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Abstract: The rise of large-scale Transformers has led to challenges regarding computational costs
and energy consumption. In this context, spiking neural networks (SNNs) offer potential solutions
due to their energy efficiency and processing speed. However, the inaccuracy of surrogate gradients
and feature space quantization pose challenges for directly training deep SNN Transformers. To
tackle these challenges, we propose a method (called LDD) to align ANN and SNN features across
different abstraction levels in a Transformer network. LDD incorporates structured feature knowledge
from ANNs to guide SNN training, ensuring the preservation of crucial information and addressing
inaccuracies in surrogate gradients through designing layer-wise distillation losses. The proposed
approach outperforms existing methods on the CIFAR10 (96.1%), CIFAR100 (82.3%), and ImageNet
(80.9%) datasets, and enables training of the deepest SNN Transformer network using ImageNet.

Keywords: spiking neural networks (SNNs); Transformer; distillation; image classification

1. Introduction

Large-scale Transformers [1,2] have recently achieved significant success in tasks such
as natural language processing [3,4] and image classification [5,6]. However, as the size of
datesets and network architectures expand, the increasing computational cost and high
energy consumption have become key challenges in the training of large artificial neural
networks (ANNs) [7]. Spiking neural networks (SNNs) employ sparse spike trains across
multiple time steps for data representation and processing. The binary and sparse nature of
these spikes gives SNNs an edge in energy efficiency and processing speed, which positions
them as a promising solution to the challenges of high energy consumption faced when
training large-scale Transformer models.

However, at present, direct training cannot be used to construct very deep SNN
Transformers, and the performance of the models obtained is significantly lower compared
to ANN models with the same number of parameters. The main challenges in training
deep SNN Transformers arise from two aspects:

1. Quantization of the ANN feature space through SNN spike firing: In ANNs, the pro-
cessing of features is conducted using real values, which allows the model to express
delicate hierarchical features. SNNs, however, use discrete spike events to transmit
information, which limits the precision of the information.

2. Inaccuracies in surrogate gradients leading to error accumulation across layers: As the
activation functions of SNN neurons are discontinuous, surrogate gradients are used
to approximate the true gradients during backpropagation. As a result, the behavior

Biomimetics 2024, 9, 413. https://doi.org/10.3390/biomimetics9070413 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9070413
https://doi.org/10.3390/biomimetics9070413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-0858-0866
https://orcid.org/0000-0003-3710-2644
https://orcid.org/0000-0002-7223-8937
https://orcid.org/0000-0002-8073-0964
https://orcid.org/0000-0003-4813-2494
https://doi.org/10.3390/biomimetics9070413
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9070413?type=check_update&version=2


Biomimetics 2024, 9, 413 2 of 15

of gradients at the spike firing points is inaccurate and, with an increase in network
depth, these errors gradually accumulate.

To address the two main challenges in training deep SNNs, we propose the follow-
ing solutions:

1. Transfer structured feature knowledge from a large pretrained ANN to guide the
training of the SNN. Distillation is the most effective method for knowledge transfer
and mutual supervision training between models, using the large ANN model as a
teacher network to distill the student network, SNN.

2. Transform the training of deep SNNs into training multiple shallow SNNs. Layered
loss functions can introduce additional multi-level supervisory signals to correct
errors caused by surrogate gradients. During distillation, layer-by-layer distillation
losses can be designed, where the teacher network distills the student network in a
layer-by-layer manner.

The essence of the proposed layer-by-layer distillation approach is to transfer the
feature knowledge of ANNs to the additional temporally enhanced and heterogeneous
SNNs. A core challenge in the knowledge transfer process is how to match and align the
unique time-step spike sequences of SNNs with the continuous real-valued features of
ANNs in both time and spatial dimensions.

For this purpose, we propose a layer-by-layer Dual Distillation approach. SNN neu-
rons’ output features include multi-time-step peaks with temporal dependencies. To trans-
fer ANN knowledge to all temporal dimensions of an SNN, we need to compress the time
dimensions while preserving the time-dependent information. We design the Dual SNN,
whose output is defined as the dual class token. Each Transformer block learns a temporal
layer with an attention structure, using self-attention mechanisms to learn the temporal
dependencies of the distillation token at different time steps and making up the Dual
SNN. When designing the layered distillation loss function, we perform a transformation
between the dual class token and the ANN class token to control the intensity of feature
aggregation, achieving alignment in the spatial dimension.

Existing work using ANN distillation for directly training SNNs has focused on the
ResNet framework, improving model classification accuracy. However, these approaches
adopt an end-to-end distillation strategy, aligning the ANN and SNN using only the output
features of the final layer, which results in weak supervisory signals and ignores the multi-
time dimensional characteristics of SNNs. Additionally, for SNN Transformer networks,
the structural consistency with ANNs is disrupted, making it impossible for end-to-end
distillation to achieve higher similarity in model features. In contrast, our proposed LDD
method, for the first time, addresses the structural inconsistency between ANN and SNN
Transformer architectures. By employing layerwise distillation, it ensures that each layer of
the SNN is optimally aligned with its corresponding layer in the ANN. The introduction
of temporal layers and the Dual SNN allows the transfer of ANN feature knowledge into
the extended temporal domain of the SNN. This fine-grained distillation process helps
preserve the complex feature details from the ANN.

In summary, our main contributions are as follows:

• We propose layer-by-layer Dual Distillation (LDD) which, for the first time, achieves
precise alignment of ANN and SNN features at different levels of abstraction on a
Transformer network, mitigating the difficulty in directly training deep SNN Trans-
former networks.

• We propose the temporal Dual SNN, which imports the feature knowledge of neural
networks into the extended time domain and heterogeneous spatial domain of the
SNN, solving the difficulties in layer-by-layer distillation caused by multiple time
steps and network heterogeneity.

• Compared to other methods for training SNNs, we achieve state-of-the-art perfor-
mance on standard datasets and train the deepest SNN Transformer network using
the ImageNet dateset, achieving efficient sample utilization.
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2. Related Work
2.1. Training of SNNs

ANN training has achieved significant success using gradient-based algorithms [8,9],
calculating the gradient of each neuron operator during forward propagation, with errors
being backpropagated from the output layer to the input layer. However, SNNs utilize
step functions to send neuron outputs into spikes, as seen in integrate-and-fire (IF) and
leaky-integrate-and-fire (LIF) neurons [10]. These spikes, represented by binary values over
multiple time steps, encode information at different firing times. However, this spiking
computation is non-differentiable, necessitating the use of surrogate gradient functions as
approximations for the actual gradients, thus allowing SNNs to also be directly trained us-
ing backpropagation algorithms such as Spatio-Temporal-Backpropagation (STBP) [11,12].
Nevertheless, surrogate gradients increase the computational load due to their complex
calculations and dependencies across multiple time steps, thereby incurring significant
computational costs [13]. Additionally, surrogate gradients do not precisely describe the
behavior of spiking neurons and the accumulated error in gradients prevents the direct
training of deep SNNs.

2.2. Transformer and Spike-Based Transformer

The Transformer has shown exceptional performance in tasks such as machine transla-
tion [14], text generation [15,16], and speech recognition [17,18]. Its core is the self-attention
mechanism [19], which allows the model to allocate weights to different positions in the
input sequence, thus better understanding the context of the input sequence. Unlike Long
Short-Term Memory (LSTM) networks [20] or Gated Recurrent Units (GRUs) [21], the Trans-
former completely abandons the recurrent structure, significantly improving computational
efficiency and suitability for parallel computation. Compared to traditional convolutional
neural networks, the Transformer has a smaller inductive bias, offering greater flexibility
and inductive capability.

Spike-based Transformers [22,23], which have been recently designed for direct SNN
training, modify two key components of the Transformer: the Vanilla Self-Attention (VSA)
and the Multi-Layer Perceptron (MLP). The surrogate gradient employed exhibits inaccura-
cies in its behavior at the spiking points, leading to a gradual reduction in the precision of
the feature space across layers. When SNNs utilize deep Transformer structures to process
datesets, their performance is somewhat diminished compared to ANNs. In the absence
of external data, the ImageNet dateset only supports the training of spike Transformer
networks with no more than ten blocks, resulting in low sample efficiency.

2.3. SNN Training with Knowledge Distillation

Knowledge distillation [24,25] aims to transfer the knowledge from a large, complex
model (commonly referred to as the “teacher model”) to a smaller, more deployable model
(referred to as the “student model”), improving the efficiency of the model and reducing the
demand for computational resources while maintaining high performance. Previously, such
approaches were mainly applied for the direct training of ANNs, using the teacher model’s
output to customize the supervisory signal, providing more detailed guidance compared to
hard labels [26]. Distillation operations are generally easier between networks with similar
structures [27], as the consistency of the architecture allows the student model to more
effectively learn the feature representation and decision boundaries of the teacher model.

Previous research has shown that knowledge distillation can be used to transfer
knowledge from large ANNs to SNNs [28,29], and this has been applied in both ANN-to-
SNN conversion and direct SNN training efforts. For ANN-to-SNN conversion, setting
and adjusting the spiking threshold for each layer is a significant challenge. Through
employing distillation, it is possible to fine-tune ANN-to-SNN models, enhancing the
accuracy of the transformed models [30,31]. During the threshold balancing process in
ANN-to-SNN conversion, soft labels introduced through the trained large ANN model are
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used to update the threshold of each layer, ensuring that the converted SNN can activate
neurons appropriately [32].

For directly training SNNs, distillation is primarily used for residual structures [28,31].
Deep Spiking ResNet and ANN ResNet have similar structures, inherently satisfying
the requirements for knowledge transfer through distillation in isomorphic networks.
These methods often focus on the output layer for distillation, potentially missing out
on valuable intermediate representations learned by the teacher model [33,34]. However,
without matching intermediate representations or feature maps between the teacher and
student networks, it is unable to handle the temporal dynamic adaptability required for
the structural differences between ANNs and SNNs. Going further, for SNN Transformer
networks, the structural consistency with ANNs is disrupted, making it more challenging
to ensure stability in knowledge transfer within deep networks [35]. To date, there have
been no specialized studies on guiding SNNs using the Transformer structure through
ANN-based instructions.

3. Preliminaries and Problem Analysis
3.1. Spike-Based Transformer Model

We use a spike-based Transformer [22], which incorporates the Transformer into the
spike-driven paradigm with only sparse addition. It includes four parts: Spiking Patch
Splitting (SPS), Spike-Driven Self-Attention (SDSA), MLP, and a linear classification head.
The MLP and the linear classification head are identical to those in ANNs.

For the SPS part, input an image I ∈ RT×C×H×W , where T, C, H and W denote the
time step, channel, height, and width of the 2D image. First, the Patch Splitting Module
(PSM), which consists of multiple convolutional layers, processes and splits the input into
N long sequences with D-dimensional channels.

PSM(I) = Conv 2 d(I), PSM ∈ RT×N×D. (1)

Another Conv layer is then used to generate Relative Position Embedding (RPE):

RPE = BN(Conv 2 d(SN (u))), RPE ∈ RT×N×D, (2)

where SN (u) denotes the layer of spiking neurons that performs spike processing. We
combine the outputs of RPE and PSM to obtain the SPS results.

U0 = PSM + RPE, U0 ∈ RT×N×D (3)

Then, we pass U0 to several blocks of Spike-driven Transformer encoders, whose core
is SDSA, utilizing the Q, K, and V spikes to model the global cross-correlation information
of the image. After extracting the feature matrices Q, K, and V from the output using linear
convolutional layers, the essence of SDSA is to perform masked operations on Q, K, and V.

SDSA(Q, K, V) = Q⊗ SN (SUM(K⊗V)), (4)

where ⊗ is the Hadamard product.

3.2. Training Difficulties

To train the Spike-driven Transformer, on the one hand, compared to residual networks,
there is a stronger dependency on large datesets, as it is constrained by the relatively small
inductive bias of the Transformer structure. In the absence of external data, the ImageNet
dateset only supports the training of the Spike-driven Transformer with no more than ten
blocks, resulting in low sample efficiency. On the other hand, due to the inaccuracy of
the surrogate gradient used in the backpropagation algorithm of SNNs at the points of
spike firing, there is a layer-by-layer reduction in the precision of the feature space. When
SNNs employ deep Transformer structures to process datesets, their performance suffers in
comparison to ANNs. Utilizing the knowledge of the feature space from artificial neural
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networks to guide each layer helps mitigate the error accumulation caused by inaccurate
gradients at each layer.

Self-attention in the Spike-driven Transformer is specially designed for modeling spike
sequences. The Q, K, and V are generated through the spike neural layer, which degrades
the matrix dot-product calculation to the logical AND operation and summation operation.
Therefore, the parameterized layers are different between the ANN and Spike-driven
Transformer. Furthermore, the temporal and spatial properties of spiking neural networks
require an additional time dimension in the input, resulting in structural differences. It is
difficult to achieve ideal results simply by minimizing the feature distributions between
the ANN and SNN, due to the lack of sufficient distillation information. Therefore, SNN
layer-by-layer distillation through the ANN requires overcoming both the model structure
and feature dimension issues.

4. Layer-by-Layer Dual Distillation

Previous works have shown that different layers of neural networks capture different
attentional information [36]. As shown in Figure 1, the neurons in lower layers are heavily
activated by input information and extract simple features, such as edges and colors. As the
network progresses to deeper layers, the middle layers begin to extract more complex
features, including corner textures. In the top layers, the features extracted are more
abstract and typically involve semantic representations of the image. Indeed, the features
in the output layer do not fully reflect the complexities of the entire network.

(a) Input image (b) First, layer (c) Middle layer (d) Top layer

Figure 1. The attention map of different layers in a convolutional neural network.

Due to the complex and significantly divergent self-attention mechanisms, the SNN
Transformer differs greatly from ANN networks. There is no specialized research on the
distillation from ANNs to SNNs within Transformer architectures. Traditional distilla-
tion strategies used in the ResNet framework that minimize the differences in output
distributions between ANNs and SNNs are not very effective due to the lack of sufficient
distillation information. We propose a layer-by-layer supervision strategy, combined with
the loss alignment strategy, which provides a robust framework for transferring complex
feature knowledge from ANN to SNN while preserving the multi-time dimensional char-
acteristics of SNNs. As input samples pass through each Transformer block, each layer
can output feature maps that contain attention information at different levels. A hierar-
chical alignment distillation strategy is proposed, which extracts attention information
layer-by-layer from the ANN. The overall process of layer-by-layer knowledge distillation
is illustrated in Figure 2. In this section, we give details about the distillation paradigm
with a layer-by-layer supervision strategy and a loss alignment strategy.
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Figure 2. The training pipeline of layer-by-layer ANN-to-SNN knowledge distillation. We propose
the Dual SNN (dashed blue box) to project the multiple time dimensions of the SNN into the single
time dimension of the ANN. Each Transformer block learns a temporal layer with an attention
structure to capture the temporal dependencies of the distilled labels, aligning its output with the
ANN features through distillation.

4.1. Layer-by-Layer Supervision Strategy

The key aspect of the LDD method is to project the SNN into the ANN space along
the time dimension. We achieve this through designing the Dual SNN utilizing attention
mechanisms. In the SNN Transformer network consisting of N blocks, each block corre-
sponds to a temporal layer learning the temporal attention map of the output features,
modeling long-term dependencies in the time dimension. The N temporal layers together
form the Dual SNN, serving as the temporal mapping function of the current SNN into the
ANN space.

Each temporal layer has two sub-layers, including a multi-head self-attention layer
and a fully connected layer. To project the output features of each block along the tem-
poral dimension, it is necessary to learn a set of vectors, which contain the dependency
relationships of the features at different time steps, through the temporal layer. To this
end, we treat each temporal dimension of data as input for the multi-head self-attention
layer, so that the output vectors will encompass temporal dependencies in all time steps.
Subsequently, the projection along the temporal dimension can be achieved through a fully
connected layer. Concretely, the pipeline of the l-th temporal layer is given by Definition 1.

Definition 1 (Temporal Layer). Let the output features of the l-th SNN block be Sl =
[
sl

1, . . . , sl
N+1

]
∈ R(N+1)×T×C, where sl

N+1 ∈ RT×C is the distillation token. Then, the output of the l-th temporal
layer with input sl

N+1 is given by the following formula:

h̃l = SG(sl
N+1),

Ql , Kl , V l = h̃lW⊤Q , h̃lW⊤K , h̃lW⊤V ,

Temporal Layer
(

sl
N+1

)
= Linear(Attention(Ql , Kl , V l)),

(5)
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where the function SG(·) stands for the stop-gradient operation; Attention(·, ·, ·) stands for the
self-attention layer given by

Attention(Q, K, V) == Softmax

(
QFKT

F√
d

)
VF , (6)

where d = C/H, H is the head number, and Linear(·) stands for the fully connected layer given by

Linear(x) = xW⊤ + b. (7)

The trainable parameters of the temporal layer are WQ, WK, WT , W, and b.

The process of aligning features using the temporal layer is illustrated in Figure 3.

Figure 3. Illustration of the process of aligning features using the temporal layer with a segment
length 5× 5. In the temporal layer, a segment length of 5 × 5 is used to process the temporal attention
information in the feature map, projecting it into the single time dimension feature space of the ANN.
This produces the Dual SNN token, which is then spatially matched with the ANN class token to
compute the distillation loss.

All the temporal layers form the Dual SNN, as shown in Figure 2. The Dual SNN
essentially serves as a continuous-valued network projecting multiple time dimensions of
SNN into one dimension of ANN. The LDD method incorporates dynamic adjustments
during the distillation process, which allows for real-time optimization of the knowledge
transfer. This adaptive approach ensures that the discrepancies between the ANN and
SNN architectures are minimized throughout the training. By focusing on layer-by-layer
distillation, the LDD method precisely align the features of ANN and SNN at different
levels of abstraction, which is specifically designed to address the structural inconsisten-
cies between ANNs and SNNs, particularly in Transformer architectures. This results in
improved stability and performance of the SNN, which is a significant advancement over
previous methods that struggled with such architectural differences.

4.2. Loss Alignment Strategy

After connecting to the temporal layers, the alignment loss is introduced to build
dependencies of models in the following form:

L(k)Align (t, s) =
∥∥∥F(k)

t − F′(k)s

∥∥∥
2
, (8)

where t and s represent the teacher network ANN and the student network Dual SNN,
respectively, and F(k)

t and F′(k)s are the feature representations from the k-th blocks of

the teacher ANN and the student Dual SNN. Minimizing L(k)Align (t, s) enforces the k-th
intermediate block of the student model to be similar to the k-th intermediate block of the
teacher model. This transfers knowledge from the teacher network to the student network.
The total loss function of the LDD framework can be defined as follows:

Ltotal = λLmodel + (1− λ)
n

∑
k=1
L(k)Align (t, s), (9)
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where L(k)Align is the alignment loss, n is the total number of alignment layers, Lmodel is
the model loss term, and λ represents the proportion of the distillation component in the
original training.

The entire LDD training process is illustrated in Algorithm 1.

Algorithm 1 Overall training algorithm

1: Input: Pretrained ANN (teacher model, Ta), SNN (student model, St), input (X), target
(Y), weights (W), threshold voltage (V), layers (L)

2: # Forward propagation
3: for t = 1 to T do
4: Ot

0 ← Poisson Encoder (X)
5: for l = 1 to L− 1 do
6: if t == 1 then
7: Ft

l−1 = X(t)
8: end if
9: F′(l)s = Temporal Layer

(
Ft

l
)

10: end for
11: end for
12: # calculate total loss
13: Ltotal = λLmodel + (1− λ)∑n

l=1 L
(l)
Align (t, s)

14: # Backward Propagation
15: for t = 1 to T do
16: for l = 1 to L− 1 do
17:

dLtotal
dUt

l
= dLtotal

dFt
l

dFl
l

dUt
l

18: end for
19: end for

5. Approximation Error

The approximation error of the distillation involves two principal aspects: the student
network’s fit to the data and the student network’s accuracy in mimicking the behavior
of the teacher model. The former error measures the student model’s performance on
the training data, namely the discrepancy between its predictions and the actual labels.
The latter error assesses the student model’s precision in emulating the teacher model’s
behavior. It measures the similarity between the outputs of the student model and those of
the teacher model. In our proposed layer-wise distillation approach, the emulation of the
teacher model’s behavior is accomplished by the Dual SNN.

To analyze the approximation errors in layer-wise and end-to-end distillation, consider
the impact of each neuron on the overall network error and analyze how the approximation
error of a certain layer propagates through the remaining hidden layers, as presented in
Theorem 1.

Theorem 1. Consider an L-layered SNN trained by end-to-end distillation. Jl is the Jacobian matrix
of layer l, expressing the dependency of each layer’s neurons on the previous layer. The approximation
error ε satisfies

ε = ∑
i,j

1
c ∑

(
|V0|

i+1

∑
l=L

E[|Jl |]
)
∗,j

(
E[|ei,j|] + E

[∣∣ϵi,j
∣∣]), (10)

where ei,j represents the classification error of a neuron (i, j), ϵi,j represents the distillation error of
the neuron, and V0 is the weight matrix of the output layer.

As for SNN, similarly to [37], accumulating the approximation errors of all neurons
can yield the fitting error of the directly trained network with respect to the data. This
portion of the error is related to the number of network layers L, the number of samples N,
and the Lipschitz constant of the network function L f .
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Proposition 1. Given an SNN with L hidden layers, the expected generalization error of the
network can be upper bounded as follows:

∑
i,j

(
E[|ei,j|]

)
≤ exp

(
− L

2
log

1
η

)√L f |y|max

N2 , (11)

where L is the number of layers in SNN, η =
(
Ew1,...,wL

(
∏L

k=1 ηk

)) 1
L
< 1 is a constant depending

on the average information loss of each layer, L f is the Lipschitz constant of f on D, and N is the
number of samples.

Although layer-wise distillation does not change the network structure and does not
affect the original function-fitting ability of the network, it shortens the propagation path
of distillation errors in each layer. The distillation error of the network is then transformed
into the product of mutual information entropy at each layer and the neuron distillation
approximation error. The overall approximation error of the network is represented in
Theorem 2.

Theorem 2. Given an L-layered SNN which is trained by LDD, the approximation error consists
of two parts: fitting the real data distribution with a finite sample and fitting the teacher network
distribution. It satisfies the following:

ε = ∑
i,j

1
c

λ ∑
(
|V0|

i+1

∑
l=L

E[|Jl |]
)
∗,j

E[|ei,j|] + (1− λ)∑ E[|Ql |]∗,jE
[∣∣ϵi,j

∣∣], (12)

where Ql is the mutual information entropy of each layer between the Dual SNN and the teacher
network, Jl represents the dependency of each layer’s neurons on the previous layer, ei,j represents the
classification error of a neuron (i, j), and λ represents the proportion of the distillation component
in the original training.

Thus, for a learning problem, the argument centers on whether the following inequality
holds:

∑ E[|Ql |]∗,j ≤ |V0|
i+1

∑
l=L

E[|Jl |]. (13)

The validity of this inequality indicates that the LDD method, compared to end-to-end
distillation, reduces the dependency of errors between successive layers, thereby decreasing
error accumulation and lowering the overall approximation error of the network. This
inequality demonstrates the advantages of LDD:

1. Fine-grained knowledge transfer—layer-wise distillation involves transferring knowl-
edge between the corresponding layers of the teacher and student models, enabling
the learning of representations in intermediate layers.

2. Traditional deep SNN training faces the issues of gradient vanishing or explosion,
especially in very deep networks. Through employing layer-wise distillation, the train-
ing of a deep network can be decomposed into multiple shallow training stages, each
corresponding to a part of the network. This effectively alleviates the accumulation
of gradient errors caused by surrogate gradients and dependencies over multiple
time steps.

6. Experiments

In this section, we evaluate the proposed LDD method on three benchmark datesets,
CIFAR10, CIFAR100, and ImageNet. To further show the advantage of training the deep
SNN Transformer, LDD was employed to train the currently deepest SNN Transformer
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network. Moreover, we conducted ablation experiments to validate the effectiveness of the
temporal layers and the Dual SNN.

The student SNN is trained from scratch, and we use the Vit-L/32 as the teacher ANN,
which is mentioned in [38]. We use the Adam optimizer in the process of training the
student SNN with the layer-by-layer distillation (proposed work). We set the batch size as
256. The training epoch was set as 200, the learning rate was 0.05, the momentum was 0.9,
and the weight decay was 0.0001. The decayed term α for attention losses is set to 0.9.

6.1. Performance Comparison with Other Methods

Our method can be applied to training SNN with all types of Transformer computa-
tions. In practice, we combine LDD with prior SNN Transformer computations. Conducting
our method results in a significant improvement in accuracy compared to the original train-
ing paradigm. We evaluate the performance of the LDD method on three benchmark
datesets, namely CIFAR10, CIFAR100, and ImageNet, and compare with the baseline model
trained directly without using the LDD method.

ImageNet [39]: ImageNet, introduced by Jia Deng et al. in [39], is one of the most
commonly used datasets for image classification, detection, and localization in the field of
deep learning. It contains 1000 classes, with approximately 1000 images per class. The total
number of training images is around 1.2 million, with an additional 50,000 images for the
validation set and 100,000 images for the test set. The images are 224 × 224 RGB images.
The batch size is 128, and the optimizer is AdamW with 350 training epochs. The SPS
module divides the image into 14 × 14 patches. Table 1 shows that the original Spikformer
achieves an accuracy of 73.7%. When enhanced with LDD, the accuracy significantly
improves to 78.8%. The baseline Spike-driven Transformer achieves a top-1 accuracy of
74.6%. With the LDD enhancement, the accuracy increases to 79.4%. The original Meta-
SpikeFormer achieves an accuracy of 77.2%. After incorporating LDD, the top-1 accuracy
reaches 80.9%.

Table 1. Comparison with baselines on CIFAR10, CIFAR100, and ImageNet.

Dataset Method Architecture Time Step Acc

CIFAR10

Spikformer [23] Spikformer-4-384 2 93.5
Spikformer + LDD (Ours) Spikformer-4-384 2 94.6
Spike-driven Transformer [22] Spiking Transformer-4-384 2 94.4
Spike-driven Transformer + LDD (Ours) Spiking Transformer-4-384 2 95.6
Meta-SpikeFormer [40] Meta-Spikformer-4-384 2 95.4
Meta-SpikeFormer + LDD (Ours) Meta-Spikformer-4-384 2 96.1

CIFAR100

Spikformer Spikformer-4-384 4 77.9
Spikformer + LDD (Ours) Spikformer-4-384 4 79.2
Spike-driven Transformer Spiking Transformer-4-384 4 78.4
Spike-driven Transformer + LDD (Ours) Spiking Transformer-4-384 4 81.5
Meta-SpikeFormer Meta-Spikformer-4-384 4 79.3
Meta-SpikeFormer + LDD (Ours) Meta-Spikformer-4-384 4 82.3

ImageNet

Spikformer Spikformer-8-512 4 73.7
Spikformer + LDD (Ours) Spikformer-8-512 4 78.8
Spike-driven Transformer Spiking Transformer-8-512 4 74.6
Spike-driven Transformer + LDD (Ours) Spiking Transformer-8-512 4 79.4
Meta-SpikeFormer Meta-Spikformer-8-512 4 77.2
Meta-SpikeFormer + LDD (Ours) Meta-Spikformer-8-512 4 80.9

CIFAR10 [41]: The CIFAR10 dataset, introduced by Krizhevsky et al. in [41], is a
collection of images frequently used for training machine learning and computer vision
algorithms. It is among the most extensively utilized datasets in machine learning research.
It contains a total of 10 categories of RGB color images: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Each image has a size of 32 × 32 pixels. The batch
size is set to 256. A two-block SPS splits the image into 64 patches of size 4 × 4. Table 1
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shows the accuracy of different models compared with baseline methods on CIFAR10.
Spikformer + LDD (94.6%) outperforms the original Spikformer by 1.1%. Spike-driven
Transformer + LDD (95.6%) shows a 1.2% improvement over the original Spike-driven
Transformer. Meta-SpikeFormer+LDD (96.1%) achieves a 0.7% increase compared to the
original Meta-SpikeFormer.

CIFAR100 [41]: The CIFAR100 dataset, introduced by Krizhevsky et al. in [41], is widely
used for training and testing deep learning models. Composed of 60,000 32 × 32 color images,
CIFAR100 has 100 classes divided into 20 superclasses. Each class contains 600 images.
The dataset includes two labels: f ine_labels and coarse_labels, representing fine-grained and
coarse-grained labels of the images, respectively. Each class has 500 training images and
100 test images. The batch size is 256 and optimizer is AdamW with 300 training epochs.
The scaling factor is 0.2 when training on CIFAR100. The accuracy of Spikformer+LDD (79.2%)
is 1.3% higher than the original Spikformer (77.9%). The enhanced Spike-driven Transformer +
LDD (81.5%) shows a notable improvement of 3.1% over the original Spike-driven Transformer
(78.4%). The accuracy of Meta-SpikeFormer+LDD (82.3%) is 3.0% higher than the original
Meta-SpikeFormer (79.3%).

The results in Table 1 indicate that our method can be widely applied to training
large-scale SNN networks, achieving promising results across all datesets, Transformer
structures, and time steps. Particularly for the challenging ImageNet dateset, where SNN
training is difficult, applying the LDD method resulted in a significant improvement in
accuracy, reaching state-of-the-art (SOTA) performance. The LDD method’s success is
not limited to a specific type of Transformer structure. It performs well across various
architectures, including Spikformer, Spike-driven Transformer and Meta-SpikeFormer,
demonstrating its adaptability.

To eliminate the influence of network parameters, we employed the same network
structure for different methods on each dateset, and compared layer-wise distillation with
direct training. It is evident that, under the same parameters, our accuracy surpasses the
corresponding baseline models significantly. For instance, using the Spiking Transformer-
8-512 structure on the ImageNet dateset, LDD improved the model accuracy by 4.8%,
demonstrating a substantial enhancement in performance. One of the key advantages
of the LDD method is its ability to capture and utilize the temporal dynamics of SNNs.
Unlike traditional methods that might normalize spike timing and lose temporal features,
LDD leverages these dynamics, aligning SNN tokens with ANN class tokens and ensuring
robust feature representation. This approach not only preserves the temporal characteristics
of SNNs, but also enhances their alignment with ANNs, leading to better performance.

6.2. Ablation Experiments

We propose constructing the Dual SNN through projecting the SNN onto the time-
less ANN, thereby aligning the ANN’s knowledge onto the entire time dimension of the
SNN. This achieves alignment between the continuous-valued ANN features without
a time dimension and the discrete SNN features. To verify the effects of the temporal
layers and Dual SNN, we conducted an ablation experiment on both the CIFAR10 and
CIFAR100 datesets.

As shown in Table 2, when taking the average across the temporal dimension or using
the data from the last moment as the result of the temporal dimension projection, the SNN
of Spiking Transformer-8-512, an eight-block Spikformer model with 512 hidden units,
only achieved 96.2% on CIFAR10 and 81.6% on CIFAR100. The significant improvement
in accuracy when using the Dual SNN (96.8% on CIFAR-10 and 83.3% on CIFAR-100)
compared to simpler projection methods underscores the effectiveness of this approach.
This demonstrates that leveraging the temporal dynamics of SNNs is crucial for achieving
high performance, especially in handling more complex datasets like CIFAR100.
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Table 2. Ablation studies on the temporal layer.

Architecture Dateset Dill Ave Max Temp (Ours)

Spikformer-8-512 CIFAR10 95.6 96.1 95.4 95.9
CIFAR100 80.3 79.6 80.7 81.5

Spiking Transformer-8-512 CIFAR10 96.4 96.5 96.2 96.8
CIFAR100 80.7 81.4 81.6 83.3

The ablation experiment provides clear evidence of the benefits of the temporal layers.
Temporal layers play a crucial role in capturing the dynamic behavior of SNNs. By aver-
aging across the temporal dimension or using the data from the last moment, we lose the
rich temporal dynamics inherent in SNNs. This simplification leads to a significant drop in
performance, as evidenced by the lower accuracy on CIFAR-10 and CIFAR-100 datasets.
The Dual SNN construction effectively bridges the gap between continuous-valued ANN
features and discrete SNN features. By aligning ANN knowledge with the entire time
dimension of the SNN, the Dual SNN preserves the temporal information, leading to better
feature representation and higher accuracy.

6.3. Deep SNN Experiments

Through the alignment of ANN and SNN features and the correction of gradient
errors, LDD enhances the sample efficiency and feature precision in deep spike-based
Transformer networks. This improvement enables more effective utilization of training
samples and deeper structure. Constrained by the relatively small inductive bias of Trans-
formers themselves, compared to the stronger reliance of residual networks on large-scale
datesets, previous studies have shown that, without external data, the ImageNet dateset
only supports training spike Transformer networks with no more than ten blocks, resulting
in low sample efficiency.

Table 3 demonstrates that, with the inclusion of the LDD method, the number of
blocks can be extended to 24 using the ImageNet dateset. The Spiking Transformer-
12-512 achieves a slightly lower accuracy of 78.1%, while the Spiking Transformer-24-
512 shows a more significant drop in accuracy to 75.2%. To our knowledge, we are the
first to successfully train such a deep SNN Transformer network. The results in Table 3
highlight the stark contrast between traditional methods and the LDD-enhanced approach.
Traditional methods, constrained by the inductive bias of Transformers, struggle to train
deep networks effectively. In contrast, the LDD method overcomes these constraints,
leading to substantial improvements in both sample efficiency and network depth. This
breakthrough could pave the way for more energy-efficient deep learning models, as SNNs
inherently consume less power than conventional ANNs.

Table 3. Studies on training of deep SNN Transformer.

Model LDD Acc

Spiking Transformer-10-512 × 74.6
Spiking Transformer-8-512 ✓ 78.7
Spiking Transformer-12-512 ✓ 78.1
Spiking Transformer-24-512 ✓ 75.2

The LDD method also smooths the landscape of the loss function optimization, making
deep SNNs converge more easily. To illustrate this, we visualize the optimization landscape
of Spikformer-4-384 with and without the LDD method, as shown in Figure 4.

In Figure 4, we use the “Filter Normalization” (FN) method [42] to visualize the loss
landscape of the network. We select network parameter values as the central point for
visualization. By computing the values of the loss function corresponding to changes
in parameters within a low-dimensional space around this central point, we can project
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the parameter space into a lower dimension and visualize the loss landscape in this low-
dimensional space. By analyzing the geometric features of the landscape, such as sharpness
or flatness, we can compare the generalization and robustness of the network.

(a) with LDD (b) without LDD

Figure 4. The loss surfaces of Spikformer-4-384 with/without LDD. The loss surface with LDD is
smoother, indicating that the LDD method effectively reduces high-frequency oscillations in the
model’s feature space, making the loss function smoother and more stable.

The experiment is conducted on CIFAR-10 with Spikformer-4-384. We train the
Spikformer-4-384 using AdamW optimizer. The learning rate is set as 0.001, and weight
decay is set as 1e-3. We train the DNNs for 150 epochs with batch size of 128. It can be
observed that the optimization landscape of the loss function is significantly smoothed
with the LDD method.

7. Conclusions

We proposed the layer-by-layer Dual Distillation (LDD) method, which fully incorpo-
rates the supervisory information from ANNs in the training process, offering a ground-
breaking solution for training deep SNN Transformers. Through designing the Dual SNN,
this method aligns the output of the spiking neural networks with the features of ANNs
across both spatial and temporal dimensions. Through layer-by-layer distillation, knowl-
edge from large-scale pretrained ANNs is efficiently transferred into SNNs, effectively
mitigating the issues of feature space quantization loss and inaccuracies in surrogate gradi-
ents. This approach not only ensures the low power consumption and low latency benefits
of SNNs are maintained, but also enhances the depth and accuracy of these networks,
improving their performance on complex datesets such as ImageNet. Our method can
be broadly applied to various Transformer architectures, achieving state-of-the-art perfor-
mance on standard datesets and training the deepest SNN Transformer network using the
ImageNet dateset.
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