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Abstract: Alcohol’s detrimental effects on bone health are well established, yet some literature
suggests moderate consumption may offer benefits. With alcohol use on the rise, we investigate
the impact of acute and chronic alcohol administration, along with withdrawal, on male Wistar rat
femurs. We observed a transient cortical thickness increase with acute alcohol (AA) compared to
chronic exposure (CA) but no significant changes in trabecular parameters or mechanical properties.
High osteocalcin and osteopontin expression levels were noted in AA, alongside elevated RANKL
expression. Conversely, CA showed low TRAP levels. FGF23 expression significantly increased
during alcohol withdrawal (AW), while GPX decreased after chronic exposure but rose during
withdrawal. Although mechanical strength changes were insignificant, biochemical shifts suggest
alcohol exposure promotes bone resorption, reduces antioxidant protection, and potentially hampers
active vitamin D and phosphate reabsorption via FGF23 upregulation.
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1. Introduction

Alcohol consumption presents a pressing global health challenge, contributing to three
million deaths and more than 5% of the global disease burden in 2016 [1]. Alarmingly, 75%
of these fatalities occur among men, with approximately 43 million individuals worldwide
affected by alcohol use disorder (AUD) [2]. Although alcohol consumption has always
been associated with cardiovascular [3,4] and liver diseases [5], it also poses significant
risks to bone health [6,7]. Bone is a living and growing tissue that constantly undergoes a
remodeling process throughout life through interaction between cells, hormones, and vita-
mins [8]. The remodeling process predominantly involves osteoblasts, the cells responsible
for forming new bone in osteoblastogenesis, and osteoclasts, the cells that break down bone
in osteoclastogenesis [9]. Both bone formation and resorption need to occur in balance to
maintain optimal bone structure. An imbalance in the bone remodeling process, whereby
bone resorption exceeds bone formation, can lead to osteoporosis [10]. Osteoporosis is
characterized by low bone mineral density and altered bone microarchitecture, resulting
in bone fragility and an increased risk of fractures. Bone microstructure and strength are
crucial for maintaining bone health and significantly influence its ability to resist fractures
and maintain overall structural integrity. While dual-energy X-ray absorptiometry (DXA)
remains the gold standard for diagnosing osteoporosis [11], it may not detect changes
in bone microstructure. Micro-CT offers superior resolution for precise morphometric
analyses [12] and provides deeper insights into structural alterations, and therefore, it is
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utilized in this study. Numerous preventive strategies have been outlined for osteoporo-
sis, one of which includes a reduction in alcohol consumption [13]. Alcohol is known
to have detrimental effects on bone by exerting direct toxic effects on bone cells [14–16]
and indirectly disrupting bone remodeling balance by affecting various hormones such
as growth and estrogen hormones [17]. It interrupts calcium and bone homeostasis, lead-
ing to disturbances in bone growth [18]. Alcohol affects bone metabolism by increasing
parathyroid hormone release, which stimulates osteoclast activity [19] and bone resorption.
It also reduces the number of osteoblasts [14,20], thereby decreasing bone formation. These
dual effects lead to decreased bone density and an increased risk of osteoporosis over
time. Additionally, alcohol has been reported to decrease the levels of activated vitamin D,
resulting in low calcium absorption by the intestine and increased bone resorption to restore
serum calcium levels [21]. Furthermore, alcohol metabolism produces reactive oxygen
species (ROS) and reactive nitrogen species (RNS) while depleting antioxidant levels, all
of which contribute to detrimental effects on bone [22]. Various bone markers are used to
determine bone remodeling activity. Bone formation markers include osteocalcin (OCN),
bone alkaline phosphatase (ALP), procollagen type 1 carboxy-terminal propeptide (P1CP),
and procollagen type 1 N-propeptide (PINP) [23], whereas markers of bone resorption
include receptor activator of nuclear factor kappa-B ligand (RANKL), tartrate-resistant acid
phosphatase (TRAP), and telopeptides of type 1 collagen (CTX-1) [24].

Fibroblast growth factor 23 (FGF23) is a hormone encoded by the FGF23 gene located
on chromosome 12p13 [25]. It is primarily synthesized in the bone by osteocytes [26] and
plays an important role in regulating phosphate and vitamin D metabolism [27]. FGF23
acts as a phosphaturic factor, leading to increased renal phosphate excretion and the
suppression of 1,25(OH)2-vitamin D3 [27]. This hormone inhibits bone formation and
mineralization, significantly influencing bone health [28]. Additionally, FGF23 directly
inhibits the differentiation of osteoprogenitor cells, which affects bone development [29].
Alcohol has been reported to induce upregulation of hepatic FGF23 and plasma FGF23
levels in patients with cirrhosis [30]. Chronic alcohol consumption is also associated with
FGF23-related hypophosphatemic osteomalacia [31]. Interestingly, alcohol abstinence has
been shown to decrease FGF23 levels after five months [31]. However, more research is
needed to fully understand the mechanisms and implications of these interactions.

Despite numerous studies delineating the harmful effects of alcohol on bone [17,32],
some research suggests that moderate alcohol consumption could potentially benefit bone
health [33,34]. Since there is still a paucity of information regarding the relationship
between alcohol and bone, this study was intended to investigate the effects of acute and
chronic alcohol administration and withdrawal on bone microstructure, strength, and
bone remodeling protein expression, as well as the relationship between these effects and
the FGF23 protein and an antioxidant. In this study, we utilized an ethanol treatment
protocol in rats as described in previous literature [35]. This model was used to mimic the
chronic and relapsing nature of human alcohol consumption patterns, providing a more
comprehensive understanding of the long-term effects of alcohol on bone health. This
approach allowed us to study both the acute and chronic effects of alcohol consumption
and withdrawal on bone tissue.

2. Materials and Methods
2.1. Instruments and Kits

An Omni Bead Ruptor 24 (Omni International Inc., Kennesaw, GA, USA) was used
to homogenize the samples. An RTX high-performance rotary tool (Black & Decker, New
Britain, CT, USA) was utilized to cut the femurs. Samples were centrifuged using a Mi-
crofuge 22R centrifuge (Beckman Coulter Inc., Brea, CA, USA). Imaging was carried out
using a micro-computed tomography (micro-CT) Skyscan 1076 scanner (Skyscan, Kartuizer-
sweg Kontich, Belgium). Mechanical strength testing of the samples was performed using a
universal mechanical strength testing machine (Autograph AGS-X 500N, Shimadzu, Kyoto,
Japan). For biochemical analyses, a multimode plate reader (Thermo Fisher Scientific,
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Waltham, MA, USA) was employed. ELISA kits from Elabscience, Houston, TX, USA were
used, including the Rat Osteopontin ELISA Kit (OPN) (E-EL-R0702), the Rat Osteocalcin
ELISA Kit (OC/BGP) (E-EL-R0243), the Rat RANKL ELISA Kit (E-EL-R0841), the Rat Fi-
broblast Growth Factor 23 (FGF23) ELISA Kit (E-EL-R2410), the Rat Tartrate Resistant Acid
Phosphatase (TRAP) ACP5 ELISA Kit (E-EL-R0939), and the Rat Glutathione Peroxidase
(GPx) ELISA Kit (E-EL-R2491).

2.2. Animals and Treatment

This study examined 24 femur bone specimens from male Wistar rats aged two
months old, weighing around 300 g, retrieved from the Laboratory Animal Resource Unit
of Universiti Kebangsaan Malaysia (LARU). The rats were randomly divided into four
groups with n = 6 in each group: normal control (NC), acute alcohol (AA), chronic alcohol
(CA), and alcohol withdrawal (AW). They were individually housed under a 12 h light–dark
cycle at a constant temperature of 24 ◦C and acclimatized for one week upon arrival.

The normal control and acute alcohol groups received a modified liquid diet (MLD)
without ethanol for 27 days and intraperitoneal normal saline and ethanol (2.5 g/kg, 20%
V/V) on day 28, 60 min before humane culling. Chronic alcohol administration was given
following Kumar et al.’s technique [35]. The chronic alcohol group received MLD without
ethanol for the first 7 days. From day 8, ethanol was gradually introduced: 2.4% for
3 days, 4.8% on day 11 for 3 days, and 7.2% until day 27. On day 28, the members of this
group received intraperitoneal ethanol (2.5 g/kg, 20% V/V) 60 min before culling. The
withdrawal group received the same treatment as the chronic alcohol group but was culled
6 h after intraperitoneal ethanol (2.5 g/kg, 20% V/V) administration. The left femurs were
collected, cleaned, and wrapped in gauze soaked in phosphate buffer solution (PBS) and
aluminum foil before storage at −70 ◦C. The experimental protocol was approved by the
Universiti Kebangsaan Malaysia Animal Ethics Committee (UKMAEC) (approval code:
FAR/PP/2019/NORAZLINA/30-OCT./1050-OCT-2019-MAR-2020-AR-CAT2).

2.3. Micro-Computed Tomography (µCT) Analysis of Femur

The scanning and analysis of harvested left femurs were performed using a µCT
Skyscan 1076 Scanner and CTAn software (Skyscan, Kartuizersweg Kontich, Belgium).
The selected µCT parameters for scanning were as follows: X-ray voltage = 92 kV, X-
ray current = 100 µA, image pixel size = 9 µm, rotation step = 0.5◦ with high camera
resolution. After scanning, 200 slices of the volume of interest (VOI) were selected for both
trabecular and cortical bone, with reference to the distal growth plate for analysis. The
measurement of both trabecular and cortical areas commenced at approximately 1.0 mm
and 7.0 mm, respectively, from the distal growth plate, extending towards the proximal
end of the femur. Parameters measured in trabecular bone included trabecular thickness
(Tb.Th, unit = mm), trabecular separation (Tb.Sp, unit = mm), trabecular number (Tb.N,
unit = 1/mm), connectivity density (Conn. D, unit = 1/mm3), structural model index (SMI),
and trabecular bone volume (BV/TV, unit = %). Parameters measured in cortical bone
included cortical thickness (Ct.Th, unit = mm), total cross-sectional area (Tt.Ar, unit = mm2),
cortical bone area (Ct.Ar, unit = mm2), and cortical area fraction (Ct Ar/Tt.Ar, unit = %)

2.4. Bone Biomechanical Strength Analysis of Femur

The biomechanical strength of the left femurs was evaluated through a three-point
bending test using the Shimadzu Universal Testing Machine (Autograph AGS-X 500N,
Kyoto, Japan). The speed was set at 5 mm/min with a span length of 10 mm apart. The
left femurs were mounted on two supporting rods in a position where the anterior surface
of the bone faced upward. The load was applied directly to the midpoint of the anterior
surface of the femur until it broke. The results were analyzed using Trapezium Lite X
software (https://www.shimadzu.com/an/products/materials-testing/uni-ttm-software/
trapezium-lite-x/index.html, accessed on 26 June 2024). The parameters measured were

https://www.shimadzu.com/an/products/materials-testing/uni-ttm-software/trapezium-lite-x/index.html
https://www.shimadzu.com/an/products/materials-testing/uni-ttm-software/trapezium-lite-x/index.html
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load (unit = N), displacement (unit = mm), stress (unit = N/mm2), strain (unit = %), stiffness
(unit = N/mm), and Young’s modulus of elasticity (unit = N/mm2).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The left femur samples were thawed at room temperature and cut into 100 mg pieces
using an RTX high-performance rotary tool (Black & Decker, New Britain, CT, USA). The
samples were homogenized in 4 mL PBS using an Omni Ruptor (Omni International Inc.,
Kennesaw, GA, USA) and subsequently centrifuged at 1600 rpm and 4 ◦C for 10 min
using a Microfuge 22R centrifuge (Beckman Coulter Inc., Brea, California, USA). The clear
supernatant of each homogenate was transferred to ELISA wells. Osteocalcin (OCN) protein
expression was measured using the Rat Osteocalcin (OC/BGP) ELISA kit (Elabscience,
E-EL-R0243), while receptor activator of nuclear factor kappa-B ligand (RANKL) protein
expression was measured using the Rat RANKL ELISA kit (Elabscience, E-EL-R0841). Rat
fibroblast growth factor 23 (FGF23) protein expression was measured using the Rat FGF23
ELISA Kit (Elabscience, E-EL-R2410), Rat tartrate-resistant acid phosphatase (TRAP) ACP5
protein expression was measured using the Rat TRAP ACP5 ELISA Kit (Elabscience, E-EL-
R0939), and rat glutathione peroxidase (GPx) protein expression was measured using the
Rat GPx ELISA Kit (Elabscience, E-EL-R2491). All procedures were performed as per the
respective protocols.

2.6. Statistical Analysis

The data were analyzed using the Statistical Package for the Social Sciences (SPSS)
version 26 software (IBM, Armonk, NY, USA) and GraphPad Prism 10. Data distribution
was determined by the Shapiro–Wilk Test of Normality. The statistical tests used in this
study were One-Way Analysis of Variance (ANOVA) with Tukey post hoc test for normally
distributed data and the Kruskal–Wallis test with pairwise comparison for non-parametric
data. All data are presented as the mean and standard error of the mean (SEM). A p-value
of less than 0.05 was considered statistically significant.

3. Results
3.1. Trabecular Bone Parameters

There were no significant differences observed in all trabecular bone parameters
among the groups as depicted in Table 1. The acute alcohol (AA) group showed slightly
higher connectivity density [703.71 (75.17) 1/mm3] compared to the normal control (NC)
[632.8 (63.01) 1/mm3], chronic alcohol (CA) [678.23 (77.24) 1/mm3], and alcohol withdrawal
(AW) [690.34 (95.94) 1/mm3], whereas the AA group demonstrated the lowest bone volume
to total volume ratio (BV/TV) [5.51(0.69) %] and trabecular thickness (Tb.Th) [0.039 (0.001)
mm] across all experimental and control groups.

Table 1. The effects of alcohol administration and withdrawal on the trabecular bone of the left femur.

Mean (SEM)
Treatment Groups

NC AA CA AW

Tb.N (1/mm) 1.40 (0.13) 1.40 (0.15) 1.51 (0.11) 1.52 (0.18)

Conn.D (1/mm3) 632.8 (63.01) 703.71 (75.17) 678.23 (77.24) 690.34 (95.94)

SMI 2.03 (0.05) 2.14 (0.08) 2.04 (0.04) 2.19 (0.10)

BV/TV (%) 5.85 (0.55) 5.51 (0.69) 6.57 (0.72) 6.79 (1.07)

Tb.Th (mm) 0.042 (0.001) 0.039 (0.001) 0.043 (0.004) 0.044 (0.002)

Tb.Sp (mm) 0.59 (0.02) 0.56 (0.04) 0.59 (0.02) 0.56 (0.03)

Abbreviations: NC: normal control group, AA: acute alcohol group, CA: chronic alcohol group, AW, alcohol
withdrawal group. Tb.N: trabecular number, Conn.D: connectivity density, SMI: structure model index, BV/TV: bone
volume to total volume ratio, Tb.Th: trabecular thickness, Tb.Sp: trabecular separation. The results are presented as
mean and standard error of mean for 6 replicates.
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3.2. Cortical Bone Parameters

For cortical bone microstructure, the AA group exhibited a significantly higher (p < 0.05)
Ct.Th [0.93 (0.03)] compared to the other groups: NC [0.36 (0.01)], CA [0.31 (0.04)], and
AW [0.16 (0.05)]. Additionally, the AA group showed significantly (p < 0.0001) lower total
cross-sectional area (Tt.Ar) [13.53 (0.55)] and cortical area (Ct.Ar) [11.13 (0.29)] (p < 0.0001)
compared to the CA group, with Tt.Ar and Ct.Ar values of [17.44 (0.65)] and [16.37 (0.54)], re-
spectively. Furthermore, the cortical area fraction (Ct.Ar/Tt.Ar) was significantly lower in the
AA group [82.93 (4.12)] (p < 0.01) compared to the NC, CA, and AW groups, with [94.92 (0.94)],
and [93.78 (0.56)], respectively, as shown in Figure 1.
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Figure 1. The effects of alcohol administration and withdrawal on the cortical bone of the left
femur. Abbreviations: NC: normal control group; AA: acute alcohol group; CA: chronic alcohol
group; AW: alcohol withdrawal group. Ct.Th: cortical thickness, Tt.Ar: total cross-sectional area,
Ct.Ar: cortical area, Ct.Ar/Tt.Ar: cortical area to total area ratio. The results are presented as mean
and standard error of mean for 6 replicates. * p < 0.05, ** p < 0.01, and **** p < 0.0001 indicate
significant differences. The statistical test was performed using GraphPad Prism 10.

3.3. Bone Biomechanical Strength

Although no statistical significance was found in any group for all parameters, both
AA and CA groups consistently exhibited higher load, stress, displacement, strain, stiffness,
elasticity, and Young’s modulus compared to the NC group. Conversely, AW demonstrated
lower values for all parameters compared to CA, as shown in Table 2.

Table 2. The effects of alcohol administration and withdrawal on the biomechanical strength of the
left femur.

Mean (SEM)
Treatment Groups

NC AA CA AW

Load (N) 104.13 (4.53) 122.31 (8.73) 105.41(7.36) 98.54 (1.24)

Stress (N/mm2) 596.50 (21.53) 742.01(55.03) 655.94 (38.32) 617.92 (10.97)

Displacement (mm) 6.27 (0.08) 6.53 (0.13) 6.59 (0.09) 6.47 (0.08)

Strain (%) 6.19 (0.08) 6.99 (0.28) 6.93 (0.27) 6.55 (0.19)

Stiffness (N/mm) 94.84 (4.82) 118.77 (14.44) 126.94 (13.90) 100.38 (4.99)

Young’s modulus
(N/mm2)

58,819.35
(3078.85)

69,215.97
(8791.08)

71,770.88
(7520.34)

59,703.37
(2899.15)

Abbreviations: NC: normal control group; AA: acute alcohol group; CA: chronic alcohol group; AW: alcohol
withdrawal group. The results are presented as mean and standard error of mean for 6 replicates.

3.4. Protein Expression of Bone Remodeling Markers, FGF23, and Antioxidant

In bone formation markers, the AA group exhibited a 3-fold increase in OCN
[0.36(0.15) ng/mL] and a 5-fold increase in OPN [1.38(0.75) pg/mL] compared to the
NC [OCN: 0.13(0.03) ng/mL, OPN: 0.52(0.14) pg/mL], and these values were higher than
those in the CA group [OCN: 0.22(0.09) ng/mL, OPN: 0.96(0.50) pg/mL]. Despite no statis-
tical significance, OCN levels were slightly higher in AW [0.24(0.11) ng/mL] compared to
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CA, while OPN levels in AW [0.60(0.23) pg/mL] were lower than those in CA, as shown
in Table 3 and Figure 2. For bone resorption markers, RANKL levels were significantly
higher in the AA (p < 0.01) and CA (p < 0.05) groups, [21.62(3.65)] and [19.1(3.77)], re-
spectively, compared to NC [6.80(1.10)]. TRAP levels, however, were significantly lower
(p < 0.05) in the CA group [0.11(0.02) pg/mL] compared to NC [0.25(0.03)]. FGF23 levels
were significantly higher in the AW group [14.06(1.60) pg/mL] compared to CA (p < 0.01)
and AA (p < 0.05). Antioxidant GPx levels were significantly higher in the AW group
[21.04(1.93) pg/mL] compared to NC (p < 0.01), AA (p < 0.001), and CA (p < 0.0001), as
demonstrated in Table 3 and Figure 2.

Table 3. The effects of alcohol administration and withdrawal on bone remodeling markers, an antioxi-
dant, and FGF23.

Mean (SEM)
Groups

NC AA CA AW

OCN (ng/mL) 0.13 (0.03) 0.36 (0.15) 0.22 (0.09) 0.24 (0.11)

OPN (pg/mL) 0.52 (0.14) 1.38 (0.75) 0.96 (0.50) 0.60 (0.23)

RANKL (pg/mL) 6.80 (1.10) a,b 21.62 (3.65) 19.1 (3.77) 15.17 (2.39)

TRAP (pg/mL) 0.25 (0.03) b 0.23 (0.05) 0.11 (0.02) 0.17 (0.04)

FGF23 (pg/mL) 9.17 (0.44) 6.76 (1.80) 5.66 (1.40) 14.06 (1.60) a,b

GPx (pg/mL) 11.97 (1.42) 10.88 (0.73) 5.66 (0.70) 21.04 (1.93) a,b,c

Abbreviations: NC: normal control; AA: acute alcohol; CA: chronic alcohol; AW: alcohol withdrawal. OCN: osteocalcin,
OPN: osteopontin, RANKL: receptor activator of nuclear factor kappa-B ligand, TRAP: tartrate-resistant acid phos-
phatase, FGF23: fibroblast growth factor 23, GPx: glutathione peroxidase. a significant difference (p < 0.05) compared
to AA, b significant difference (p < 0.05) compared to CA, c significant difference (p < 0.05) compared to NC. The
statistical test was performed using GraphPad Prism 10. The results are presented as mean and standard error of mean
for 6 replicates.
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dant, and FGF23. Abbreviations: NC: normal control group; AA: acute alcohol group; CA: chronic alcohol
group; AW: alcohol withdrawal group. OCN: osteocalcin, OPN: osteopontin, RANKL: receptor activator
of nuclear factor kappa-B ligand, TRAP: tartrate-resistant acid phosphatase, FGF23: fibroblast growth
factor 23, GPx: glutathione peroxidase. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 indicate
significant differences. The statistical test was performed using GraphPad Prism 10. The results are
presented as the fold increase of the mean and standard error of the mean for 6 replicates and were
normalized to the normal control in the respective group (fold increase = treatment group/normal control).
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4. Discussion

Alcohol use represents a substantial global public health concern, contributing to a
spectrum of issues including dependence and withdrawal. It is associated with a plethora
of complications, including bone-related problems [17,36]. Chronic alcohol abuse can
lead to dependency, characterized by tolerance and withdrawal [37]. While some studies
suggest that moderate alcohol consumption may benefit cardiovascular health [38,39] and
bone [33], chronic intake of alcohol might be damaging [40]. Given the global increase in
lifespan [41], addressing bone health is crucial, as complications like fractures [42] can be fatal.

The ethanol model employed in our study has been validated to simulate alcohol de-
pendence and withdrawal effects [43]. While we previously referenced moderate drinking as
potentially beneficial to bone health, our study does not aim to affirm or dispute this; rather, our
focus is on exploring the impact of alcohol administration and withdrawal on bone biochemistry.
For acute intraperitoneal injections, we administered a dose of 2.5 g/kg in rats, which translates
to an approximate human equivalent dose of 418.93 mg/kg. The decision to cull the animals
6 h after the last ethanol administration was based on a previous validation study by Kumar
et al. [35,43], which demonstrated that this timeframe effectively induces withdrawal symptoms
and allows for the study of early withdrawal effects in experimental models.

Micro-CT has been widely used to study the quantitative changes in bone quality and
structural characteristics [44]. Micro-CT assessment is reliable for analyzing rat trabecular
structure as it is thinner than human bone [45]. In our study, no significant differences were
observed in trabecular bone parameters among the groups. This finding is in accordance
with a previous study which also observed no significant difference in bone trabecular
microstructure in mice treated with 15% ethanol for 14 days [46]. Contrary to our expec-
tations [47], the acute alcohol (AA) group showed slightly higher connectivity density
(Conn.D) compared to the normal control (NC), chronic alcohol (CA), and alcohol with-
drawal (AW) groups. This finding may suggest a transient effect of acute alcohol exposure
on trabecular connectivity. However, the AA group exhibited the lowest bone volume
to total volume ratio (BV/TV) and trabecular thickness (Tb.Th) across all experimental
and control groups. These results are consistent with a previous study indicating that
alcohol exposure can lead to decreased bone volume and trabecular thickness [48] which
may have implications for bone strength and fracture risk. A study on rats fed with three
different alcohol doses ad libitum, 25%, 30%, and 35%, also showed significant thinning
of trabecular bone after 17 weeks of treatment [49]. There were no changes observed in
trabecular number, structural model index, or trabecular separation in the treated groups,
suggesting that the effects of acute alcohol exposure on these parameters may be more
variable or subtle. Also, trabecular bone appears to be less sensitive to alcohol dosage
effects compared to cortical bone in rats, as shown in a previous study [49]. In addition, it is
worth mentioning that our study employed intraperitoneal injection and dosages consistent
with rat models of AUD [50]. However, despite utilizing a relevant model, the duration
of exposure and dosage might not have been optimal for detecting significant changes in
trabecular morphology. Future studies could explore longer exposure durations and higher
dosages to better simulate chronic alcohol consumption and its effects on bone health.

Interestingly, the AA group exhibited a significant increase in cortical thickness compared
to the other groups, which contradicts a previous report showing lower cortical thickness [49].
This finding may be attributed to compensatory mechanisms triggered by acute alcohol
exposure or alterations in bone remodeling dynamics. Otherwise, the AA group showed
significantly lower total cross-sectional area (Tt.Ar) and cortical area (Ct.Ar) compared to the
CA group, which could indicate a reduction in overall cortical bone size in the AA group.
Furthermore, the cortical area fraction (Ct.Ar/Tt.Ar) was significantly lower in the AA group
compared to the NC, CA, and AW groups, suggesting a decrease in the proportion of cortical
bone relative to total bone area. These findings are consistent with previous observations that
showed a reduction in cortical thickness after chronic ethanol exposure for 17 weeks [16,49].
This cortical thinning is possibly due to increased resorption at the endocortical surface or
decreased formation at the endosteal or periosteal surface of the femur [51], with supporting
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evidence from histomorphometric changes (reduced cortical bone area, bone formation rates,
and mineral apposition rates) in an alcohol-fed group from a previous study [52]. Cortical bone
thickness and cortical area are typically proportional; however, we observed that the AA group
exhibited a higher cortical thickness (Ct.Th) but a lower cortical area (Ct.Ar). Exceptions to this
relationship can occur due to factors such as variations in periosteal apposition rates, endosteal
resorption rates, and alterations in bone geometry, which can contribute to discrepancies in
measurements of cortical thickness and cortical area [53].

Many studies have reported a dramatic adverse effect of alcohol on bone mechanical
properties [54,55]. However, in our study, we did not observe any significant difference in the
alcohol-fed or withdrawal group compared to the control, which is in agreement with an earlier
study [56]. Possible reasons for this could include the dosage or duration of alcohol exposure or
the specific characteristics of our experimental model as mentioned in the previous section.

Osteocalcin (OCN) and osteopontin (OPN) are crucial proteins synthesized by os-
teoblasts and play pivotal roles in bone mineralization. In this study, we observed no
significant changes in bone formation parameters, OCN and OPN, in all groups. However,
we noted higher levels of both OCN and OPN in the AA group compared to the NC group.
Even though it was not aligned with previous work [57,58], this finding could potentially
suggest that acute alcohol exposure can transiently elevate bone turnover markers. RANKL
plays a crucial role in bone remodeling by promoting the differentiation and activation of
osteoclasts, leading to bone resorption. Our study observed a significantly higher level
of receptor activator of nuclear factor kappa-B ligand (RANKL) in both the AA and CA
groups compared to the NC group, which could indicate a potential stimulatory effect
of alcohol on osteoclastogenesis, consistent with previous findings [59,60]. TRAP is an
enzyme secreted by osteoclasts. Conversely, we observed lower levels of tartrate-resistant
acid phosphatase (TRAP) in the CA group compared to NC. The decreased TRAP levels
in the CA group may indicate a compensatory response to decreased bone resorption in
chronic alcohol exposure, aimed at preserving bone integrity.

Fibroblast growth factor 23 (FGF23) plays a critical role in regulating phosphate
homeostasis and vitamin D metabolism, promoting phosphate excretion, and inhibiting
the production of active vitamin D to maintain serum phosphate levels. Dysregulation
of FGF23 has been implicated in various bone disorders, including osteoporosis. Studies
have shown that higher levels of FGF23 are associated with reduced bone density [61,62].
Elevated FGF23 levels have also been observed in alcoholics [63]. However, our study did
not observe any changes in bone FGF23 levels in the group treated with acute and chronic
alcohol. This finding corresponds with previous research, which reported elevated levels
of FGF23 mRNA expression in the liver but did not find similar changes in other organs,
including bone [30]. Notably, we revealed a significant elevation of FGF23 levels in the
AW group compared to both the AA and CA groups. This suggests a unique response
to alcohol cessation, possibly due to disruptions in mineral metabolism and phosphate
homeostasis during withdrawal. The observed increase in FGF23 levels during withdrawal
could also reflect bone-specific adaptations to restore mineral homeostasis or respond
to changes in systemic factors like hormonal shifts or metabolic adjustments. However,
further investigation is necessary to comprehensively explore these mechanisms, as they
lie beyond the current scope of our study.

Glutathione peroxidase (GPx), an antioxidant enzyme, is crucial for protecting cells
from oxidative damage by catalyzing the reduction of hydrogen peroxide and organic
hydroperoxides. It scavenges reactive oxygen species (ROS) to prevent cellular damage,
which can contribute to the pathogenesis of bone disorders. In this study, we observed
increased levels of GPx in the AW group. This may indicate an adaptive antioxidant
response to mitigate alcohol-induced oxidative damage during the withdrawal period.

The clinical implications of this study highlight the importance of proactive patient
management and rehabilitation for individuals with a history of alcohol consumption.
Regular bone health assessments, including monitoring antioxidants such as glutathione
peroxidase, FGF23 levels, and bone remodeling markers like RANKL, could be beneficial
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for early detection and intervention in alcohol-induced bone loss. Tailored treatments, such
as fracture risk assessments and targeted rehabilitation programs, are essential to enhance
bone strength and reduce fracture risk in these patients. Education on alcohol cessation and
lifestyle modifications, alongside long-term follow-up, are pivotal in preserving skeletal
integrity and overall health in this vulnerable population.

Our study has several limitations. Firstly, it lacks bone mineral density (BMD) and
bone mineral content (BMC) measurements, which are crucial for predicting bone strength
and diagnosing osteoporosis. Additionally, histomorphometric studies, essential for ex-
plaining certain mechanisms, were not conducted. However, our study is the first, to our
knowledge, to utilize this alcohol model of alcohol dependence and withdrawal to explore
the relationship between alcohol consumption and bone health. It provides supporting
evidence for the widely accepted notion that long-term alcohol consumption negatively
impacts bone health. Future research should aim to elucidate the pathogenesis of alcohol-
induced osteoporosis by incorporating additional parameters such as bone densitometry
(DXA) assessments, serum mineral levels (calcium, phosphate), hormonal levels (parathy-
roid hormone and steroids), oxidative status parameters, and histomorphometric studies.

5. Conclusions

In conclusion, our study provides valuable insights into the impact of alcohol con-
sumption on bone health (Figure 3). Acute alcohol exposure transiently increases cortical
thickness but reduces cortical area, while withdrawal is associated with decreased corti-
cal thickness. Concurrently, increased RANKL levels observed across all groups suggest
enhanced osteoclast activity, potentially exacerbating bone resorption. Elevated FGF23
levels during alcohol withdrawal and reduced antioxidants, such as GPx, during acute
and chronic alcohol consumption indicate multifaceted mechanisms underlying alcohol-
induced bone damage. Our findings highlight the need for further research to understand
the mechanisms underlying alcohol-induced bone damage and to explore potential inter-
ventions to mitigate its effects on bone health.
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