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Abstract: The flying foxes optimization (FFO) algorithm stimulated by the strategy used by flying
foxes for subsistence in heat wave environments has shown good performance in the single-objective
domain. Aiming to explore the effectiveness and benefits of the subsistence strategy used by flying
foxes in solving optimization challenges involving multiple objectives, this research proposes a
decomposition-based multi-objective flying foxes optimization algorithm (MOEA/D-FFO). It exhibits
a great population management strategy, which mainly includes the following features. (1) In order
to improve the exploration effectiveness of the flying fox population, a new offspring generation
mechanism is introduced to improve the efficiency of exploration of peripheral space by flying
fox populations. (2) A new population updating approach is proposed to adjust the neighbor
matrices to the corresponding flying fox individuals using the new offspring, with the aim of
enhancing the rate of convergence in the population. Through comparison experiments with classical
algorithms (MOEA/D, NSGA-II, IBEA) and cutting-edge algorithms (MOEA/D-DYTS, MOEA/D-
UR), MOEA/D-FFO achieves more than 11 best results. In addition, the experimental results under
different population sizes show that the proposed algorithm is highly adaptable and has good
application prospects in optimization problems for engineering applications.

Keywords: flying foxes optimization (FFO) algorithm; MOEA/D; multi-objective optimization
problems; bio-inspired algorithms; real-world applications

1. Introduction

Multi-objective optimization problems (MOPs) [1,2] are an important branch of the
optimization field aiming to expedite the optimization of multiple objective functions
concurrently. These problems are widely used across diverse sectors like electrical and
power systems, scheduling, wireless and network systems, robotics, classification and fore-
casting, cloud computing, image processing, environment engineering domains, and many
others [3,4]. The optimization problems involved in these applications are complex and
high-dimensional, which puts higher demands on the effectiveness of solving application
problems. A multi-objective optimization problem is identified as shown in Formula (1).{

minF(X) =
(

f1(X), f2(X), . . . , fm(X))T

subject to : X = (x1, x2, . . . , xn)ϵΩ
(1)

In the domain of decision making, represented by Ω, a function F assigns each element
to a vector within the m-dimensional real-valued space of outcomes, denoted by Rm, where
each dimension corresponds to an objective function. For a given n-dimensional decision
variable X = (x1, x2, . . ., xn) ϵ Ω, X represents a solution for the MOP objective. Suppose
that XA, XB ϵ Ω are two solutions to a MOP if and only if the conditions are satisfied in
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Formula (2) and there exists j ϵ {1, . . ., m} such that XA dominates XB when fj(XA) < fj(XB),
written as XA ≺ XB.

fi(XA) ≤ fi(XB), ∀i ϵ {1, . . . , m} (2)

Within the framework defined, a solution X* achieves Pareto optimality if it is not dom-
inated by any alternative within Ω. The set comprising all such Pareto-optimal solutions is
specified in Formula (3).

PS = {X∗ |¬∃X ϵ Ω, X ≺ X∗ } (3)

Aiming to tackle MOPs, the researchers proposed a multi-objective evolutionary
algorithm and widely applied it to solve real-world problems [5–7], such as portfolio opti-
mization, supply chain management, highway construction processes, argi-technologies
processes, logistics and transportation systems, etc. These applications provide a continu-
ous source of vitality for the research of multi-objective evolutionary algorithms. Among
them, a multi-objective evolutionary algorithm based on decomposition (MOEA/D) [8], as
a multi-objective evolutionary algorithm based on the traditional aggregation method, is
efficient and versatile for problem decomposition. There are three main methods for decom-
posing multi-objective problems: the boundary intersection (BI) approach, the weighted
sum approach, and the Tchebycheff approach. MOEA/D is fundamentally designed to
decompose complex multi-objective optimization challenges into multiple scalarized op-
timization tasks. This method seeks to approximate the Pareto front (PF) [9–11] through
evolutionary strategies and cooperative interactions between these individual tasks. When
a MOP is decomposed into N subproblems, each subproblem is associated with weight
vectors λ that are uniformly distributed and satisfy Formula (4).

λ = (λ1, λ2, . . . , λN)λ1 + λ2 + . . . + λN = 1 (4)

The No Free Lunch (NFL) theorem [12] has led to the development of a large number
of new algorithms. Among them, MOEA/D is regarded as the underlying design model,
which has been extended by many researchers into a variety of other versions [13–16]. By
embedding different optimizers into MOEA/D, the possibilities of using different operators
for efficiently solving MOPs in a decomposition-based framework are explored. With the
progress in computational intelligence, there is a growing focus on swarm intelligent
optimization algorithms, which are well-suited to dealing with complex optimization
problems and finding high-quality solution sets in a shorter period of time. Researchers
have embedded swarm intelligence optimization algorithms as optimizers into MOEA/D
to further improve the solution efficiency and quality when solving different types of MOPs.

Recently, the flying foxes optimization (FFO) algorithm [17] demonstrated excellent
performance in the exploration of single-objective problems. The FFO algorithm employs
a double penalty mechanism for the flying fox operator. For the flying fox operators
whose search areas are too remote and have poor search results, a death mechanism is
implemented to prevent individuals from carrying out meaningless migration operations
in the same place and stop the population from moving in the wrong direction. For the
individuals gathering near the optimal solution on a local scale, the suffocation strategy
is implemented to discourage the population from converging towards the local optima
because of rapid convergence and an inability to continue to search for the global optimal
solution, which greatly improves the algorithm’s rate of convergence and the accuracy of the
solution. The FFO algorithm has demonstrated excellent results in real-world engineering
problems, such as the flow-shop scheduling problem (FSP) [18,19], the minimum spanning
tree (MST) problem [20], and the p-hub location allocation (HLA) problem [21], through its
well-designed survival strategy and implementation.

Given the successful application of swarm-intelligence-based optimization algorithms
in MOEA/D and the robust results of the flying foxes’ survival strategy within the FFO
algorithm for single-objective optimization, this study introduces a novel multi-objective
evolutionary algorithm. This algorithm aims to provide fresh perspectives for solving
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MOPs. It uses the traditional MOEA/D algorithm as a framework and incorporates the
survival strategy of the FFO algorithm, which is called a decomposition-based multi-
objective flying foxes optimization algorithm (MOEA/D-FFO). The main research outlined
in this paper includes the following:

(1) A new, efficient algorithm is provided for solving MOPs. By introducing the flying
foxes’ survival strategy with a penalty mechanism into MOEA/D, the FFO algorithm
is employed for the inaugural time in addressing multi-objective optimization chal-
lenges, and MOEA/D-FFO is proposed. We also further explore the performance of
MOEA/D-FFO in solving MOPs.

(2) In order to make the survival strategy of the FFO algorithm more suitable for solving
MOPs, three improvements are made in conjunction with the original flying foxes’
survival strategy. Firstly, the position calculation strategy of the flying fox individual
is designed and implemented, where the value derived from each single objective
function generated after the decomposition of the multi-objective problem is multi-
plied and summed with the corresponding weight vector of the flying fox individual.
Second, in terms of the iterative approach, a new offspring generation mechanism
is introduced. By adjusting the over-distance death mechanism in the flying foxes’
survival strategy, individuals that are too far away from the optimal solution in the
population can explore other possible solutions to the MOPs, which helps to preserve
the variety within the population. Thirdly, in terms of population delineation, a new
population renewal mechanism is proposed. Instead of iterating all flying foxes as
a whole, individual flying foxes and their corresponding neighbors are treated as a
small population, thus generating multiple flying fox populations for iteration. This
improvement speeds up the convergence of populations.

(3) Compared to the cutting-edge multi-objective evolutionary algorithms (MOEAs),
the algorithm proposed in this paper is subjected to a series of experiments on two
multi-objective test suites and three real-world applications, and the experimental
data illustrate its effectiveness in solving MOPs.

This paper is structured in the following manner. In Section 2, the focus is on the
introduction of the multi-objective evolutionary algorithm. It details the effectiveness of
the MOEA/D framework along with the survival strategy of the FFO algorithm. Section 3
details the architectural underpinnings of the MOEA/D-FFO and explores the principal
enhancements introduced. In Section 4, we compare the performance of the MOEA/D-
FFO algorithm with alternative methods through the application of the DTLZ and ZDT
benchmark series. Additionally, its performance is assessed through the application to
three real-world MOPs. Section 5 concludes this paper by summarizing the advantages of
MOEA/D-FFO and proposing future research directions.

2. Related Work
2.1. Multi-Objective Evolutionary Algorithms

In the process of continuous development and maturation of evolutionary algorithms,
numerous classical multi-objective evolutionary algorithms have been developed, and
they continue to be widely applied due to their outstanding performance. For example,
Deb et al. [22] proposed the non-dominated sorting genetic algorithm II (NSGA-II), which
employs the concepts of non-dominated sorting and crowding distance to organize the
population by categorizing individuals into various non-dominated levels and then uti-
lizes crowding distance to arrange individuals within the same level, ensuring population
diversity within the algorithm. For the multi-objective evolutionary algorithm utilizing
metric-driven search, Zitziler et al. [23] proposed that the core of this algorithm lies in the
concept of initially formulating the optimization objective through a binary performance
metric, followed by its direct integration into the selection process. This means that in this
algorithm this metric can be combined with any metrics to be adjusted according to the spe-
cific needs, and in it no further diversity preservation mechanisms are necessary. Research
conducted on various continuous and discrete benchmark problems has demonstrated
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the significant enhancements of NSGA-II and the strength Pareto evolutionary algorithm
(SPEA2) [24] through the implementation of the indicator-based evolutionary algorithm
(IBEA). Significant progress in multi-objective evolutionary algorithms has been achieved
through intensive research into complex multi-objective optimization issues. Developed
by Zhang et al., MOEA/D [8] has transformed the approach to multi-objective problems
by segmenting them into several single-objective tasks. This method significantly boosts
the effectiveness of multi-objective evolutionary algorithms. By converting multi-objective
optimization challenges into a series of single-objective subproblems, MOEA/D facilitates
their simultaneous optimization using evolutionary algorithms. It enhances this process by
incorporating data from adjacent subproblems, which not only preserves the diversity of
solutions through its decomposition technique but also reduces the likelihood of the popu-
lation converging towards local optima due to the integration of nearby problem insights.

The principles of decomposition in MOEA/D offer a straightforward and efficient
approach for enhancing multi-objective evolutionary algorithms, particularly in addressing
certain challenges, such as fitness alignment and diversity preservation. For instance,
Liangjun Ke et al. introduced MOEA/D-ACO, amalgamating the ant colony algorithm
with MOEA/D and integrating the ant colony algorithm’s emulation of ants’ path selec-
tion behavior based on pheromone concentration [25]. Similarly, Yutao Qi et al. devised
MOEA/D-AWA, incorporating an adaptive weight adjustment mechanism [26]. Zhang et al.
presented MOEA/D-EGO tailored to addressing complex multi-objective optimization
tasks [27]. Leveraging the iterative population strategy from single-objective optimiza-
tion algorithms to expand MOEA/D constitutes a prevalent approach in contemporary
multi-objective algorithm research. In this study, we adopt the established multi-objective
framework of MOEA/D and synergize it with the flying foxes’ survival strategy, resulting
in the development of an innovative multi-objective evolutionary algorithm. Our aim is to
further explore efficient algorithms for solving MOPs.

2.2. FFO Algorithm

The FFO algorithm is able to better adapt to complex and changing environments and
find better solutions in optimization problems by simulating the survival strategy of flying
foxes. Compared with current popular metaheuristic algorithms [28,29], especially when
dealing with unimodal, multimodal, and fixed-dimension objective functions and solving
real-world problems, the FFO algorithm shows a more competitive convergence speed
and superior local and global exploration functionalities. The survival strategy of the FFO
algorithm mainly consists of the migratory behaviors of the flying foxes in the hot region
and the suffocation and death mechanisms of the flying foxes, described as follows.

(1) Movement of Flying Foxes

In the case where the flying fox individual i is far from the optimal solution within the
population, but the flying fox still has the strength to fly to the position of the ideal solution
in the population, the flying fox will fly to the optimal solution to avoid overheating and
dying, utilizing Formula (5) to migrate.

xt+1
i,j = xt

i,j + α ∗ rand
(

cooli,j − xt
i,j

)
(5)

where xt
i,j represents the j-th element of the flying fox individual i in the t-th iteration

and cooli,j represents the j-th element’s current location of the optimal individual in the
population corresponding to individual i. α is a positive attraction constant, rand~U(0,1).

When a flying fox individual is closer to the optimal solution currently found within
the population, it searches for other nearby regions to avoid crowding and suffocation, and
it migrates through Formulas (6) and (7).

nxt+1
i,j = xt

i,j + rand1,j ∗
(

cooli,j − xt
i,j

)
+ rand2,j ∗

(
xt

R1,j − xt
R2, j

)
(6)
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xt+1
i,j =

{
nxt+1

i,j , i f j = k or rand3,j ≥ pa
xt

i,j, otherwise
(7)

Provide that rand is uniformly distributed between 0 and 1, which means rand1,j, rand2,j,
and rand3,j are randomly generated numbers between 0 and 1. pa denotes a probability
constant. xt

R1,j and xt
R2, j

are two randomly selected flying fox individuals’ j-th elements
within all of the current population. k is a number chosen at random from (1, 2, . . ., d) to
guarantee the existence of a minimum of one element of the nxt+1

i,j individuals is selected

to form xt+1
i,j so that the newly generated flying fox individual will not be the same as the

original flying fox individual i, ensuring that the newly generated flying fox individual has
the probability of exploring other locations.

(2) Death and Replacement of Flying Foxes

There are two causes of death in flying foxes: overheating death and suffocation.
Flying foxes that are too far away from the coolest tree in the population to return and in an
extremely hot area are killed by overheating and are replaced by new individuals generated
by Formula (8). At the same time, a survival list (SL) is introduced, which includes a certain
scale of unique optimal solutions currently found within the population.

xt+1
i,j =

∑n
k=1 SLt

k,j

n
(8)

In this scenario, n stands for a fluctuating number between 2 and the total number of
SL and SLt

k,j represents the j-th element of the k-th individual in the SL of the t-th iteration.
Under the suffocation strategy, when a flying fox individual is surrounded by other

flying foxes and reaches crowding, a suffocation death operation is executed. The number
nc of flying fox individuals with the same individual value in the whole flying fox popu-
lation and the corresponding suffocation probability pD = (nc − 1)/(Population size) are
calculated. A stochastic value within the interval (0,1) is obtained. If this value is less than
pD, then two flying foxes die, and two new flying foxes are produced using Formula (8). In
the other case, two flying foxes R1 and R2 are randomly selected to cross over to generate
offspring to replace the dead flying foxes; the result is shown in Formula (9).

o f f spring1 = L ∗ R1 + (1 − L) ∗ R2o f f spring2 = L ∗ R2 + (1 − L) ∗ R1 (9)

where L is a random number between (0 and 1). The offspring can only be generated
through the two ways in Formula (9). The probability of selecting either Formula (8) or
Formula (9) is equal at 0.5. Conversely, if the random number is greater than pD, then two
flying fox individuals survive. If nc is odd, then the above operation is performed for the
even number of them, stipulating that one of the remaining flying fox individuals dies and
a new flying fox individual is generated by Formula (8) for replacement.

This paper is dedicated to extending the unique survival strategy in the FFO algorithm
to the domain of multi-objective problems, aiming to achieve better convergence speed and
search results to overcome the challenges faced by MOPs [30,31].

3. The Framework of MOEA/D-FFO
3.1. Overview

MOEA/D-FFO solves MOPs using the strategy of flying fox migration. MOEA/D
in MOEA has excellent performance and wide applicability, but, unlike the operation of
MOEA/D that extracts two random operators in the corresponding neighbor matrices of
each operator to perform cross-variant substitution, MOEA/D-FFO treats each operator,
and its corresponding neighbor matrix, as a population of flying foxes to be iterated. In
addition, MOEA/D-FFO uses the penalty-based boundary intersection (PBI) [32,33] method
to decompose multi-objective optimization problems. The PBI method is widely used in
many decomposition-based MOEAs, and the PBI method itself can be adapted to the nature
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and requirements of the problem after the introduction of penalty parameters to find an
optimal balance between distributivity and convergence.

In MOEA/D-FFO, all flying foxes will be evolved iteratively as a population. In
contrast to the strategy of the single-objective algorithm, this paper takes each flying fox
and its corresponding neighboring individuals as a subpopulation; that is to say, in the
algorithm with a population size of N, it contains N subpopulations. In each of these
subpopulations, an independent coolest tree, i.e., the optimal solution of the current
subpopulation, is set. Within the same subpopulation, the coolest tree attracts flying foxes
in that subpopulation towards it, thus avoiding overheating death. Within the whole
population (i.e., between different subpopulations), a global SL is set for information
exchange between different subpopulations.

The general MOEA/D-FFO framework is depicted in Figure 1. For flying foxes within
the population with different distances from the coolest tree, corresponding migration
operations are executed according to different formulas, and, finally, suffocation judgment
is used to construct new solutions. This contributes to broadening the variety within the
population. During the search process, this solves the problem of poor population diversity
due to the single coolest tree set within the original population.
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Furthermore, in order to improve the clarity of the flying foxes’ survival strategy
employed by MOEA/D-FFO, this paper uses an established taxonomy to identify its
features in order to clarify how the algorithm works. Gore and Reynolds proposed an
exploration-based taxonomy for emergent behavior analysis in simulations, which facili-
tated the process of interpreting taxonomies [34]. This taxonomy consists of three separate
dimensions. When evaluating the algorithms, it identifies a certain type within each di-
mension and explores the algorithms in a way that is appropriate for this type, making the
workings of the algorithms clearer and more explicit. Following the ternary structure of
this taxonomy, MOEA/D-FFO is identified as <stochastic, unpredictable, materializing>.
The results of this classification allow for effective exploration and application of the given
behaviors in MOEA/D-FFO.

3.2. Key Components of MOEA/D-FFO

MOEA/D-FFO improves on some basic concepts and evolutionary strategies to better
improve the population diversity as well as the rate of convergence exhibited by the
algorithm. The important improved parts of the flying foxes’ survival strategy can be
summarized in the following two aspects.

(1) Distance Calculation Method

MOEA/D’s strategy for calculating the distance between individuals is to calculate
the Euclidean distance between the corresponding weight vectors of the individuals, as
shown in Formula (10).

d(E, F) =
√

∑n
i=1(ei − fi)

2 (10)
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where e and f denote the weight vectors of individuals E and F in n-dimensional space,
respectively. The FFO algorithm employs a system comprising six fuzzy rules to adaptively
govern the value of every variable, considering the distance of each flying fox individual
from the current optimal solution.

Combining the above distance calculation methods, this paper uses Formula (10) to
calculate the Euclidean distance between flying foxes, thereby establishing N subpopula-
tions. Additionally, the individual value is used as the location parameter of an individual,
and its value is calculated by summing the product of value of each sub-objective function
for an individual and the relative weight vector. Based on the value of the distance from
the individual flying fox to the coolest tree (the current optimal solution), the flying foxes
in the population are categorized into three types of individuals, i.e., close to the coolest
tree, far from the coolest tree, and too far from the coolest tree. This improvement suc-
cessfully extends the flying foxes’ survival strategy from a single-objective domain to a
multi-objective domain.

(2) Iteration Method

MOEA/D-FFO adjusts the survival strategy of the flying fox algorithm and improves
the offspring generation mechanism and the population update mechanism for the flying
fox population to enhance the comprehensive capability of the algorithm.

On the one hand, for the offspring generation mechanism, compared with the original
FFO algorithm, MOEA/D-FFO draws on the offspring generation method of MOEA/D.
For the flying foxes that are too far away from the coolest tree, a new offspring is generated
by randomly selecting two individuals in the corresponding neighbor matrices to mate
after the death operation is performed to further enhance the searching capability of the
flying fox populations.

On the other hand, for the population updating mechanism, compared with the FFO
algorithm that compares and replaces the original flying fox individuals each time a child
is generated, MOEA/D-FFO uses the new child to update the corresponding neighbor
matrix of the corresponding flying fox individual to speed up the iteration speed of the
population. Although this mechanism increases to some extent the suffocation probability
of the optimal individual when the population performs the suffocation operation, the
operation helps to speed up the further exploration of the PF for flying foxes located in the
coolest position, thus increasing the convergence speed of the population.

3.3. Description and Analysis of MOEA/D-FFO

MOEA/D-FFO will select M weight vectors λ1, . . ., λm to break down the MOP into
M single-objective subproblems, each associated with its corresponding weight vector λi,
followed by randomly generating N candidate solutions for the multi-objective problem,
each of which contains a generative decision variable for an individual flying fox, the
objective values of the evaluated individual sub-objectives, and the constraint violations.
These flying fox decision variables, i.e., the vectors labeling the positions of the i-th flying
foxes in the whole space, are composed of a d-dimensional vector xi = (xi1, . . ., xid) and
evaluated by the problem objective function f(x), with subsequent iterative updates and
other operations. In each iteration, MOEA/D-FFO will use the parameters and variables as
shown below.

N flying fox individual solutions: x1, . . ., xN ϵ Ω, each flying fox individual contains
its decision variables, the objective values of each sub-objective, and constraint violations.

The weight matrix Wij of dimension (N, M): i belongs to (1, N) and j belongs to (1,
M), which represents the weight of the flying fox individual xi on the sub-objective j and
satisfies Wi1 + . . . + WiM = 1.

F1, . . ., FN: Fi represents the evaluated value of the flying fox individual, Fi = f 1(xi) ×
Wi1 + . . . + fM(xi) × WiM.

T is the number of neighbors: T is set as N/10 upwards to an integer; this number is
chosen to strike a balance between the weight vectors so that the number of neighbors for
each individual is neither too dense nor too scattered.
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B1, . . ., BN is the neighbor matrix: Bi corresponds to the T neighboring individuals
corresponding to the flying fox individual i. By computing the Euclidean distance between
the weight vector associated with flying fox individual i and the weight vectors associated
with other individuals within the population, after ascending the order, starting from
the first individual, T individuals are selected as the neighbor vectors of the flying fox
individual i.

BS1, . . ., BSN: BSi represents the optimal individual in the population, corresponding
to flying fox individual i in the population.

WS1, . . ., WSN: WSi represents the worst individual in the population, corresponding
to flying fox individual i in the population.

SL is the survival list of the flying fox algorithm: the size of SL is specified to be N/4
rounded integers. It is used to store the first N/4 optimal individuals in each iteration of
the entire flying fox population.

As shown in Algorithm 1, MOEA/D-FFO consists of four main steps.
Step 1 Generation of Neighbors and Population: Firstly, a weight matrix W with

dimension (N, M) is generated, and the Euclidean distance of the weight vectors between
individuals is calculated to generate the neighbor matrix B. For i = 1, . . ., N, generate the
initial flying fox individual xi and evaluate the individual value Fi of xi. After the initial
population generation, detect the optimal solution and the worst solution of each flying fox
individual and its corresponding neighbors, and initialize the group of optimized solutions
BS and the group of worst solutions WS for each population. Finally, filter the whole
population and initialize SL for subsequent operations.

Step 2 Iteration Using FFO Method: For i = 1, . . ., N, calculate the number of paradigms
of the difference between Fi and BSi of individual xi of flying foxes, denoted as N1. And,
N2 is the number of paradigms of the difference between BSi and WSi. Use Formula (11) to
determine the flying fox individual xi in its corresponding population position, where both
a and b are parameters that are set between 0 and 1.

condition P : N1 > b × N2
condition Q : a × N2 < N1 < b × N2

condition R : N1 < a × N2

(11)

Condition P means that the flying foxes are too far away from the coolest tree in the
population and cannot reach it. Condition Q means that the flying foxes are far away from
the coolest tree in the population but can reach it through migration. Condition R means
that the flying foxes are too close to the coolest tree in the population and can easily be
suffocated and die.

If condition P is satisfied, two different individuals xa and xb are randomly selected
from Bi. xa and xb are simulated through a crossover inheritance operation to generate
offspring, thus obtaining a new individual y. If individual xi of the flying fox satisfies
condition Q, then Formula (5) is used to make individual xi of the flying fox move towards
the optimal solution in the corresponding population, generating a new individual y. If
condition R is satisfied, then Formulas (6) and (7) are used to make the flying fox move to
other positions, generating a new individual y and avoiding the flying fox being too close
to the optimal individual, which may lead to suffocation.

At the end of the iteration, the corresponding parameters and neighbor matrices in
the flying foxes’ population are updated.

Step 3 Suffocating Flying Foxes: For the population after iteration, i = 1, 2, . . ., N, in
the overall flying fox population, find the individuals with the same value as the optimal
individual in the current subpopulation and perform suffocation operation. If the randomly
generated number is less than the calculated suffocation probability pD, then perform the
suffocation operation, and generate two new flying fox individuals for replacement via
Formula (8) or (9), with a probability of 0.5 for each method. And, if the number of flying
fox individuals clustered in the same area is odd, perform the above operation for an even
number of them, stipulate that one of the remaining flying foxes is dead, and provide for
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the death of one of the remaining flying fox individuals via Formula (8) to generate a new
flying fox individual for replacement. At the end of the suffocation, the corresponding
parameters in the flying fox population are updated.

Step 4 Termination: After the whole population completes migration and suffocation,
verify if the maximum iteration limit has been reached. If not, return to Step 2 to continue
the iteration process. If it is reached, terminate the iteration and return the final result.

Algorithm 1. MOEA/D-FFO Algorithm.

Input
population size, dimension, weight vectors,
the number of the weight vectors in the neighborhood of each weight vector

Output
final population

Begin

1. Initialize weight matrix Wij with dimensions (N, M).
2. Compute Euclidean distance between individuals to generate neighbor matrix B1, . . ., BN.
3. For i = 1 to N:
4. Generate initial flying fox individual xi.
5. Evaluate the fitness Fi of individual xi.
6. End.
7. Initialize BSi, WSi, and SL.
8. For i = 1 to N: #Iteration Using FFO Method.
9. Compute norm N1 as the difference between Fi and BSi.
10. Compute norm N2 as the difference between BSi and WSi.
11. Determine the position of flying fox individual based on conditions P, Q, R.
12. If condition P is satisfied:
13. Randomly select two distinct individuals xa, xb from Bi.
14. Generate a new individual y through xa and xb.
15. Elseif condition Q is satisfied:
16. Generate a new individual y by moving xi towards the direction of the optimal

solution according to Formula (5).
17. Elseif condition R is satisfied:
18. Generate a new individual y by moving xi to another location to avoid suffocation

according to Formulas (6) and (7).
19. End.
20. Update Bi and relevant information in the population.
21. Perform suffocation judgment for flying foxes with the same fitness value. #Suffocate

Flying Foxes
22. If the randomly generated number is less than the suffocation probability pD:
23. If the number of flying foxes gathered in the same area is even,
24. generate 2 new flying fox individuals for replacement via Formula (8) or (9), with

the probability of 0.5 for each method.
25. Else
26. perform the above operation on an even number of foxes, declare the remaining

fox dead, and replace it with a new flying fox generated using Formula (8).
27. End.
28. End.
29. Update relevant parameters in the population.
30. End.
31. If the maximum iteration count has not been reached: #Termination.
32. Return to Line 8 and continue iteration.
33. Else
34. Terminate iteration and return the final result.
35. End.

End
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Referring to Algorithm 1, the time complexity associated with MOEA/D-FFO mainly
depends on the three steps in each iteration process, i.e., domain selection, maintenance of
the external population, and generation of children. Overall, its computational complexity
is O(mTN) + O(mN2) + O(mTN2) = O(mTN2). m is the number of objectives, T is the
domain size, and N is the population size. Therefore, the time complexity of the algorithm
proposed in this section is similar to that of MOEA/D. However, there may be a slight
increase in execution time due to the sequential execution of the child generation process
of MOEA/D-FFO.

4. Simulation Experiments and Analysis of Results

To validate whether the flying foxes’ survival strategy in the FFO algorithm can show
its excellent performance in the multi-objective domain as it does in the single-objective
domain, we compare and analyze MOEA/D-FFO against five other algorithms. NSGA-
II [22], proposed by Deb et al., is a high-performance multi-objective evolutionary algorithm
that searches for non-dominated solutions on the PF by efficiently performing the non-
dominated ordering and maintaining population diversity. In the following experiments,
NSGA-II was used as one of the algorithms for comparison, considering that after improv-
ing the FFO algorithm using the decomposition-based approach, the FFO algorithm may
be improved again using the non-dominated sorting approach. In addition, considering
that the capability of MOEA/D-FFO may vary across different test problems, we also chose
IBEA [23], which is well-adapted to different problem domains, as part of the comparison
algorithms. Finally, the original MOEA/D algorithm, as well as its two improved versions,
namely, Dynamic Thompson Sampling for MOEA/D (MOEA/D-DYTS) [35] and MOEA/D
with updating when required (MOEA/D-UR) [36], were also included as comparison algo-
rithms to verify whether the application of the flying foxes’ survival strategy can improve
the performance compared to the original algorithm and its latest improved variants.

4.1. Experimental Setup

The experiments were not only conducted for the improved MOEA/D-FFO on the
two test function sets but also to test how the performance of MOEA/D-FFO varies under
different population sizes by continuously increasing the population size. In this experi-
ment, three sets of population sizes (N) were set: 250, 500, and 750. In order to make the
comparison fairer, the MOEA/D as well as the MOEA/D framework in MOEA/D-FFO
were parameterized consistently with the PBI decomposition method. The maximum num-
ber of function evaluations (maxFE) for all algorithms was 200,000. All algorithms were
implemented using the MATLAB-based PlatEMO platform [37]. The specific parameter
settings of each algorithm are shown in Table 1. All experiments were carried out on a
computer with 16 GB of RAM and a 3.20 GHz 8-core AMD Ryzen 7 5800H processor with
the Windows 11 operating system installed.

Table 1. Parameter settings of each algorithm.

Algorithm Parameter Settings

NSGA-II M: 2, D: 30

IBEA M: 2, D: 30, kappa: 0.05

MOEA/D M: 2, D: 30, T: N/10

MOEA/D-DYTS M: 2, D: 30, T: 20, δ: 0.8, C: 100

MOEA/D-UR M: 2, D: 30, T: N/10, δ: 0.9, nr: 2, k: 10

MOEA/D-FFO M: 2, D: 30, T: N/10, pa: 0.5, a: 0.14, b: 0.15, α: 0.5

In Table 1, M is the number of objectives, D is the number of decision variables, pa
represents the probability constant, both a and b are parameters that are set between 0 and 1,
and α is a positive attraction constant. In addition, the remaining parameters, neighborhood
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size (T), probability of selecting population (δ), update threshold (C), maximum number of
solutions replaced by each offspring (nr), number of divisions of the objective space (k) and
kappa, had their values extracted from the common values used in the literature.

4.2. Performance Metrics

In the experiment, inverted generational distance (IGD) [38] and hypervolume metric
(HV) [39] were used to assess the algorithm’s effectiveness.

IGD is defined as the average distance from the Pareto optimal solution set, P*, which
is true and uniformly distributed, to the solution set P obtained through the algorithm, as
specified in Formula (12).

IGD =
∑vϵP∗ d(v, P)

P∗ (12)

The minimum Euclidean distance from an individual to the individual v in a pop-
ulation P is denoted by d(v,P). A certain number of individuals is uniformly selected on
the real PF and represented by P*. The optimal solution set obtained by the algorithm is
denoted by P. IGD is an evaluation index of the algorithm’s total capability, which reflects
the algorithm’s distributivity and convergence. The smaller the IGD value, the better the
distribution and convergence of the optimized solution set derived by the algorithm.

HV quantifies the volume occupied by the objective space region, which is delin-
eated by the non-dominated solution set and the reference point, as derived from the
multi-objective optimization algorithm. The expression for hypervolume is illustrated in
Formula (13).

HV = δ
(
∪|S|

i=1vi

)
(13)

Here, δ denotes the Lebesgue measure, utilized to assess volume. The notation
|S| denotes the quantity of non-dominated sets of solutions, while vi is defined as the
hypercube formed by the reference point z* in conjunction with the i-th solution within
that set. The metric HV acts as a reliable one-dimensional quality indicator, displaying
strict monotonicity with respect to Pareto domination. Higher HV values denote superior
performance of the respective algorithms.

All experimental data are derived from 30 independent runs, with the mean and
standard deviation meticulously recorded. These experimental outcomes underwent
statistical scrutiny utilizing the Wilcoxon rank-sum test [40], applying a significance level
of 0.05. The symbols +, −, and = indicate statistical superiority, inferiority, and equivalence,
respectively, compared to the MOEA/D-FFO algorithm.

4.3. Experimental Results and Analysis

The algorithm and other compared algorithms were tested on DTLZ [41] and ZDT [42].
For better comparison, all of the algorithm result data are analyzed based on three different
population sizes (250, 500, and 750) to investigate the performance of the algorithms and
other comparative algorithms under various parameter settings. The best result in each row
is emphasized in black. In each result, the first line of data represents the mean, the data in
brackets in the second line represents the standard deviation, and the symbol (+/−/=) after
the bracket in the second line indicates the result of the Wilcoxon rank-sum test. In addition,
in each experimental result figure, the red circles represent the population distribution
obtained by independently running the algorithm 30 times and taking the average value,
the blue line represents the PF of the test problem.

(1) For a population size of 250, Tables 2 and 3 display the experimental outcomes for all
evaluated algorithms, detailing the average and standard deviation for both IGD and
HV metrics.

As can be seen in Table 2, for the IGD metric, MOEA/D-FFO achieved the best results
on 9 out of 12 problems. For the DTLZ test suite, the proposed algorithm performs poorly
only on DTLZ4 and DTLZ7. For all other test problems in DTLZ, the proposed algorithm
achieves significant advantages. This demonstrates that the population update strategy
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proposed in this paper is able to make the algorithm jump out of the local optimum in
most cases. For the ZDT test suite, the algorithm proposed in this paper also achieves the
best results. Compared to MOEA/D-UR, it performs well on four problems and slightly
worse on one problem. Compared to the other four compared algorithms, MOEA/D-FFO
achieves a significant advantage in all of them.

Table 2. The means and standard deviations of the IGD metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 250.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 4.3949 × 10−3

(1.64 × 10−3) −
4.4554 × 10−2

(5.75 × 10−3) −
6.3607 × 10−3

(2.24 × 10−3) −
3.3548 × 10+0

(5.63 × 10+0) −
3.2315 × 10−3

(9.71 × 10−4) −
1.1545 × 10−3

(6.62 × 10−4)

DTLZ2 1.9805 × 10−3

(3.24 × 10−5) −
9.3430 × 10−3

(1.03 × 10−3) −
1.5778 × 10−3

(2.57 × 10−6) =
1.6134 × 10−3

(1.64 × 10−5) −
1.6343 × 10−3

(1.93 × 10−5) −
1.5769 × 10−3

(5.11 × 10−9)

DTLZ3 1.1258 × 10−2

(4.25 × 10−3) −
3.4497 × 10−1

(1.47 × 10−3) −
1.5842 × 10−2

(4.87 × 10−3) −
1.1390 × 10+1

(2.30 × 10+1) −
8.1295 × 10−3

(5.51 × 10−3) −
4.0807 × 10−3

(3.19 × 10−3)

DTLZ4 2.2979 × 10−3

(9.19 × 10−4) +
1.5680 × 10−1

(3.08 × 10−1) −
7.5877 × 10−2

(2.34 × 10−1) =
1.6824 × 10−3

(5.19 × 10−5) +
1.6966 × 10−3

(5.20 × 10−5) +
1.4968 × 10−1

(3.12 × 10−1)

DTLZ5 1.9932 × 10−3

(3.99 × 10−5) −
9.5602 × 10−3

(6.90 × 10−4) −
1.5769 × 10−3

(4.66 × 10−9) −
1.6139 × 10−3

(1.63 × 10−5) −
1.6233 × 10−3

(1.12 × 10−5) −
1.5769 × 10−3

(2.58 × 10−9)

DTLZ6 2.2329 × 10−3

(7.85 × 10−5) −
2.5237 × 10−2

(3.55 × 10−3) −
1.5769 × 10−3

(1.52 × 10−9) =
1.5773 × 10−3

(2.20 × 10−7) −
1.6384 × 10−3

(3.94 × 10−5) −
1.5769 × 10−3

(2.65 × 10−9)

DTLZ7 3.7365 × 10−3

(1.77 × 10−3) +
4.3078 × 10−3

(1.85 × 10−3) +
2.6950 × 10−1

(2.27 × 10−1) =
1.3454 × 10−1

(2.12 × 10−1) +
2.4144 × 10−3

(2.75 × 10−5) +
2.6784 × 10−1

(2.28 × 10−1)

ZDT1 1.8257 × 10−3

(2.33 × 10−5) −
1.6717 × 10−3

(2.00 × 10−5) −
1.7671 × 10−3

(1.32 × 10−5) −
1.5691 × 10−3

(1.80 × 10−5) =
1.6279 × 10−3

(8.40 × 10−5) −
1.5616 × 10−3

(6.15 × 10−6)

ZDT2 1.8909 × 10−3

(3.13 × 10−5) −
4.7491 × 10−3

(3.56 × 10−4) −
1.5210 × 10−3

(3.00 × 10−6) =
1.5213 × 10−3

(6.06 × 10−6) =
1.5307 × 10−3

(8.79 × 10−6) −
1.5198 × 10−3

(4.95 × 10−6)

ZDT3 3.8152 × 10−3

(1.74 × 10−3) −
1.3896 × 10−2

(2.44 × 10−3) −
1.6583 × 10−1

(5.59 × 10−2) −
4.1696 × 10−3

(6.17 × 10−6) −
3.0425 × 10−3

(3.22 × 10−5) +
3.6849 × 10−3

(5.24 × 10−5)

ZDT4 6.0091 × 10−3

(3.92 × 10−3) =
1.3898 × 10−1

(1.95 × 10−1) −
2.4720 × 10−2

(2.60 × 10−2) −
1.5404 × 10+0

(9.64 × 10−1) −
2.8860 × 10−3

(6.29 × 10−4) =
2.8176 × 10−3

(6.07 × 10−4)

ZDT6 1.5022 × 10−3

(2.81 × 10−5) −
1.7212 × 10−3

(2.27 × 10−5) −
3.3377 × 10−3

(4.36 × 10−4) −
1.2345 × 10−3

(1.44 × 10−6) −
1.4563 × 10−3

(2.44 × 10−5) −
1.1209 × 10−3

(3.17 × 10−4)

+/−/= 2/9/1 1/11/0 0/7/5 2/8/2 3/8/1 —

Similar results were achieved for the mean and standard deviation of HV in Table 3.
MOEA/D-FFO achieved 8 best results on 12 problems, further validating the effectiveness
of the proposed algorithm as well as the population updating strategy.

Figure 2 illustrates the population distribution of these algorithms on PF. It can be
seen that neither IBEA nor MOEA/D-DYTS converges to PF on DTLZ3, whereas among
the remaining four algorithms that converge to PF, MOEA/D-FFO shows good diversity
by having a more even and closer population distribution on PF.

Compared to the more homogeneous iterative approach used by some algorithms,
in MOEA/D-FFO, after dividing the population into N small populations of flying foxes,
the individuals of flying foxes in each of the small populations migrate according to the
distance from the coolest tree currently found within the population. For the individuals
that are farther away from the coolest tree, they will move in the direction of the coolest
tree. This approach speeds up the search of the algorithm, and the convergence of the
algorithm is accelerated by the introduction of the penalty mechanism of FFO, i.e., it
performs suffocation operations for the individuals that are clustered near the coolest tree
within the population and regenerates the individuals to replace them, thus preventing the
population from falling into a locally optimal solution so that the operators that are close to
the coolest tree will move in the other direction.
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Table 3. The means and standard deviations of the HV metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 250.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 5.7470 × 10−1

(4.05 × 10−3) −
4.7704 × 10−1

(1.27 × 10−2) −
5.6995 × 10−1

(5.47 × 10−3) −
3.4149 × 10−1

(2.58 × 10−1) −
5.7735 × 10−1

(2.62 × 10−3) −
5.8336 × 10−1

(1.86 × 10−3)

DTLZ2 3.4923 × 10−1

(3.53 × 10−5) −
3.4883 × 10−1

(1.27 × 10−4) −
3.4943 × 10−1

(3.65 × 10−7) −
3.4926 × 10−1

(2.83 × 10−5) −
3.4920 × 10−1

(4.25 × 10−4) −
3.4943 × 10−1

(1.69 × 10−7)

DTLZ3 3.3522 × 10−1

(5.81 × 10−3) −
1.5494 × 10−1

(8.94 × 10−3) −
3.2893 × 10−1

(6.70 × 10−3) −
1.2442 × 10−1

(1.62 × 10−1) −
3.3913 × 10−1

(7.67 × 10−3) −
3.4539 × 10−1

(4.82 × 10−3)

DTLZ4 3.4897 × 10−1

(7.59e × 10−4) +
2.9695 × 10−1

(1.09 × 10−1) −
3.2334 × 10−1

(8.17 × 10−2) +
3.4917 × 10−1

(4.59 × 10−5) +
3.4931 × 10−1

(2.44 × 10−4) +
2.9773 × 10−1

(1.09 × 10−1)

DTLZ5 3.4924 × 10−1

(3.33 × 10−5) −
3.4881 × 10−1

(9.17 × 10−5) −
3.4943 × 10−1

(2.51 × 10−7) =
3.4924 × 10−1

(2.64 × 10−5) −
3.4926 × 10−1

(2.25 × 10−4) =
3.4943 × 10−1

(8.56 × 10−8)

DTLZ6 3.4914 × 10−1

(5.32 × 10−5) −
3.4513 × 10−1

(6.94 × 10−4) −
3.4943 × 10−1

(2.59 × 10−8) =
3.4943 × 10−1

(1.41 × 10−7) −
3.4948 × 10−1

(1.77 × 10−5) +
3.4943 × 10−1

(8.60 × 10−8)

DTLZ7 2.4306 × 10−1

(4.01 × 10−4) +
2.4299 × 10−1

(3.97 × 10−4) +
2.0225 × 10−1

(3.40 × 10−2) =
2.2316 × 10−1

(3.25 × 10−2) +
2.4339 × 10−1

(6.18 × 10−6) +
2.0289 × 10−1

(3.47 × 10−2)

ZDT1 7.2258 × 10−1

(3.15 × 10−5) −
7.2277 × 10−1

(1.52 × 10−5) −
7.2172 × 10−1

(4.82 × 10−5) −
7.2268 × 10−1

(8.62 × 10−5) −
7.2284 × 10−1

(7.03 × 10−5) −
7.2373 × 10−1

(2.83 × 10−5)

ZDT2 4.4714 × 10−1

(3.83 × 10−5) −
4.4685 × 10−1

(5.88 × 10−5) −
4.4738 × 10−1

(2.82 × 10−5) =
4.4735 × 10−1

(2.00 × 10−5) =
4.4739 × 10−1

(1.35 × 10−4) =
4.4739 × 10−1

(3.71 × 10−5)

ZDT3 5.9994 × 10−1

(6.17 × 10−4) −
5.9868 × 10−1

(5.71 × 10−4) −
6.2788 × 10−1

(5.21 × 10−2) −
5.9990 × 10−1

(2.42 × 10−5) −
6.0031 × 10−1

(8.10 × 10−6) −
6.9820 × 10−1

(6.90 × 10−5)

ZDT4 7.1559 × 10−1

(5.78 × 10−3) =
6.3134 × 10−1

(1.24 × 10−1) −
6.8898 × 10−1

(3.76 × 10−2) −
2.5191 × 10−2

(7.23 × 10−2) −
7.2022 × 10−1

(9.19 × 10−4) +
7.1905 × 10−1

(1.04 × 10−3)

ZDT6 3.9012 × 10−1

(6.24 × 10−5) −
3.9014 × 10−1

(5.87 × 10−5) −
3.8656 × 10−1

(7.03 × 10−4) −
3.9071 × 10−1

(1.31 × 10−5) −
3.9008 × 10−1

(1.48 × 10−4) −
3.9689 × 10−1

(4.95 × 10−4)

+/−/= 2/9/1 1/11/0 1/7/4 2/9/1 4/6/2 —

Moreover, MOEA/D-FFO improves the penalty mechanism for overheating death of
flying foxes that are too far away from the coolest tree within the population to MOEA/D’s
original way of generating offspring by using the neighbor matrix, which improves the
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survivability of the peripheral flying foxes and increases the possibility of the flying foxes
searching for other solutions. At the same time, the mechanism of suffocation operation
will inhibit the flying foxes from falling into the local optimum and make sure they search
in other directions, ensuring that the final operators are not too close to each other but are
spread evenly over the PF, resulting in a more homogeneous and higher-quality solution
being found. This updating method is effective for the vast majority of test problems, which
demonstrates the efficacy of the population updating strategy proposed in this study.

(2) For a population size of 500, Tables 4 and 5 display the experimental outcomes for all
evaluated algorithms, detailing the average and standard deviation for both IGD and
HV metrics.

Table 4. The means and standard deviations of the IGD metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 500.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 4.5115 × 10−2

(1.11 × 10−1) −
7.2762 × 10−2

(2.85 × 10−2) −
7.6007 × 10−3

(1.99 × 10−3) −
7.9618 × 10+0

(1.07 × 10+1) −
4.4420 × 10−2

(1.15 × 10−1) −
1.6661 × 10−3

(8.26 × 10−4)

DTLZ2 1.0037 × 10−3

(1.01 × 10−5) −
6.7262 × 10−3

(4.91 × 10−4) −
7.9902 × 10−4

(4.59 × 10−6) =
8.4767 × 10−4

(1.60 × 10−5) −
8.8908 × 10−4

(1.39 × 10−5) −
8.0176 × 10−4

(4.67 × 10−6)

DTLZ3 2.9141 × 10−2

(2.19 × 10−2) −
3.5452 × 10−1

(8.07 × 10−3) −
1.8411 × 10−2

(5.03 × 10−3) −
1.2269 × 10+0

(1.97 × 10+0) −
2.1115 × 10−2

(4.68 × 10−3) −
4.9953 × 10−3

(1.83 × 10−3)

DTLZ4 9.8777 × 10−4

(1.35 × 10−5) −
6.4972 × 10−3

(4.55 × 10−4) −
1.4906 × 10−1

(3.13 × 10−1) −
8.7837 × 10−4

(2.40 × 10−5) −
8.9820 × 10−4

(2.42 × 10−5) −
7.9647 × 10−4

(7.56 × 10−6)

DTLZ5 9.8587 × 10−4

(1.84 × 10−5) −
6.7747 × 10−3

(2.42 × 10−4) −
8.0211 × 10−4

(6.35 × 10−6) =
8.4117 × 10−4

(1.30 × 10−5) −
8.9832 × 10−4

(2.16 × 10−5) −
8.0023 × 10−4

(6.51 × 10−6)

DTLZ6 1.1063 × 10−3

(1.95 × 10−5) −
2.8097 × 10−2

(2.50 × 10−3) −
1.0593 × 10−3

(8.61 × 10−4) −
7.8772 × 10−4

(6.71 × 10−7) −
8.8588 × 10−4

(1.20 × 10−5) −
7.8691 × 10−4

(6.22 × 10−9)

DTLZ7 1.0273 × 10−3

(1.52 × 10−5) +
1.3327 × 10−3

(7.51 × 10−5) +
3.9994 × 10−1

(1.40 × 10−1) =
8.9503 × 10−2

(1.86 × 10−1) +
1.3202 × 10−3

(2.89 × 10−5) +
4.0011 × 10−1

(1.40 × 10−1)

ZDT1 9.0726 × 10−4

(1.84 × 10−5) −
8.4264 × 10−4

(6.71 × 10−6) −
1.0668 × 10−3

(2.03 × 10−5) −
8.7852 × 10−4

(7.05 × 10−5) −
9.0406 × 10−4

(2.16 × 10−5) −
8.0667 × 10−4

(1.38 × 10−5)

ZDT2 9.4069 × 10−4

(1.19 × 10−5) −
3.1937 × 10−3

(1.53 × 10−4) −
7.6499 × 10−4

(3.99 × 10−6) =
8.2350 × 10−4

(1.04 × 10−4) −
8.1171 × 10−4

(7.94 × 10−6) −
7.6954 × 10−4

(1.13 × 10−5)

ZDT3 1.0430 × 10−3

(1.22 × 10−5) =
9.8817 × 10−3

(3.53 × 10−4) −
4.0094 × 10−3

(2.87 × 10−4) −
2.1133 × 10−3

(1.86 × 10−5) −
1.7249 × 10−3

(4.94 × 10−5) −
1.0392 × 10−3

(2.01 × 10−5)

ZDT4 2.7576 × 10−3

(8.55 × 10−4) −
4.3180 × 10−3

(3.79 × 10−4) −
8.8488 × 10−3

(1.96 × 10−3) −
9.5438 × 10+0

(4.54 × 10+0) −
1.9384 × 10−3

(3.34 × 10−4) =
1.8994 × 10−3

(1.00 × 10−3)

ZDT6 1.7023 × 10−3

(1.66 × 10−4) +
9.3604 × 10−4

(2.29 × 10−5) +
4.1974 × 10−3

(7.46 × 10−4) =
6.5427 × 10−4

(1.18 × 10−4) +
1.5122 × 10−3

(1.09 × 10−4) +
3.6210 × 10−3

(6.27 × 10−4)

+/−/= 2/9/1 2/10/0 0/7/5 2/10/0 2/9/1 —

As revealed by Tables 4 and 5, the proposed algorithm achieves 8 best results on
12 problems according to the IGD metric. This is similar to the performance at a population
size of 250. And, compared to the HV metrics, the proposed algorithm achieves 9 best
results on 12 problems, which is a better result than at a population size of 250.

Specifically, after the population size is raised to 500, the performance of MOEA/D-
FFO compared to NSGA-II, IBEA, and MOEA/D-DYTS shows little difference relative
to the performance at a population size of 250. For the same number of evaluations, the
IGD has smaller values and MOEA/D-FFO converges faster. From the results of DTLZ1,
DTLZ3, and ZDT1, it can be seen that the population distribution of MOEA/D-FFO is
significantly closer to the PF compared to the other five compared algorithms. Based on
the results from the HV metric, it is evident that MOEA/D-FFO demonstrates a faster
convergence speed and better PF coverage compared to NSGA-II, IBEA, and MOEA/D-
DYTS, especially MOEA/D-UR, after increasing the population size. This indicates that
the multi-objective flying foxes’ survival strategy employed by MOEA/D-FFO is more
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intelligent in handling larger-scale problems. In contrast to the iterative strategy that solely
relies on the neighbor matrix for the generating operator, the various migration methods
and the penalty mechanism used by MOEA/D-FFO constitute a more efficient population
management strategy. This approach enhances global search capabilities, enabling quicker
identification of the PF. These results demonstrate the capability of the proposed algorithm
to tackle MOPs at a population size of 500.

Table 5. The means and standard deviations of the HV metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 500.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 5.0578 × 10−1

(1.73 × 10−1) −
3.9785 × 10−1

(7.25 × 10−2) −
5.6706 × 10−1

(5.14 × 10−3) −
1.0151 × 10−1

(2.16 × 10−1) −
5.0838 × 10−1

(1.79 × 10−1) −
5.8209 × 10−1

(2.17 × 10−3)

DTLZ2 3.5007 × 10−1

(1.59 × 10−5) −
3.4973 × 10−1

(4.72 × 10−5) −
3.5014 × 10−1

(4.24 × 10−6) −
3.5002 × 10−1

(1.86 × 10−5) −
3.4995 × 10−1

(2.32 × 10−4) =
3.5015 × 10−1

(1.34 × 10−6)

DTLZ3 3.1096 × 10−1

(3.12 × 10−2) −
1.0883 × 10−1

(3.62 × 10−2) −
3.2533 × 10−1

(7.40 × 10−3) −
1.9758 × 10−1

(1.54 × 10−1) −
3.2164 × 10−1

(6.42 × 10−3) −
3.4438 × 10−1

(2.60 × 10−3)

DTLZ4 3.5007 × 10−1

(1.01 × 10−5) −
3.4976 × 10−1

(4.60 × 10−5) −
2.9830 × 10−1

(1.09 × 10−1) −
3.4997 × 10−1

(2.17 × 10−5) −
3.5003 × 10−1

(2.25 × 10−4) =
3.5016 × 10−1

(9.08 × 10−6)

DTLZ5 3.5006 × 10−1

(2.23 × 10−5) −
3.4973 × 10−1

(2.50 × 10−5) −
3.5014 × 10−1

(5.81 × 10−6) −
3.5003 × 10−1

(1.89 × 10−5) −
3.5000 × 10−1

(2.65 × 10−4) =
3.5015 × 10−1

(2.79 × 10−6)

DTLZ6 3.5002 × 10−1

(1.99 × 10−5) −
3.4512 × 10−1

(6.94 × 10−4) −
3.4973 × 10−1

(1.39 × 10−3) =
3.5017 × 10−1

(1.21 × 10−7) −
3.5001 × 10−1

(7.50 × 10−5) −
3.5017 × 10−1

(7.87 × 10−8)

DTLZ7 2.4367 × 10−1

(3.14 × 10−6) +
2.4362 × 10−1

(9.38 × 10−6) +
1.8280 × 10−1

(2.13 × 10−2) =
2.3007 × 10−1

(2.84 × 10−2) +
2.4359 × 10−1

(9.91 × 10−5) +
1.8279 × 10−1

(2.13 × 10−2)

ZDT1 7.2357 × 10−1

(1.67 × 10−5) −
7.2365 × 10−1

(5.76 × 10−6) −
7.2241 × 10−1

(4.63 × 10−5) −
7.2335 × 10−1

(1.5 × 10−4) −
7.2357 × 10−1

(5.82 × 10−5) −
7.2440 × 10−1

(3.17 × 10−5)

ZDT2 4.4809 × 10−1

(1.12 × 10−5) −
4.4786 × 10−1

(2.29 × 10−5) −
4.4815 × 10−1

(3.07 × 10−5) =
4.4797 × 10−1

(2.86 × 10−4) −
4.4811 × 10−1

(1.09 × 10−4) =
4.4813 × 10−1

(5.63 × 10−5)

ZDT3 6.0087 × 10−1

(3.52 × 10−6) =
5.9960 × 10−1

(4.40 × 10−5) −
5.9903 × 10−1

(1.12 × 10−4) −
6.0052 × 10−1

(4.47 × 10−5) −
6.0070 × 10−1

(1.76 × 10−4) −
6.0089 × 10−1

(9.01 × 10−5)

ZDT4 7.2056 × 10−1

(1.12 × 10−3) +
7.1926 × 10−1

(7.94 × 10−4) =
7.1172 × 10−1

(2.47 × 10−3) −
0.0000 × 10+0

(0.00 × 10+0) −
7.2165 × 10−1

(4.60 × 10−4) +
7.1947 × 10−1

(1.51 × 10−3)

ZDT6 3.8940 × 10−1

(2.24 × 10−4) −
3.9090 × 10−1

(4.19 × 10−5) −
3.8578 × 10−1

(8.95 × 10−4) −
3.9125 × 10−1

(1.82 × 10−4) −
3.8960 × 10−1

(1.69 × 10−4) −
3.9657 × 10−1

(8.34 × 10−4)

+/−/= 2/9/1 1/10/1 0/9/3 1/11/0 2/6/4 —

Figure 3 illustrates the population distribution of these algorithms on the PF. It is
observed that MOEA/D-DYTS does not converge to the PF on ZDT4. Among the remaining
five algorithms that do converge to the PF, MOEA/D-FFO and MOEA/D-UR exhibit a
more uniform population distribution on the PF, demonstrating good diversity.

(3) For a population size of 750, Tables 6 and 7 display the experimental outcomes for all
evaluated algorithms, detailing the average and standard deviation for both IGD and
HV metrics.

At a population size of 750, it is demonstrated by Table 6 that MOEA/D-FFO achieves
the 10 best results on 12 problems in terms of IGD metrics. Specifically, compared to the
other compared algorithms, it performs poorly only on the DTLZ7 test function, while
it achieves significant advantages on the other problems. Compared to the experimental
results at population sizes of 250 and 500, it is easy to see that the comprehensive capability
of the algorithms proposed in this paper is optimal on the test functions at all population
sizes up to 750. Therefore, concerning larger population sizes, MOEA/D-FFO can still
achieve a performance advantage due to the same number of evaluations resulting in
fewer iterations.
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ZDT1 
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ZDT2 
6.1802 × 10−4 
(9.29 × 10−6) − 

2.4874 × 10−3 
(1.06 × 10−4) − 

5.3325 × 10−4 
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7.1403 × 10−4 
(2.70 × 10−4) − 

6.0349 × 10−4 
(1.29 × 10−5) − 

5.2885 × 10−4 
(8.10 × 10−6) 

ZDT3 
6.9056 × 10−4 
(5.67 × 10−6) − 

9.6070 × 10−3 
(2.47 × 10−4) − 

3.2855 × 10−3 
(3.61 × 10−5) − 

1.4292 × 10−3 
(1.73 × 10−5) − 

1.4051 × 10−3 
(4.23 × 10−5) − 

3.3399 × 10−4 
(1.83 × 10−4) 
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3.2406 × 10−3 
(9.94 × 10−4) = 

1.6212 × 10−2 
(1.86 × 10−2) − 

7.5500 × 10−3 
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Table 6. The means and standard deviations of the IGD metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 750.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 5.2250 × 10−1

(3.08 × 10−1) −
7.3502 × 10−1

(3.24 × 10−1) −
7.8214 × 10−3

(9.78 × 10−4) −
8.0414 × 10+0

(1.32 × 10+1) −
3.6377 × 10−1

(3.19 × 10−1) −
2.1424 × 10−3

(1.49 × 10−3)

DTLZ2 6.6256 × 10−4

(6.57 × 10−6) −
5.6815 × 10−3

(3.14 × 10−4) −
5.7002 × 10−4

(1.31 × 10−5) =
6.0817 × 10−4

(2.25 × 10−5) −
6.1478 × 10−4

(4.26 × 10−6) −
5.6842 × 10−4

(1.10 × 10−5)

DTLZ3 1.0471 × 10+0

(1.01 × 10+0) −
1.9615 × 10+0

(1.47 × 10+0) −
1.9432 × 10−2

(3.87 × 10−3) −
2.0449 × 10+0

(4.44 × 10+0) −
1.0836 × 10+0

(8.94 × 10−1) −
6.3471 × 10−3

(2.19 × 10−3)

DTLZ4 6.6057 × 10−4

(1.06 × 10−5) −
5.7920 × 10−3

(3.06 × 10−4) −
7.4713 × 10−2

(2.34 × 10−1) −
6.6802 × 10−4

(4.73 × 10−5) −
6.2551 × 10−4

(5.13 × 10−6) −
5.4813 × 10−4

(2.47 × 10−5)

DTLZ5 6.6127 × 10−4

(1.37 × 10−5) −
5.7915 × 10−3

(2.92 × 10−4) −
9.4264 × 10−4

(1.18 × 10−3) −
6.1172 × 10−4

(2.32 × 10−5) −
6.1588 × 10−4

(4.16 × 10−6) −
5.7505 × 10−4

(1.28 × 10−5)

DTLZ6 7.3660 × 10−4

(1.10 × 10−5) −
2.8897 × 10−2

(2.86 × 10−3) −
6.3783 × 10−4

(3.59 × 10−4) −
5.2518 × 10−4

(5.73 × 10−7) −
6.9883 × 10−4

(1.05 × 10−4) −
5.2429 × 10−4

(2.35 × 10−8)

DTLZ7 6.8034 × 10−4

(9.33 × 10−6) +
9.2440 × 10−4

(5.78 × 10−5) +
4.4447 × 10−1

(1.20 × 10−4) −
1.3332 × 10−1

(2.13 × 10−1) +
1.0113 × 10−3

(3.03 × 10−5) +
3.5654 × 10−1

(1.85 × 10−1)

ZDT1 6.0056 × 10−4

(8.90 × 10−6) −
5.6553 × 10−4

(5.43 × 10−6) =
8.2819 × 10−4

(2.33 × 10−5) −
1.0014 × 10−3

(4.20 × 10−4) −
6.7923 × 10−4

(2.61 × 10−5) −
5.3627 × 10−4

(2.66 × 10−5)

ZDT2 6.1802 × 10−4

(9.29 × 10−6) −
2.4874 × 10−3

(1.06 × 10−4) −
5.3325 × 10−4

(2.06 × 10−5) =
7.1403 × 10−4

(2.70 × 10−4) −
6.0349 × 10−4

(1.29 × 10−5) −
5.2885 × 10−4

(8.10 × 10−6)

ZDT3 6.9056 × 10−4

(5.67 × 10−6) −
9.6070 × 10−3

(2.47 × 10−4) −
3.2855 × 10−3

(3.61 × 10−5) −
1.4292 × 10−3

(1.73 × 10−5) −
1.4051 × 10−3

(4.23 × 10−5) −
3.3399 × 10−4

(1.83 × 10−4)

ZDT4 3.2406 × 10−3

(9.94 × 10−4) =
1.6212 × 10−2

(1.86 × 10−2) −
7.5500 × 10−3

(1.67 × 10−3) −
1.6528 × 10+1

(4.19e × 10+0) −
2.9070 × 10−3

(8.27 × 10−4) =
3.0880 × 10−3

(1.14 × 10−3)

ZDT6 3.7112 × 10−3

(4.23 × 10−4) −
1.9096 × 10−3

(3.09 × 10−4) −
4.6904 × 10−3

(3.75 × 10−4) −
1.2997 × 10−3

(1.54 × 10−3) =
2.8214 × 10−3

(2.70 × 10−4) −
1.2882 × 10−3

(4.54 × 10−4)

+/−/= 1/10/1 1/10/1 0/10/2 1/10/1 1/10/1 —
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Table 7. The means and standard deviations of the HV metric derived through MOEA/D-FFO and
five compared MOEAs on two test suites when N = 750.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

DTLZ1 6.4075 × 10−2

(1.39 × 10−1) −
0.0000 × 10+0

(0.00 × 10+0) −
5.6662 × 10−1

(2.42 × 10−3) −
1.4324 × 10−1

(1.83 × 10−1) −
1.6636 × 10−1

(2.14 × 10−1) −
5.8095 × 10−1

(3.91 × 10−3)

DTLZ2 3.5033 × 10−1

(1.29 × 10−5) −
3.5005 × 10−1

(2.97 × 10−5) −
3.5032 × 10−1

(1.41 × 10−5) −
3.5027 × 10−1

(1.84 × 10−5) −
3.5037 × 10−1

(2.90 × 10−5) =
3.5035 × 10−1

(9.30 × 10−6)

DTLZ3 3.8404 × 10−2

(6.11 × 10−2) −
3.7559 × 10−3

(1.19 × 10−2) −
3.2418 × 10−1

(5.30 × 10−3) −
2.1673 × 10−1

(1.52 × 10−1) −
6.9319 × 10−2

(1.08 × 10−1) −
3.4263 × 10−1

(2.76 × 10−3)

DTLZ4 3.5033 × 10−1

(1.28 × 10−5) −
3.5005 × 10−1

(2.66 × 10−5) −
3.2439 × 10−1

(8.20 × 10−2) −
3.5022 × 10−1

(2.15 × 10−5) −
3.5036 × 10−1

(3.31 × 10−5) =
3.5038 × 10−1

(3.22 × 10−5)

DTLZ5 3.5033 × 10−1

(9.90 × 10−6) =
3.5004 × 10−1

(2.36 × 10−5) −
3.4977 × 10−1

(1.71 × 10−3) −
3.5026 × 10−1

(2.36 × 10−5) −
3.5037 × 10−1

(2.88 × 10−5) +
3.5034 × 10−1

(6.69 × 10−6)

DTLZ6 3.5032 × 10−1

(9.21 × 10−6) −
3.4512 × 10−1

(7.11 × 10−4) −
3.5022 × 10−1

(6.34 × 10−4) −
3.5042 × 10−1

(1.72 × 10−7) −
3.5027 × 10−1

(1.09 × 10−4) −
3.5042 × 10−1

(3.37 × 10−8)

DTLZ7 2.4374 × 10−1

(2.14 × 10−6) +
2.4370 × 10−1

(5.65 × 10−6) +
1.7604 × 10−1

(1.16 × 10−5) =
2.2337 × 10−1

(3.26 × 10−2) +
2.4356 × 10−1

(1.20 × 10−4) +
1.8918 × 10−1

(2.77 × 10−2)

ZDT1 7.2388 × 10−1

(9.13 × 10−6) −
7.2394 × 10−1

(4.76 × 10−6) −
7.2267 × 10−1

(5.10 × 10−5) −
7.2308 × 10−1

(6.10 × 10−4) −
7.2380 × 10−1

(4.15 × 10−5) −
7.2465 × 10−1

(4.64 × 10−5)

ZDT2 4.4841 × 10−1

(7.52 × 10−6) =
4.4823 × 10−1

(1.29 × 10−5) −
4.4835 × 10−1

(7.29 × 10−5) −
4.4800 × 10−1

(5.92 × 10−4) −
4.4832 × 10−1

(7.59 × 10−5) −
4.4846 × 10−1

(3.42 × 10−5)

ZDT3 6.0097 × 10−1

(1.49 × 10−6) =
5.9968 × 10−1

(3.81 × 10−5) −
5.9923 × 10−1

(1.28 × 10−4) −
6.0020 × 10−1

(6.66 × 10−5) −
6.0087 × 10−1

(1.50 × 10−4) =
6.0097 × 10−1

(1.58 × 10−3)

ZDT4 7.2004 × 10−1

(1.29 × 10−3) =
7.0952 × 10−1

(1.23 × 10−2) −
7.1315 × 10−1

(2.42 × 10−3) −
0.0000 × 10+0

(0.00 × 10+0) −
7.2030 × 10−1

(1.15 × 10−3) =
7.2035 × 10−1

(1.54 × 10−3)

ZDT6 3.8684 × 10−1

(5.53 × 10−4) −
3.8910 × 10−1

(4.47 × 10−4) −
3.8540 × 10−1

(5.29 × 10−4) −
3.9041 × 10−1

(1.88 × 10−3) −
3.8786 × 10−1

(3.83 × 10−4) −
3.9627 × 10−1

(5.81 × 10−4)

+/−/= 1/7/4 1/11/0 0/11/1 1/11/0 2/6/4 —

As can be seen from Table 7, in terms of HV metrics, compared to MOEA/D-UR,
MOEA/D-FFO performs slightly worse on the test functions DTLZ5 and DTLZ7, stays
flat on DTLZ2, DTLZ4, ZDT3, and ZDT4, and performs better on the remaining six test
functions. The capability advantage of MOEA/D-FFO is more obvious compared to the
other four compared algorithms. It can be seen that when the population size is 750,
although the number of iterations is reduced, the performance of MOEA/D-FFO does not
decrease and maintains more advantages in HV metrics.

From these experimental results, it can be seen that the population size increase does
not lead to the performance degradation of MOEA/D-FFO, and it even performs better in
some test problems, such as DTLZ4, DTLZ6, ZDT2, ZDT4, and so on.

Figure 4 illustrates the population distribution of these algorithms on PF. It can be
seen that on DTLZ1, NSGA-II, IBEA, MOEA/D-DYTS, and MOEA/D-UR do not converge
to PF. Meanwhile, for MOEA/D and MOEA/D-FFO that converge to PF, MOEA/D-FFO
shows good diversity with a more homogeneous and closer population distribution on PF.

In summary, this section validates the performance of MOEA/D-FFO on two multi-
objective test benchmark problems under different parameter settings. The experimental
outcomes demonstrate that MOEA/D-FFO can achieve good performance under different
population size settings (i.e., different number of iterations). Furthermore, as the population
size increases, the number of iterations decreases for the same number of evaluations, yet
MOEA/D-FFO still achieves satisfactory performance. This also shows that compared
with other compared algorithms, the proposed algorithm is not sensitive to the population
size, is more adaptable, and has a better application prospect in real-world applications. In
conclusion, from the experimental results of IGD metrics and HV metrics, MOEA/D-FFO
can take the lead in most of the problems, which indicates that the flying fox migration
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strategy and the population update strategy in this paper have excellent performance in
solving MOPs.
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4.4. Real-World Applications

The research in this paper focuses on solving three real-world optimization problems
that are important in different fields. One of them is the multiline distance minimization
problem (ML-DMP) [43], which involves computing the Euclidean distance from a point to
a group of straight lines. These straight lines are usually considered to be edges passing
through a given square polygon, which itself may have a varying number of vertices.
By optimizing these distance values, we can obtain more efficient solutions in various
application scenarios, such as path planning in a geographic information system (GIS) or
obstacle avoidance in robot navigation.

The multi-objective knapsack problem (MOKP) [44] is often described as selecting
different items in a knapsack of finite capacity to maximize or minimize the value of
multiple objective functions. Unlike the traditional knapsack problem, which has only one
objective function (usually maximizing the total value or minimizing the total weight), the
multi-objective knapsack problem involves considering multiple objectives simultaneously.
As a result, the multi-objective knapsack problem is more tough to solve.

In addition, the multi-objective next release problem (MONRP) [45] is a complex
challenge involving software engineering and requirements management. It is designed to
help software product managers determine which features to include in the next software
release to maximize customer satisfaction and, at the same time, keep organizational costs
within reason. Due to the NP-hard problem, this problem not only requires in-depth
algorithms and optimization methods but also needs to fully take the competition in the
market and the dynamics of customer needs into account.

In the experiments, NSGA-II, IBEA, MOEA/D, MOEA/D-DYTS, and MOEA/D-
UR are still chosen as the compared algorithms, with the same parameter settings as in
Section 4.1. The number of evaluations is 10,000. The means and standard deviations of the
HV metric obtained from 30 independent runs are shown in Table 8. Because the PFs of these
three real-world optimization problems are unknown, HV is used as the only evaluation
metric. Based on the experimental findings, it is evident that the MOEA/D-FFO algorithm
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can find a solution and achieves the best results on all three problems. In summary, the
proposed algorithm has excellent performance on these real-world applications as well.

Table 8. HV means and standard deviations of all algorithms for 30 independent runs on the three
real-world problems.

Problem NSGA-II IBEA MOEA/D MOEA/D-DYTS MOEA/D-UR MOEA/D-FFO

ML-DMP 0.0000 × 10+0

(0.00 × 10+0) −
1.5584 × 10−3

(2.20 × 10−4) −
5.4466 × 10−3

(9.48 × 10−4) −
2.7837 × 10−3

(4.08 × 10−4) −
2.7366 × 10−5

(5.77 × 10−5) −
6.3532 × 10−3

(1.92 × 10−4)

MOKP 5.3348 × 10−1

(3.08 × 10−3) −
5.3271 × 10−1

(1.91 × 10−3) −
5.1329 × 10−1

(2.59 × 10−3) −
5.3072 × 10−1

(1.11 × 10−3) −
5.2305 × 10−1

(2.38 × 10−3) −
5.4076 × 10−1

(2.68 × 10−3)

MONRP 6.5120 × 10−1

(9.65 × 10−3) −
6.5919 × 10−1

(8.08 × 10−3) −
1.8750 × 10−1

(3.91 × 10−3) −
6.2678 × 10−1

(6.50 × 10−3) −
6.1283 × 10−1

(5.51 × 10−3) −
6.8428 × 10−1

(1.01 × 10−2)

+/−/= 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 —

5. Conclusion and Future Work

The NFL theorem illustrates that there is no single algorithm that can efficiently solve
all problems, which is even more evident for MOPs that need to balance multiple conflicting
objectives. Therefore, new optimization algorithms are constantly being proposed to apply
to specific problems or to enhance the capability bottlenecks of the algorithms. In this paper,
we propose a decomposition-based multi-objective flying foxes optimization algorithm
(MOEA/D-FFO). It uses MOEA/D as a framework to apply the survival strategy of the
FFO algorithm to tackle MOPs. Aiming to extend the basic FFO algorithm to a multi-
objective algorithm, this paper designs and implements a strategy to compute the positions
of flying fox individuals. In order to realize a good population management scheme, a new
mechanism for child generation is introduced, and a new population update mechanism is
proposed to enhance the search efficacy and convergence speed of the flying fox population
to improve the algorithm’s overall capability. In this paper, we compare and analyze
MOEA/D-FFO as well as five other algorithms using two classical test function sets, DTLZ
and ZDT. When the population size is set to 250, 500, and 750, MOEA/D-FFO shows
excellent performance on both IGD and HV, with an overall better level than the compared
algorithms. In addition, it is also focused on solving three real-world optimization problems,
all of which deliver satisfactory outcomes.

Although the algorithm proposed in this paper has excellent performance and per-
forms well in solving MOPs, it still has room for improvement. In the future, the algorithm
proposed in this paper can be extended. On the one hand, the fuzzy auto-adjustment
method can be applied to MOEA/D-FFO to avoid the problematic experimental results due
to the manual setting of parameters by introducing fuzzy logic and dynamically adjusting
the setup parameters in MOEA/D-FFO. On the other hand, the application of FFO’s sur-
vival strategy can also be upgraded from the multi-objective domain to the many-objective
domain, further exploring its greater potential, such as the method for judging the distances
in the population of flying foxes, the method for classifying the subpopulations and the
migratory strategies of the individuals of flying foxes that have different distances from the
coolest tree, etc.
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