membrane to the nucleus under serum
withdrawal conditions [140]. Interestingly, similar to the frizzled receptor dimer [141],
the dependent basic activity of PAC1 dimerization can also activate the Wnt/β-catenin
pathway, increasing the levels of β-catenin, cyclin D1, and c-myc in the pathway, and as
a result, the cells show higher anti-apoptotic activity [140]. In addition, CAM-1, a ROR
receptor tyrosine kinase (RTK), is an unconventional receptor of Wnt associated with
neural signaling processes dependent on the Wnt pathway [142–144]. Through genetic
and BiFC assays, it was demonstrated that presynaptic RIG-3, an immunoglobulin su-
perfamily protein, interacts directly with the immunoglobulin domain of postsynaptic
CAM-1, a nonconventional Wnt receptor, at the Caenorhabditis elegans neuromuscular
junction (NMJ) [145] (Figure 3C). This interaction subsequently suppresses Wnt/LIN-44
signaling, thereby preserving the appropriate levels of acetylcholine receptor, AChR/
ACR-16, at the neuromuscular synapse [145] (Figure 3C).

3.4. NF-κB Signaling Pathway

The NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) family
in mammals consists of five closely related transcription factors: p50, p52, p65 (RelA),
c-Rel, and RelB [146] (Figure 3D). NF-κB dimers formed by the two subunits p50 and
p65 (RelA) are involved in regulating the expression of genes related to cell survival,
immunity, and anti-apoptosis [147–149]. The activator protein 1 (AP-1) superfamily, as
dimeric transcription factors associated with tumor development, is composed of different
family protein members such as Jun and Fos [150] (Figure 3D). It was revealed by BiFC
that Rel family proteins p50 and p65 in NF-κB interact with Fos and Jun and inhibit their
transcriptional activities [61] (Figure 3D). Subsequently, a BiFC-based FRET (BiFC-FRET)
assay was used to confirm that the trimer complex formed by the interaction between the
p65 and the Fos-Jun heterodimer of AP-1 participates in the regulation of the target gene
of AP-1 [65] (Figure 3D). BATF3 is a member of the ATF-like family and belongs to the
AP-1 transcription factor family [151,152]. It was proven by BiFC assay that the interaction
between CiBATF3 and interleukin 10 (IL-10) in Ctenopharyngodon idella negatively regulates
the activity of NF-κB [153] (Figure 3D). GST pull-down and BiFC assays verified that p65
inhibits the activity of NF-κB pathway through interaction with the 14-3-3 proteins in the
neuronal nuclei (Figure 3D), thereby protecting neurons from ischemia (I/R) injury and
regulating nerve cell survival [154]. By combining BiFC and a transposon gene trap system,
researchers have screened the protein Calcyclin Binding Protein (CACYBP) that interacts
with p65 and found that their interaction enhances the activity of NF-κB under TNFα
stimulation [155] (Figure 3D). Subcellular co-localization and BiFC assay results showed
that other protein interaction complexes can also affect the activity of NF-κB. For example,
the interaction between LMP1 (latent membrane protein 1) and Tmem134 (transmembrane
protein 134) [156] or the interaction between the TIR (Toll-interleukin 1-resistance) domain
and Toll-like receptor 3 (Toll-3) [157] can significantly activate the NF-κB pathway and
enhance the immune function of the body (Figure 3D).
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3.5. MAPK Signaling Pathway

The Mitogen-Activated Protein Kinase (MAPK) signaling pathway, which mainly
consists of Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs or MEKKs),
Mitogen-Activated Protein Kinase Kinases (MAPKKs or MKKs or MEKs), and Mitogen-
Activated Protein Kinases (MAPKs or MPKs), regulates a variety of cellular activities
including proliferation, differentiation, survival, and death [158] (Figure 3E). This pathway
is crucial for regulating immune response mechanisms [159]. Previous studies have shown
that MEKK1 and MPK4 are negative regulators of innate immune response in plants, and
their deletion can induce constitutive expression of pathogenesis-related genes [160,161],
while the MEKK1 mutant can cause programmed cell death [161]. The BiFC assay demon-
strated that MEKK1 interacts with MKK1 and MKK2 on the plasma membrane and that the
interaction signals of MPK4 with MKK1 and MKK2 appear in the plasma membrane and
nucleus [162] (Figure 3E). These results suggest that MEKK1, MKK1/MKK2, and MPK4
can form a kinase cascade to negatively regulate the innate immune response of plants and
prevent immune hyperplasia [162]. In mammalian cells, a subfamily of 10 dual-specificity
(Thr/Tyr) MAPK phosphatases (MKPs) have the capability to either recognize, bind, and
dephosphorylate a singular class of MAP kinase or to modulate multiple MAPK path-
ways [163]. Genetic analyses and a BiFC assay were conducted to explore the role of MKP
in regulating oxidative stress and pathogen defense responses, confirming that the MAPK
phosphatase 2 (MKP2) and MPK3/MPK6 interaction occurs in both the cytoplasm and
nucleus of Arabidopsis [164] (Figure 3E). In the scenario of fungal infection in Arabidop-
sis, the MKP2 and MPK3/MPK6 interaction can significantly reduce programmed cell
death, referred to as the hypersensitive response (HR) [164], which is similar to the result
of inhibiting MAPKs in plants [159]. Excessive accumulation of H2O2 can also trigger
the HR in plants [165]. Evidence from Y2H and BiFC suggested that MPK31 in cotton
Gossypium hirsutum (G. hirsutum) regulates the production of ROS and HR-like cell death
through interaction with the H2O2-producing protein RBOHB [166]. Apart from the HR
mediated by resistance proteins, plants can detect pathogens by surface-localized pattern
recognition receptors (PRRs) via the recognition of carbohydrate-containing molecules
such as fungal chitin, bacterial peptidoglycans, and extracellular ATP, which also activate
multiple immune-related pathways, including the MAPK cascade [167]. It was revealed
in rice (Oryza sativa L.) based on the BiFC assay that RLCK185 (receptor-like cytoplasmic
kinase) regulates chitin-induced MAPK activation through interaction with MAPKKK11
and MAPKKK18 at the plasma membrane, and that MAPKKK18 interacts with MKK4, an
upstream MAPKK component of MPK3/6, thus forming the MAPK cascade consisting of
MAPKKK18–MKK4–MPK3/6 [168].

The MAPK cascade pathway is associated with the response to abiotic stress [169].
MAPKKK plays an important role as the largest gene family in the MAPK cascade [170].
To explore the physiological functions of MAPKKK in biotic and abiotic stress responses
in the oilseed crop canola (Brassica napus L.), 15 interaction pairs between 28 MAPKKK
proteins and 8 MAPKK proteins were identified via the Y2H assay and further validated
through BiFC analysis [171]. The extensive interactions of MKK with MAP3K and MPK
in G. hirsutum were revealed by Y2H and BiFC experiments, followed by VIGS (virus-
induced gene silencing) assays to confirm the involvement of the MAP3K14-MKK11-MPK31
pathway in the drought stress response of cotton [172]. The subcellular localization and
BiFC assays revealed that MAPK3 interacts with the proteins in the cold response pathway,
ICE41, ICE87, and CBFIVd-D9 in the nucleus or in the plasma membrane of wheat (Triticum
aestivum L.); this interaction is crucial for the negative regulation of plant cold tolerance,
as MAPK3 mediates the phosphorylation and subsequent degradation of ICE and CBF
proteins [173].

As an emerging biological technique, BiFC provides a powerful tool for deciphering
cellular signaling pathways. The application of BiFC in cell signaling pathway research en-
ables real-time and intuitive observation of PPIs, providing much convenience for pathway
research. A large number of studies have successfully revealed the molecular mechanisms
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of various cellular signaling pathways using the BiFC technique. By using BiFC to gain a
deeper understanding of molecular interactions, the regulatory mechanisms of signaling
pathways can be revealed, providing key insights into cellular physiological processes,
tissue development, and disease occurrence. In addition, this technology is expected to help
identify new signaling pathway members and key regulatory factors, providing potential
targets for the development of new drugs and treatment methods.

4. Protein—Protein Interactions Demonstrated by BiFC in Plant Hormone
Signaling Pathways

In addition to being applied in the study of classic signaling pathways, BiFC has also
been widely utilized in the investigation of plant hormones. The determination of the
molecular interactions in the plant hormone pathways aids in elucidating the molecular
mechanisms underlying plant growth, development, and stress responses, thereby laying
the groundwork for the development of high-yield and stress-resistant plant varieties.

4.1. Ethylene Signaling Pathway

Ethylene accelerates fruit ripening, organ senescence and abscission, and promotes
the differentiation of plant sexual organs [174]. The ethylene signaling pathway involves
multiple families of transcription factors [175,176] (Figure 4A). Results of Y2H, GST pull-
down, and BiFC assays confirmed the interaction between Ein3-binding F-box protein
(MaEBF1) and MaNAC67-like protein, key components of the ethylene signaling path-
way in Fenjiao banana (Musa ABB Pisang Awak), and their interaction further activates
the promoters of starch degradation-related genes MaBAM6 and MaSEX4 (Figure 4A),
thus facilitating fruit softening and ripening [177]. Yeast split-ubiquitin assays and BiFC
studies indicated that Arabidopsis CPR5 (the constitutive expressor of pathogenesis-related
genes 5) directly interacts with the ETR1 receptor in regulating ethylene signal transduc-
tion [178,179] (Figure 4A). BiFC and luciferase complementation imaging (LCI) assays
confirmed that CPR5 in Melon (Cucumis melo L.) regulates the bisexual flower phenotype
through interaction with ETR1 [180] (Figure 4A). The ethylene-responsive factor (ERF)
belongs to the APETALA 2/ethylene response factor (AP2/ERF) superfamily and is a core
component of the ethylene signaling pathway [181]. Multiple techniques including Y2H,
BiFC, GST pull-down, and luciferase complementation imaging (LCI) were jointly utilized
to discover that chrysanthemum CmERF3 inhibits the expression of flowering integrators
(FTL1) by interacting with B-Box (BBX) family member CmBBX8 (Figure 4A), thereby
maintaining the vegetative growth of Chrysanthemum morifolium and preventing premature
flowering [182]. It was found in wheat (Triticum aestivum L.) through GST pull-down, Co-IP,
Y2H, and BiFC assays that TabHLH094 (a basic helix–loop–helix transcription factor) and
TaMYC8 (a negative regulator of cadmium-responsive ethylene signaling) form an interac-
tive complex, reducing their ability to bind to the ERF6 promoter and thereby inhibiting the
activities of 1-aminocyclopropane-1-carboxylate oxidase (ACO) and 1-aminocyclopropane-
1-carboxylic acid synthase (ACS), two key rate-limiting enzymes in the process of plant
ethylene biosynthesis [183] (Figure 4A). Results of Y2H, BiFC, and LCI assays showed that
the protein ERF38 interacts with MYB113, enhancing the role of MYB113 on the promoters
of ACS1 (Figure 4A), ultimately boosting transcriptional efficiency in eggplant (Solanum
melongena L.) [184]. Ethylene can also regulate plant responses to abiotic stresses such as
drought [185,186]. When plants experience heat stress, there is an elevation in the ethylene
content present in their leaves [187]. Evidence from BiFC and Y2H assays of Lilium longiflo-
rum showed that ERF110 interacts with the heat stress transcription factor (HsfA2) in the
nucleus to regulate the expression of heat stress response (HSR) genes and improve heat
tolerance [188] (Figure 4A). In the investigation of the functional mechanism of DREB1 in
soybean (Glycine max L.), it was demonstrated through Y2H and BiFC experiments that
two ERF-like transcription factors ERF008 and ERF106 interact with DREB1 (Figure 4A),
thereby promoting the activation of drought-resistant genes COMT, TDC, and SANT [189].
In summary, the BiFC technique, either alone or in combination with other technologies,
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enables researchers to visualize PPIs and the subcellular localization of key components in
the ethylene signaling pathway.
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4.2. Auxin Signaling Pathway

The growth hormone auxin mainly includes indole-3-acetic acid (IAA), indole-3-
butyric acid (IBA), naphthoic acid (NAA), etc. Auxin plays a crucial role in various physio-
logical processes in plants, such as promoting growth and development, enhancing stress
tolerance, bolstering disease resistance, and improving resistance to herbicides [190,191].
The auxin pathway relies on two core regulatory factors, indole-3-acetic acid (IAA) protein
and auxin response factors (ARFs) [192,193] (Figure 4B). It was confirmed by BiFC that
ARF23 and ARF29 interact with IAA28 in the nucleus of Populus trichocarpa (P. trichocarpa) to
participate in the IAA signal transduction process [194] (Figure 4B). IAA recruits TOPLESS
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(TPL) corepressors to inhibit the transcription of ARF auxin-responsive genes [195]. Y2H
and BiFC assays demonstrated in Chrysanthemum morifolium that CmTPL1-1, a product
of a Chrysanthemum TPL/TPR family gene, interacts with CmWOX4, CmLBD38, and
CmLBD36 in modulating the auxin signaling pathway to regulate the development of root
bud apical meristem and lateral organs [196] (Figure 4B). ARF5 interacts with odor-related
auxin-responsive IAA4 and IAA6 in Hedychium coronarium to regulate the transcriptional
activity of terpene synthase 3 (TPS3) in synthesizing volatile compounds related to floral
fragrance β-ocimene, which was verified by Y2H and BiFC assays [197] (Figure 4B). When
faced with pathogen infection, indole-3-acetic acid-amido synthetase (IAAS) induces the
accumulation of conjugated auxin IAA-Asp, promoting the proliferation of pathogens [198].
It was confirmed through Y2H and BiFC that IAAS interacts with the Nia-pro protein
encoded by Potato virus Y (PVY), inducing the expression of IAAS, while downregulating
auxin-responsive genes, Auxin response factor 1 (ARF1), Auxin response factor 3 (ARF3), and
small auxin upregulated RNA 3 (SAUR3) [199] (Figure 4B). Auxin enhances plant resistance
to salt stress by inducing expansions and controlling cell wall plasticity [200]. It was proven
through a BiFC assay that Chenopodium quinoa α-expansin 50 (CqEXPA50) interacts with
the auxin pathway genes ARF, IAA, Gretchen Hagen 3 (GH3), and SAUR, resulting in the
accumulation of photosynthetic pigments under salt stress [201] (Figure 4B). Y2H and BiFC
evidence showed that the interaction between HLH85 and phosphate transporter chamber
PHF1 in Sweet sorghum (Sorghum bicolor L.) disrupts the transport and accumulation of
phosphorus (Pi) under salt stress and inhibits the expression of auxin pathway genes PIN3
and SAUR50 (Figure 4B), thereby reducing plant salt tolerance [202]. Collectively, by visu-
alizing the interactions between auxin receptors and downstream signaling components,
the BiFC technique has provided insights into the spatiotemporal dynamics and regulatory
mechanisms of auxin signaling.

4.3. GA Signaling Pathway

Gibberellin (GA) signaling regulates various plant processes such as seed germina-
tion, stem elongation, root growth, flowering, and bud dormancy release in perennial
woody plants [203–208]. The precise regulation of GA metabolism and signaling is crucial
for plant growth and adaptation to the environment [209]. The GA signal is recognized
by its nuclear receptor, GA INSENSITIVE DWARF1 (GID1), which initiates the GA sig-
naling pathway by facilitating the interaction between GID1 and DELLA, a repressor of
GA signaling [210]. GA regulates plant leaf bud dormancy and plant defense response
through the GA-GID1-DELLA regulatory module, with DELLA proteins serving as key
switches in GA signal transduction [211–213]. It was demonstrated through Y2H, BiFC,
and GST pull-down assays that the C-terminal domain of PsF-box1 interacts with the
DELLA member PsRGL1 in tobacco (Nicotiana benthamiana L.) leaves (Figure 4B), leading
to the ubiquitination-dependent degradation of PsRGL1 and facilitating the release of tree
peony bud dormancy [214]. The DELLA family members RGA1 and RGL1 interact with
the hormone signaling regulator KNOX1 in Rape (Brassica campestris L.) (Figure 4B), as
confirmed by Y2H and BiFC assays, facilitating bud differentiation and bolting via the
GA pathway [215]. Flowering-promoting factors (FPFs) of Mango (Mangifera indica L.)
were revealed through BiFC assays to interact with several DELLA proteins in positive
regulation of both flowering promotion and root growth enhancement in response to GA
treatment [216] (Figure 4B). The interaction between the auxin response factor and DELLA
influences the GA and auxin signaling pathways, thereby modulating fruit development in
tomato (Solanum lycopersicum L.) [217]. The overexpression of the atypical bHLH transcrip-
tion factor SlPRE5 in tomatoes results in elevated levels of GA, and SlPRE5 interacts with
bHLH proteins SlAIF1, SlAIF2, and SlPAR1 (Figure 4B), as demonstrated through Y2H and
BiFC assays, to govern plant morphology and leaf chlorophyll accumulation, consequently
impacting the process of photosynthesis [218]. Subsequently, it was elucidated through
Y2H and BiFC assays that the interaction between an atypical basic bHLH transcription
factor SlPRE3 and other bHLH proteins SlAIF1/SlAIF2/SlPAR1/SlIBH1 influences cell ex-
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pansion and modulates lateral root growth associated with GA signaling [219] (Figure 4B).
In conclusion, a growing body of research suggests that BiFC, either independently or in
conjunction with other methodologies like Y2H and GST pull-down, offers a foundational
comprehension of gene functionality in the GA signaling pathway. The BiFC assay will
play a pivotal role in elucidating the complex interactions between GA and other hormonal
signaling pathways, ultimately leading to the improvement of crop production and abiotic
stress tolerance in plants.

4.4. ABA Signaling Pathway

The plant hormone abscisic acid (ABA) plays a pivotal role in regulating various
physiological processes, particularly in response to abiotic stresses such as drought, salinity,
and cold [220–223]. ABA and GA modulate plant growth and development through an an-
tagonistic interplay [224]. The ABA signaling pathway is complex and involves numerous
proteins that interact to transduce the hormonal signal into cellular responses (Figure 4D).
In the context of the ABA signaling pathway, the BiFC assay has been used to decipher
the interactions between key players. The bZIP transcription factor ABF1 was found to
be phosphorylated by the SnRK2 (sucrose non-fermenting 1-related protein kinase 2) fam-
ily member SAPK8 under exogenous ABA induction, and the interaction between ABF1
and SAPK8 was validated through Y2H, GST pull-down, BiFC, and kinase assays [225]
(Figure 4B). Further investigation demonstrated that ABF1 interacts with the flowering
negative regulatory factor FIE2 to recruit PRC2-mediated H3K27me3 modification to the
target sites for inhibition, thereby delaying the flowering process of Oryza sativa [225]. In
addition, SnRK2.6, a member of the SnRK2 family, activates the ABA signaling pathway
and helps plants adapt to drought stress by controlling stomatal closure [226]. The results
of Y2H, BiFC, and FLC (Firefly luciferase complementation imaging assay) experiments
suggested that protein phosphatase type 2C group A (PP2AC) interacts with a photosyn-
thetic phosphatase activator (PTPA) (Figure 4B), thereby exerting a negative regulatory
effect on SnRK2.6 activity, ultimately resulting in stomatal opening in apple leaves [227];
their interaction was further verified by GST pull-down and MST (microscale thermophore-
sis) assays [228]. Furthermore, the results of Y2H and BiFC experiments indicated that
the ABA receptor Pyrabastin Resistance 1-Like (PYL) interacts with PP2CA proteins in
the presence of ABA signaling to establish a regulatory network that triggers stomatal
closure in cotton Gossypium hirsutum L. during periods of drought [229]. Additional BiFC
data also supported the notion that the interaction among PYL/PP2CA/SnRK2 proteins
constitutes an ABA signal transduction module (Figure 4B), which plays a crucial role in
mediating plant responses to drought stress [230,231]. Currently, there are reports indi-
cating that members of the HD Zip transcription factor family, specifically ATHB-6 and
HDZ5-6A, are involved in activating the ABA pathway in maize Zea mays L. and wheat
Triticum aestivum L. to respond to drought stress [187,232]. Subsequently, it was confirmed
through BiFC and GST pull-down experiments that Zmhdz9 interacts with ZmWRKY120
and ZmTCP9 (Figure 4B), promoting the expression of the key enzyme gene NCED1 in
ABA biosynthesis, thereby enhancing drought resistance in Zea mays L. [233]. Taken to-
gether, the utilization of the BiFC assay in elucidating the ABA signaling pathway has been
revolutionary, confirming established interactions and uncovering new components and
controllers, thereby enhancing our understanding of this pivotal hormonal pathway.

In summary, the use of the BiFC technique to study protein–protein interactions in
plant hormone pathways is of great significance for a deeper understanding of plant growth
and development regulation, for revealing the molecular mechanisms by which plants
respond to biotic and abiotic stresses, and also for developing new stress resistance tech-
nologies and optimizing agricultural production. In the future, the continuous application
and progress of this technology will provide more scientific support and technological
means for cultivating stress-tolerant varieties, promoting the development of precision
agriculture and sustainable agriculture.
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5. Optimization and Improvement of BiFC in Deciphering Protein–Protein Interactions

Despite the numerous advantages of the BiFC technique for visualizing PPIs, observing
living cells in real-time, and analyzing subcellular localization, there are also limitations,
including false-positive signals, limited spatial resolution, and weak fluorescence intensity,
which necessitate ongoing optimization and improvement efforts (Figure 5A).
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5.1. Reduction of False-Positive Signal

False positives may arise due to nonspecific interactions of fluorescent fragments
that self-assemble into a full fluorescent protein. A micro-tagging system, Tripartite Split-
GFP, which is comprised of GFP10, GFP11, and detector GFP1-9 tags, minimizes protein
interference and aggregation, and displays reduced background signals in mammalian
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cells, largely due to its concise labeling system [234] (Figure 5B). Mutations at certain amino
acid residues located in the C-terminal fragment of Superfolder GFP (sfGFP), such as
R219, D220, I229, and T230, have been demonstrated to hinder the self-assembly ability of
sfGFP, resulting in a decrease in false-positive signals in negative controls [235] (Figure 5B).
Additionally, segmentation at residue 210 of monomeric Venus (mVenus) can effectively
decrease self-assembly, eliminate background signal, and precisely detect transformed
cells in conjunction with the Golgi localization marker mTurquoise2 (mTq2) [80]. By
incorporating an optical marker with one of the fragmented fluorescent proteins and
utilizing it as a reference signal, the detection of non-specific PPIs can be prevented through
the quantification of the fluorescence ratio between the BiFC signal and the reference signal;
this method is referred to as BAC-BiFC (background assessable and correctable-bimolecular
fluorescence complementation) [236] (Figure 5C). In BiFC experiments, the irreversible
complementary binding of the N-terminal and C-terminal fragments of fluorescent proteins
may result in artefactual readouts due to weak and transient interactions. Therefore, the
inclusion of positive and negative controls is essential to assess false-positive signals and
ensure the accuracy and reliability of experimental outcomes [61,64]. Cells co-transfected
with the expression vectors pBiFC-bJunVN173 and pBiFC-bFosVC155 may serve as positive
controls to assess the functionality of the experimental system. Conversely, cells transfected
with plasmids solely encoding fluorescent protein fragments, plasmids encoding one target
protein fused to fluorescent protein fragments, or plasmids encoding a non-interacting
mutated partner can be utilized as negative controls.

5.2. Improvement of Spatial Resolution

The conventional BiFC resolution is limited by light diffraction, making it inappro-
priate for detecting PPI at the nanoscale. When utilized in conjunction with Photoacti-
vated Localization Microscopy (PALM) [237] and Stochastic Optical Fluctuation Imaging
(SOFI) [238], the enhanced BiFC technique can be employed for the precise localization
of PPI at the nanoscale level. Nevertheless, BiFC-PALM is limited to observing interact-
ing proteins in fixed cells [237,239], whereas BiFC-SOFI necessitates imaging analysis for
obtaining super-resolution images, rendering it unsuitable for high-resolution real-time
PPI studies in live cells [238]. Real-time monitoring of PPI within living cells was achieved
at the nanoscale resolution using Reversible Saturable Optical Fluorescence Transition
(RESOLFT) nanoscopy [240]. When traditional Fluorescent Protein Indicators are trans-
formed into photo-transformable Fluorescent Protein-based Indicators (ptFP), such as
PAmCherry1 [237], mEos3.2 [239], mIrisFP [241], and rsEGFP2 [240], the identification of
their cleavage sites can be determined by analyzing their individual protein structures.
This approach involves the integration of super-resolution microscopy (SRM) techniques
(BiFC-PALM, BiFC-SOFI, and BiFC-RESOLFT) to enable super-resolution imaging of pro-
tein interactions [242]. Furthermore, the proper manipulation of experimental materials,
such as the deliberate creation of gaps between the lower epidermis and muscle layer
tissues of plant leaves, has been shown to mitigate the potential interference of the muscle
layer and upper epidermis on imaging quality, ultimately enhancing resolution [243].

5.3. Enhancement of Fluorescence Signal

Traditional BiFC methods are hindered by low signal intensity and instability, thereby
restricting their capacity to identify interactions between proteins with weak affinity. The
GGGSGGG-linker sequence was employed for the purpose of connecting mRFP fragments
with target proteins, enhancing the flexibility of the fusion protein interaction process; this
optimization has been shown to have a notable impact on signal strength [244] (Figure 5B).
The improved Tripartite sfGFP can significantly enhance the fluorescence signal by cap-
turing the interacting protein complex with the anti-GFP(1-9) nanobody (VHHr) [245].
The incorporation of Luciferase Bioluminescence Technology-High Bioluminescence Tag
(LgBiT-HiBiT) onto the GFP1-9 and GFP11 fragments results in the conversion of the
sfGFP Tripartite system into a novel Bipartite system, thereby substantially improving
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the interaction signal and signal-to-noise ratio of BiFC detection [246] (Figure 5B). The
tandem near-infrared BiFC system (tBiFC) was developed by linking two fragments of
IFP2.0 (Improved monomeric near-infrared phytochrome 2.0) [76] (Figure 5C) or utilizing
miRFP670nano as the signal module [75], enhancing the intensity and sensitivity of the BiFC
signal while exhibiting superior optical stability. Organic dyes exhibit superior brightness
and light stability compared to fluorescent proteins and can be conjugated to target proteins
through self-labeling [247,248]. Consequently, the Tagged Bimolecular Fluorescence Com-
plementation (TagBiFC) system, which utilizes the Haloalkane Dehalogenase Tag (HaloTag),
offers enhanced signal intensity for visualizing PPIs in live cell imaging [249] (Figure 5D).
Although monomeric near-infrared (NIR) fluorescent proteins (FPs) have a longer wave-
length compared to infrared FP (IFP) and possess attributes such as low cytotoxicity and
suitability for deep penetration imaging, they exhibit relatively low brightness when ex-
cited by conventional lasers [250]. The monomeric IFP 663m (mIFP663) was utilized as
a fluorophore to optimize excitation at 633 nm, exhibiting superior brightness, stability,
and compatibility with subcellular localization in the PPI analysis of viable cells [251].
Moreover, tagged blue fluorescent protein 2 (TagBFP2) exhibits superior brightness and a
superior signal-to-noise ratio in BiFC detection when compared to conventional fluorescent
proteins, enabling the acquisition of high-quality images without the requirement of costly
high-end equipment [15].

6. Concluding Remarks and Future Perspectives

The cell signaling pathway is an important process of information transfer within and
between cells, which regulates cell growth, development, and function. Protein–protein
interactions are one of the core mechanisms by which cell signaling pathways function.
BiFC provides a way to visualize and quantify protein interactions for cell biology research.
The application of BiFC in cell signal transduction research is summarized as follows:
(1) The detection of protein interactions: by directly observing fluorescence signals, the
interaction between proteins can be detected in real-time and dynamically, so the BiFC assay
allows us to understand the regulatory mechanisms of cell signal transduction pathways.
(2) Uncovering the composition of protein complexes: by combining with other protein-
labeling techniques, such as immunolabeling or genetic labeling, BiFC can be used to
identify the composition of protein complexes involved in specific signal transduction
events. (3) Revealing the subcellular localization of protein interactions: luminescence of
fluorescent proteins can provide subcellular localization information of protein interactions,
which is critical for understanding the spatial and temporal regulation of specific signal
transduction events within cells. (4) Drug screening and functional research: BiFC can be
used to screen compounds or small molecules that can affect specific protein interactions,
further providing candidate molecules for drug discovery. In addition, BiFC can also be
used to study the effects of protein interactions on cell functions, such as proliferation,
differentiation, and apoptosis.

The BiFC technique has a broad application prospect in the research of cell signal-
ing pathways, and its future development trend is concentrated in the following aspects:
(1) Improving signal intensity and sensitivity: enhancing the fluorescence signal intensity
and sensitivity of BiFC will enable the detection and quantitative analysis of proteins
with low expression levels or weak interactions, providing more accurate insights into
protein interaction events. (2) Combining with multi-channel and multi-labeling tech-
niques: by introducing fluorescent proteins of different colors or using fluorescent dyes for
multi-channel labeling, multiple interaction events within the same cell can be detected
simultaneously, enabling a more comprehensive understanding of the complexity of gene
regulatory networks. (3) High-resolution imaging and 3D visualization: With the advance-
ment of microscopy technology, more attention will be paid to high-resolution imaging
and 3D visualization. The combination of super-resolution microscopy and imaging tech-
niques will allow for the observation and quantitative analysis of dynamic changes in
protein interactions at the subcellular level [252]. (4) Combining with high-throughput
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omics technology: by integrating large-scale protein interaction data and expression data, a
more accurate and complete gene regulatory network model is constructed. (5) Utilizing
molecular-docking and machine-learning methodologies for the prediction of PPI net-
works [253] and subsequently corroborating these predictions through the application of
BiFC to validate the interactions of the relevant proteins. For example, AlphaFold3 exhibits
exceptional capability in accurately predicting the high-precision structural interactions of
various biological molecules [254].

The current BiFC technique, including in vivo applications, necessitates the use of
plasmids for the expression of exogenous proteins to detect protein interactions. Thus,
the challenge of observing endogenous protein interactions in vivo remains a significant
issue to be addressed. Miyakura et al. [155] fused the N-terminal of Kusabira-Green (mKG)
with the decoy protein and then used PiggyBac transposon to insert the sequence of the
remaining mKG into the genome, randomly fusing endogenous genes and combining
RACE experiments to achieve the screening of endogenous interacting proteins. This
method provides a new way to observe the interaction of endogenous proteins, but the
expression of the decoy protein requires the introduction of foreign plasmids. It may be
possible to insert the expression sequence of fluorescent protein fragments into the genome
at a fixed point, but the selection of insertion sites, the amount of endogenous protein
expression, and the intensity of fluorescent protein need to be verified. Combining BiFC
with other technologies, such as CRISPR-Cas9 gene editing [255,256], live-cell imaging, and
ultra-high-resolution microscopy imaging [252], will further improve our understanding of
protein interactions in cell signaling pathways.
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