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Abstract: The steady progress in consumer electronics, together with improvement in microflow
techniques, nanotechnology, and data processing, has led to implementation of cost-effective, user-
friendly portable devices, which play the role of not only gadgets but also diagnostic tools. Moreover,
numerous smart devices monitor patients’ health, and some of them are applied in point-of-care
(PoC) tests as a reliable source of evaluation of a patient’s condition. Current diagnostic practices
are still based on laboratory tests, preceded by the collection of biological samples, which are then
tested in clinical conditions by trained personnel with specialistic equipment. In practice, collecting
passive/active physiological and behavioral data from patients in real time and feeding them to
artificial intelligence (AI) models can significantly improve the decision process regarding diagnosis
and treatment procedures via the omission of conventional sampling and diagnostic procedures
while also excluding the role of pathologists. A combination of conventional and novel methods of
digital and traditional biomarker detection with portable, autonomous, and miniaturized devices
can revolutionize medical diagnostics in the coming years. This article focuses on a comparison of
traditional clinical practices with modern diagnostic techniques based on AI and machine learning
(ML). The presented technologies will bypass laboratories and start being commercialized, which
should lead to improvement or substitution of current diagnostic tools. Their application in PoC
settings or as a consumer technology accessible to every patient appears to be a real possibility.
Research in this field is expected to intensify in the coming years. Technological advancements in
sensors and biosensors are anticipated to enable the continuous real-time analysis of various omics
fields, fostering early disease detection and intervention strategies. The integration of AI with digital
health platforms would enable predictive analysis and personalized healthcare, emphasizing the
importance of interdisciplinary collaboration in related scientific fields.
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1. Introduction

An indicator of a patient’s health condition and the base of diagnosis can be the pres-
ence and level of biomarkers, which are biological markers playing the role of a medical
signature for a given patient. According to the dictionary of the U.S. Food and Drug
Administration (FDA), in the document Biomarkers, EndpointS and other Tools (BEST), a
biomarker is described as ‘a defined feature, which is measured as an indicator of natural
biological processes, pathogenic or biological processes being a response to exposure or
intervention, including therapeutic interventions’ [1]. The definition of digital markers
is ambiguous and difficult to establish. It is suggested that the belief that they are an
Internet extension of traditional biomarkers is a common mistake [2]. In practice, pas-
sively and digitally collected information does not have to be a statistical benchmark of
health conditions but can be both a combination of data originating from the sensors and
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monitoring devices collecting numerical data and images that cover daily activities of the
patients under different environmental conditions. For example, the results of measure-
ment of the Transforming growth factor-beta (TGF-β) cytokine level as a biomarker of
breast cancer should be considered as a traditional biomarker, regardless of the applied
transducer employed for measurement and results collection [3]. On the other hand, digital
evaluation of voice and breath quality falls within the category of digital biomarkers and is
treated as multidimensional and time-varying information [4]. The differences between
these biomarkers were presented recently by Babrak et al. [5]. The clinical interpretation
of biological marker-related data is significantly influenced by such variables as sex, age,
accompanying diseases, lifestyle, etc. Additionally, there is a significant difference in
the way laboratories establish a threshold of biomarker concentration in order to classify
patients and disease progress [6]. Traditional biomarkers continuously serve as valuable
diagnostic and prognostic indicators for various diseases and health conditions. An in-
creasing amount of research is exploring the diagnostic and prognostic capabilities of novel
traditional biomarkers [7,8].

A high death rate caused by multifactorial diseases (cancers, respiratory tract diseases,
cardiovascular disorders, mental disorders, and infectious diseases) results mainly from
late diagnoses, which limits effective treatment and significantly increases the costs of
healthcare [9,10]. The global healthcare market includes ambulatory and stationary care
executed by clinicians, hospitals, and contractors, as well as self-care. Since the milestone
of the 1950s, when Clark invented electrochemical glucose electrode, one can observe a
substantial improvement in sensors for medical applications. Perfect examples are glu-
cometers that do not require puncturing the skin and allow glucose levels to be monitored
using a smartphone [11]. The adoption of electrochemical sensors, including biosensors
and wearables, is anticipated to present new possibilities in medical diagnostics, wellness,
and nutrition, which should support the transition from traditional diagnostic centers to
decentralized, personalized, remote diagnostics. Personalized diagnostics is a domain
where mobile devices can exert significant influence [12]. The rapid advancement of
technology can be useful in disease diagnosis, but there is still a need for development
that focuses on tools used for this purpose, such as sensors and biosensors for rapid and
non-invasive diagnosis. However, despite a few decades of sensor development, their
practical application in disease diagnostics still remains a challenge, since they require
significant improvements to become precise diagnostic tools. This review study focuses on
the integration of AI with portable, user-friendly devices, distinguishing it from previous
surveys that addressed these aspects, namely AI [13,14] and biomarker detection [15–17],
separately. As compared with recent reviews that cover similar topics [18,19], we explore
how this combination can revolutionize diagnostic practices through continuous real-time
analysis, enhancing diagnostic accuracy and reducing reliance on traditional laboratory
settings. In this article, we have provided a comprehensive comparison of traditional and
modern diagnostic techniques, highlighting the benefits of new technologies in terms of
efficiency, accuracy, and accessibility. In addition, we have discussed the transition of these
technologies from research to commercial applications, emphasizing their potential use in
PoC settings and as consumer technologies. Finally, we offer a forward-looking perspective
on advancements in sensor technology and biosensors, predicting their impact on early
disease detection and personalized healthcare.

Progress in sensor technology should be accompanied by the adoption of a more
holistic approach to data collection and analysis. A rapid increase in the popularity of smart
devices and wearables can facilitate monitoring of biomarker level; hence, it is necessary
to elaborate unified, user-friendly tools, which pave the way for clinical implementations.
Currently, more than ever, it is important to deepen the knowledge of the correlation
between different biomarkers and particular diseases via AI and advanced ML. Figure 1
illustrates the operation and structure of typical (bio)sensors where data processing can be
AI-assisted and data integration is achieved using the Internet of Things (IoTs), allowing
collection, processing, and exchange of data without human intervention. Moreover, taking
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into account polymic (metabolomic, proteomic, genomic, and transcriptomic) patient
signatures coupled with pathological and clinical data will help to determine the optimum
level of key biomarkers. Consequently, it should contribute to the training of future
sensor technologies based on AI and/or design of the multicomponent (bio)sensors for
the generation of clinically significant and personalized output data. This would provide
information beyond the knowledge of clinical experts and pathologists. It is necessary
to provide a critical perspective of AI applications to improve diagnostics, employing a
holistic approach, which can channel the research on (bio)sensors towards their clinical
application in the near future.

Biosensors 2024, 14, 356 3 of 39 
 

(IoTs), allowing collection, processing, and exchange of data without human intervention. 
Moreover, taking into account polymic (metabolomic, proteomic, genomic, and 
transcriptomic) patient signatures coupled with pathological and clinical data will help to 
determine the optimum level of key biomarkers. Consequently, it should contribute to the 
training of future sensor technologies based on AI and/or design of the multicomponent 
(bio)sensors for the generation of clinically significant and personalized output data. This 
would provide information beyond the knowledge of clinical experts and pathologists. It 
is necessary to provide a critical perspective of AI applications to improve diagnostics, 
employing a holistic approach, which can channel the research on (bio)sensors towards 
their clinical application in the near future. 

 
Figure 1. A schematic representation of (bio)sensor components for detecting biomarkers. ML- and 
AI-based data processing enables integration and combination of traditional biomarkers with digital 

Figure 1. A schematic representation of (bio)sensor components for detecting biomarkers. ML- and
AI-based data processing enables integration and combination of traditional biomarkers with digital
ones to personalize healthcare. The acquired data can then be collected, distributed, and evaluated
by clinicians and individual patients. Created with BioRender.com.

BioRender.com


Biosensors 2024, 14, 356 4 of 37

2. Challenges in Translational Medicine, Bringing Biomedical Science into Clinical Practice

Translational medicine deals with transferring scientific research results to practical
application in disease diagnostics, treatment, and prevention. It aims at increasing the
effectiveness of therapy and improvement of patients’ conditions via acceleration of the
transfer of modern medical technologies from research laboratories to clinical practice. The
European Society for Translational Medicine (EUSTM) defined three keystones of trans-
lational medicine: (i) scientists, (ii) clinicians, and (iii) community, including non-profit
foundations, universities, and corporations providing medical equipment/services and
medicines [20]. The main goal is to discover and test innovative pharmacotherapies, de-
vices, and treatment methods. However, our understanding of some diseases is limited to
specific biomarkers, thus hindering the transfer of laboratory results to clinical practice [21].
Moreover, a bottleneck is a gap between required knowledge/technologies and discover-
ies/inventions, namely a correlation between the needs defined by clinicians, governments,
organizations, and research activities undertaken by scientists during development inves-
tigations. Implementation of scientific research results in clinical practice generates high
costs. There is a lack of regulatory supervision and public support for their dissemination,
as well as a shortage of reliable data from open sources, which significantly impairs clinical
transfer of biomedical research. The complications of reporting research directions aimed at
transfer between laboratories and clinical practice, the so-called bench-to-bedside ones, are
overwhelming [18]. For example, diagnostic tests or other medical procedures, conducted
at one site—usually to improve comfort or reduce cost—restrict acquisition of prognostic
data on traditional biomarkers, especially from patients in a terminal state. Moreover, their
validation and utilization due to digital results of biomarker investigation is difficult to
execute and costly. It should also be emphasized that medium and small private medical
facilities usually do not find justification for cost and economic risk associated with clinical
transfer, while recognized corporations and institutions financed by the government and
capable of generating implementation-worthy results prefer close access to such data. The
increasing popularity of health applications for smartphones and smart devices constitutes
a new source of data acquisition and processing as far as digital biomarkers are concerned.
The widespread use of health applications via smartphones (e.g., mHealth) has emerged,
driven partly by the COVID-19 pandemic, as well as by concerns regarding data privacy
risks. Iwaya et al. [22] studied 27 top-ranked mental health apps, underscoring significant
privacy vulnerabilities and urging developers to prioritize privacy considerations and
users to demand privacy-friendly app solutions. Also, insufficient data and knowledge
networks for exchange between engaged companies, including industry, academic com-
munities, doctors, patients, regulatory agencies, and technological companies, increase the
complexity of the real transfer of biomedical research to clinical practice [5]. Moreover, the
lack of clarity on digital biomarker classification, the diversity of social groups, and their
interaction with environmental factors as well as the lack of connection with traditional
biomarkers significantly restrict clinical transfer of biomedical devices, which are treated as
‘pseudo-biomedical’ ones that do not guarantee reliable data. There is also an urgent need
for identification of differences between traditional and digital biomarkers as well as a need
for system evaluation of how they can be employed either individually or after a suitable
combination to describe the health state of the patients. The gradually evolving field of
digital biomarkers converges with traditional biomarkers in biomedical applications, for
instance, in evaluation of the early stages of Alzheimer’s disease [23–25]. Clinical and
research communities would certainly benefit from more interest in these technologies.
However, the key factor is understanding of the fundamentals of their operation, lim-
itations, and applicability in the newest bioelectronic diagnostic devices supported by
AI/ML as the modern tools in clinical diagnostics [18,26]. Before implementation in clinical
practice, the biosensors must go through many complex tests aimed at confirming their
reliability, safety, and other parameters. There are many stages of clinical evaluation of
the biosensors (Figure 2).
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For the detection of biomarkers present at trace concentrations, microfluidic and
multicomponent devices comprising multiple stages and extended reaction times are
needed. This approach streamlines label-less detection techniques and holds considerable
promise in healthcare applications [27,28]. Recently, a huge demand has been seen for
miniaturized microfluidic sensing platforms for portable PoC diagnostics, achieved by
integrating lab-on-a-chip technology and electrochemical analysis. However, developing
small, integrated, and reliable sensors capable of conducting multiple and simultaneous
electrochemical analyses in a single device remains a challenge. Simultaneous microfluidic
electrochemical biosensing systems designed to detect multiple biomarkers within a single
device are in demand [29]. A design by Lee et al. facilitates loading of multiple reagents for
simultaneous analyses. Using a similar microfluidic electrochemical sensor system, it is
possible to successfully identify multiple biomarkers. Such innovative approaches provide
new platforms for rapid, miniaturized, and sensitive diagnostic sensing within a single
device for various human diseases [29–31]. Design and working principles of microfluidic
sensing platforms for biomarker detection were recently presented by Mitchell et al. [16].

The sequential approach to biomarker selection offers flexibility in choosing platforms
and detection methods for assay developers. High-throughput sample analysis is crucial for
studying panel biomarkers, but challenges arise when biomarkers in the panel have either
diverse structures or physical properties. Adjustments in dynamic range may be necessary
to accommodate different biomarker types. Advanced signal processing and integration
with ML algorithms are expected to enhance detection accuracy in high-throughput biosen-
sors for panel biomarker analysis in the future [32]. One of the first is the so-called proof of
concept, preliminary investigation aimed at confirming that a new concept has application
potential [33]. It allows initial evaluation of effectiveness and safety. This stage typically
involves the design and evaluation of biosensor operation in laboratory conditions. In order
to ensure that the biosensor can reliably and precisely identify target biomarkers, it is tested
on selected biological samples. After this stage, follow preclinical tests on animal models,
clinical validation verifies diagnostic usefulness on selected groups of patients in clinical
conditions. A comparison with routine techniques has been used to evaluate this issue.
Now that the safety and effectiveness have been demonstrated in clinical tests, the biosensor
must be submitted for acceptance by the regulatory authorities, before it can be admitted
to the market and commercialized. To ensure the safety and effectiveness of biosensors
in clinical practice, their evaluation is a complex and multistage procedure involving the
cooperation between scientists, clinicians, and regulatory authorities. Available databases
of clinical research currently inform more than 20 biosensors during clinical evaluation,
which operate independently or in connection with AI/ML to trace the traditional and
digital biomarkers https://clinicaltrials.gov (accessed on 8 May 2024) [26].

https://clinicaltrials.gov
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Criteria for Sensing Platforms in Translational Medicine

The World Health Organization (WHO) introduced the criteria aimed at increasing
the effectiveness of early diagnostics of diseases, which include affordability, sensitiv-
ity, specificity, user-friendliness, rapidity, reliability, and availability as the fundamental
features for evaluation of the diagnostic tests [34]. Other requirements for the devices
operating in the PoC mode are small dimensions, the possibility of multiplex analysis,
multiple uses, and configuration for continuous monitoring (for example, wearable de-
vices). The aforementioned points of emphasis influence the development of the sensor
systems, which seem to be the most suitable tools due to PoC operation, rapidity, specificity,
sensitivity, possibility of miniaturization, affordability, etc. [35]. Using sensors as analytical
devices, it is possible to detect the target compounds (ligands—biomarkers) via conver-
sion of molecular recognition into measurable, easily interpretable analytical signals [36].
They are composed of two basic elements—a primary transducer that acts as a biological
receptor element, and a secondary transducer that converts the response of the primary
transducer. [37]. The type and specification of the transducer can differ depending on the
kind of biomarker and target application. For instance, wearable devices may require more
flexible and durable materials as well as wireless transmission in real time with automatic
data processing; PoC diagnostic tests may compromise certain aspects, such as flexibility
and wireless data transmission [38]. The acceleration of the seamless transfer of biosensors
from the laboratory to real-world applications requires the evaluation of their metrological
parameters, such as limit of detection/quantification, durability, sensitivity, specificity,
and more. Mobility of the detection systems is one of the main factors hindering clinical
transition and commercialization, as well as computing power, wireless transmission, and
availability of a suitable sample or patient preparation. The lifetime of a device and the
reagents is also a challenge.

Devices with their own power source have gained increasing popularity, although
their stability and durability are still far from optimum. Recent research resulted in the
elaboration of AI-based nanogenerators, to overcome limitations connected with the anal-
ysis, design, and production of piezoelectric and triboelectric nanogenerators [39]. It is
predicted that such devices based on AI/ML would exhibit increased mechanical and
electrical efficiency, helpful in elaboration of wearable biosensors with their own power
source. BioScreen is a recent example of a fully portable pathogen biosensor with its own
power source operating in the PoC mode [40]. The cost of the sensing platform can vary
depending on a few factors, including the complexity of the device, materials used for the
construction of a transducer, and recognition elements applied. Now and then, these factors
can increase the cost of biosensors. Similarly to all new products, biosensors can become
cheaper with progress in technology and with increasing demand. Then, they will be more
affordable and more practical over a wider application range. With clinical applications,
validation of the laboratory results on a bigger target group, namely on a bigger number of
samples/patients, is indispensable for standardization and commercialization [41,42]. The
IoTs represents a significant advancement in remote medical monitoring, with wearable
biomarker sensors having been developed to enable both PoC diagnosis and continuous
disease management. These sensors offer dynamic sampling and analysis of biomarkers
in biofluids, providing high sensitivity, flexibility, and cost-effectiveness. Data from these
sensors can be transmitted to a smartphone or laptop and then to the cloud for storage,
processing, and retrieval before being displayed on customary applications. Wearable IoT
biomarker sensors are particularly valuable for early disease diagnosis and continuous
monitoring in regions with limited access to healthcare [42]. With the rise in information
and communication technology, the concept of an Internet of Medical Things (IoMT) has
attracted growing attention over recent years. The significance of routine physiological
metric monitoring and intelligent data analysis for the early detection and prevention of
diseases has been emphasized [43]. Printed electronics enabled the development of flexible
devices and wireless body sensor networks capable of continuously gathering various
physiological data. Monitoring diverse physiological signals requires multiple biosensors
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and devices that increase equipment costs and user inconvenience. Thus, there is a need
to design a single device with multiple sensor combinations for continuous physiological
signal monitoring. Advancements in IoMT, together with precision medicine, have the po-
tential to revolutionize healthcare, especially in terms of regular physiological monitoring
and risk evaluation. The use of IoMT and wearable electronics is anticipated to mitigate
challenges faced by the conventional healthcare system, including staff shortages and high
medical costs. IoMT holds promise as a technology capable of enhancing overall health,
potentially extending human lifespan, and averting chronic illnesses.

Main metrological parameters of sensors (e.g., LOD, sensitivity, lifetime, etc.) are
closely related to devices for the detection and monitoring of traditional biomarkers, but
their evaluation must also be implemented in digital biomarker applications. Improvements
in nanotechnology and flexible electronics together with the progress in supplementary
technologies, such as microflows and wireless data transfer, can enhance the characteristics
of transducers with a simultaneous significant decrease in their cost. Appropriate transduc-
ers, serving as critical components in biosensor development, convert biological signals into
detectable outputs. In addition to appropriate bioreceptors and miniaturized readout elec-
tronics, transducers significantly affect the functionality and design of wearable devices for
personal health monitoring. The transducers in modern biosensors should be compatible
with biological and electronic elements as well as with non-conventional substrates, such as
leather or fabrics [44]. They are also expected to monitor traditional and digital biomarkers
in a continuous and non-invasive mode, without deterioration of sensitivity and specificity.
Moreover, in the future, wearable devices will be able to integrate two different transducers
for simultaneous detection of traditional and digital biomarkers. For example, traditional
biomarkers, occurring at trace concentrations, require highly sensitive transducers, such
as capacitance or optical ones, while digital biomarkers, including acoustic, vibration, or
thermal ones, can employ piezoelectric or calorimetric transducers. Cooperation between
such transducers enables a versatile approach to a particular disease. As compared to
conventional tests, they provide a cheap and simplified alternative to time-consuming
laboratory analyses. Their successful implementation depends on the development of
biotechnology, micro-/nanotechnology and microelectronics, supramolecular chemistry,
computation and chemometric techniques, etc., which determine the improvement of
sensors’ metrological parameters, so they can be more useful in practical diagnostics of
diseases [45] and more environmentally friendly [46]. Clinical application of an innovative
generation of (bio)sensors requires evaluation of their clinical accuracy (i.e., comparison
with the results of standard clinical procedures) and analytical accuracy (i.e., comparison
of differences against the reference results obtained with recognized techniques).

While many smart devices effectively monitor digital biomarkers, only a few ex-
tend this capability to traditional biomarkers. Presently, conventional practices rely on
laboratory-based tests and blood collection in clinical settings, requiring trained person-
nel and specialized equipment. Real-time, passive/active sensing of physiological and
behavioral data, integrated with AI-based models, holds promise for enhancing decision
making, diagnosis, and treatment at the point-of-procedure, thus bypassing conventional
sampling and in-person tests by scarce expert pathologists in developing nations [18,47].
Digital therapeutics aims to alter patient behavior and address medical conditions using
digital technologies. However, its definition often lacks clear criteria that distinguish it
from digitized versions of traditional therapeutics. The integration of AI/ML systems
to monitor and predict individual patient symptoms employs digital biomarkers in an
adaptive clinical feedback loop to offer personalized healthcare. By leveraging AI platforms,
tailored therapy regimens can be developed based on diverse personal variables, enhancing
treatment efficacy. Furthermore, the combination of digital therapeutics with AI and ML
facilitates more efficient clinical observations and management across different health con-
ditions and populations. This unique feature of digital therapeutics enables a personalized
approach to healthcare, leading to individual clinical needs, goals, and lifestyles of patients.
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These attributes are crucial for advancing the field of digital healthcare among patients,
physicians, and legislators.

3. Monitoring and Detection of Biomarkers with Sensing Platforms

Blood tests are diagnostic procedures usually applied to confirm the occurrence of
particular diseases. They are also helpful in the evaluation of health condition and can
support the diagnostic process in patients with cancer [48]. A small blood sample is
analyzed for any changes or anomalies in the biochemical status of a given person to
indicate a pathological state. Numerous problems, such as infections, autoimmunological
diseases, metabolic disorders, cardiological/hepatic disorders, and malignant tumors,
can be identified by blood analysis. It can also be employed for monitoring disease
progress, the effectiveness of treatment, and identification of potential health problems
at their early stage. The blood tests are relatively painless and can reveal important
details concerning the health of a particular person. It must be emphasized that the blood
tests are not always conclusive and proper diagnosis may require either repetition of
the tests or additional investigation procedures. More detailed evaluation of a patient’s
health often requires additional tests to be conducted with specialistic equipment and
diagnostic methods and techniques, such as medical imaging, gas chromatography–mass
spectrometry (GC-MS), MRI, X-ray, and genetic tests. Usually, all these activities call for
trained personnel to collect blood samples and carry out the examination using complicated
procedures and often expensive tools/tests. Medical imaging is an important diagnostic
tool for various disorders, utilizing a range of modalities including X-ray imaging, whole
slide imaging, computed tomography (CT), ultrasound, magnetic resonance imaging
(MRI), and positron emission tomography (PET). Fortunately, there are numerous publicly
available imaging and biological databases offering excellent opportunities for building
AI-based systems [49]. Employing AI methods to support pathologists in conventional
clinical diagnostics, clinical trials, and translational research enhances diagnostic accuracy,
accelerates research insights, and improves patient outcomes through streamlined data
analysis and decision support. Moreover, AI-powered applications are designed to enhance
care coordination by reducing delays in clinical workflows, using AI to generate and send
timely alerts to clinicians, including cancer screening results, diagnostics, prevention, and
improved cancer management [50]. On the other hand, the concept of portable or wearable
devices, operated by non-experts, enables faster and more frequent testing with reliable
and fast results that can provide rapid help in the selection and direction of treatment. This
can be beneficial in every configuration, beginning with domestic patients, then emergency
patients where doctors must make fast decisions, and finishing with hospitalized patients.
The COVID-19 pandemic made everybody aware of the need for fast and continuous health
monitoring. Fast access to the test results as soon as the disease symptoms appear calls
for a response within a few minutes, which would be an undeniable benefit for public
healthcare, for instance, during a pandemic. Hence, during the pandemic, there was a rapid
growth in wearable and portable PoC devices for automated, real-time health condition
monitoring. The current market of biosensors is worth USD 25.5 billion (2021), and it
is predicted that in 2026, it is going to reach ca. USD 40 billion [51]. Smart electronic
devices (for instance, smartwatches) can detect the changes in physiological signals, such
as pulse rate. Hence, creating digital biomarkers and biophysical stress parameters has
gained high acceptance among consumers. Nevertheless, they have no capability of
identifying individual biochemical markers (for example, traditional ones), associated
with particular diseases, and they cannot be regarded as prognosis tests based exclusively
on digital biomarker data. Efforts have been made to develop detection platforms that
could minimally or non-invasively detect suitable biomarkers in easily accessible biological
fluids, such as saliva, interstitial fluid, sweat, or urine, and simultaneously collect digital
signatures [52,53]. Representative examples of the devices employed for the detection of
traditional biomarkers are presented in Figure 3.
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3.1. Eyes, Contact Lenses

Current clinical methods of detection of some vision defects, including cataracts,
glaucoma, and red eye syndrome, require the application of such techniques as gonioscopy,
pachymetry, perimetry, ophthalmoscopy, and tonometry, which must be supervised by
trained ophthalmologists. These techniques are used to detect the actual state of vision
defect or require a complex dilated eye examination to diagnose the defect at medium or
late stage [54]. So they cannot be employed for diagnostics at early disease stages. This
triggered the progress in non-invasive measurements of glaucoma biomarkers, allowing
diagnosis at the early stage [55]. Similarly, cataracts can be detected early using smartphone-
assisted and ML-supported methods [56]. Moreover, tears can be used for monitoring the
physiological state as well as the prognostic factors in serious diseases, such as cancer,
Alzheimer’s, and Parkinson’s diseases. Until recently, studies on tear sensors focused on
glucose monitoring, but currently, a significant emphasis has been placed on non-invasive
analysis of other important biomarkers. The biosensors based on contact lenses constitute
an excellent alternative to continuous monitoring of tear components. Contact lenses can
be worn without causing eye irritation since they are in direct contact with tears [57]. There
are contact lenses integrated with paper microflow sensors for tear analysis, which are
capable of detection of hydrogen and nitrite ions, glucose, and L-ascorbic acid using a
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smartphone [57]. Chromogenic signals from the detection region were scanned by the
smartphone and the data were sent to the servers in a cloud using wireless transmission.

3.2. Teeth and Mouthguard

Recently, saliva has been extensively utilized in diagnostic tests as an alternative to
blood tests. Although progress in electronics and micro-/nanotechnology contributed to the
production of miniaturized transducers for fast and sensitive diagnostics, design of a multi-
analyte detection platform with high specificity and sensitivity still remains a challenge.
Improvements in the field of easily manufactured, multi-analyte, and multiplex biosensors
suggest that the development of in vivo sensors and intelligent platforms integrated with AI
enables designing and/or mastering such devices in the future. Current clinical standards
for the detection of saliva metabolites, such as glucose, are similar to systems for monitoring
the blood components. However, glucose content in saliva may not reflect the actual level
of glucose in blood, which requires establishing a correlation between the level of glucose
in these two fluids. Moreover, some biosensors can detect specific cancer biomarkers
present in saliva [58]. After combination with AI, it is possible to obtain clinically relevant
information in a simplified way as compared to the standard screening techniques, for
instance, colonoscopy or mammography. With contagious diseases, biosensors applied on
teeth can be used for their early diagnostics, including COVID-19, HIV, and tuberculosis,
via identification of contagious disease factors, such as viruses and bacteria in saliva,
commonly carried out by microbiological methods or PCR tests [59,60].

3.3. Diapers

Urine is another easily available body fluid that is widely used for the detection
of biomarkers, such as glucose, uric acid, volatile organic compounds, red and white
blood cells, bacteria, etc. Urine tests are a routine clinical examination, but they require
specialists and complicated equipment. Sometimes, urine collection procedures are also
troublesome. Routine analysis of carbohydrate content in urine commonly involves strip
tests for identification of glucose and ketone levels in patients suffering from diabetes.
However, as compared to the analysis of metabolites, fast identification of urinary tract
infections remains a big problem, as the classic techniques require several days to identify
the bacteria and the level of their sensitivity to antibiotics. Despite intense investigations,
the main challenge in the development of biosensors for urinary tract infections is the
presence of numerous uropathogens and the increasing antibiotic resistance of bacteria.
Recently, biosensor systems were elaborated which couple a diaper with a smartphone
application and identify in situ the amount of produced urine to remind the user about
changing the diaper and measure in real time the level of biomarkers, including glucose
and uric acid [61]. In addition, with the aid of AI and ML algorithms, such biosensors
can exhibit superior detection effectiveness and data processing [62]. Clinically relevant
data can be extracted and analyzed with two algorithms, random forest (RF) and neural
network (NN). A highly sensitive system combined with ML showed a high precision in
prostate cancer screening using only one drop of urine.

3.4. Wristbands, Headbands, Directly on Skin, Clothes

Wearable sensors are mainly designed to be applied directly on skin [63–66]. However,
there are several examples of clothes-based wearables [67,68]. Also, it is popular to use
wristbands and headbands [69]. Such sensing platforms can provide detection of digital
and traditional biomarkers. Electrodes monitoring physiological activity, EEG, EKG, EMG,
etc., are utilized in clinical practice. Significant importance can be attributed to biosensors
applied on the skin, especially for the detection of metabolites present in biological fluids,
for instance, in sweat. The problems due to their application result from insufficient adhe-
sion to the skin, skin irritation, lack of comfort, problems with calibration, differences in
skin thickness, skin humidity, and others. It is possible to place the sensors directly on the
skin using printed temporary tattoos or e-skin or indirectly via plasters/bands, or alterna-
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tively via deposition on fabrics with enhanced mechanical resistance to motion [70]. Some
applications call for continuous monitoring of sweat’s components, where the amount of
sweat produced is insufficient. Furthermore, the result can be affected by analyte dilution
upon sweating. That is why a deeper understanding of sweat chemistry and transport as
well as intelligent monitoring and prediction are necessary to enhance diagnostic possibili-
ties with this fluid. The solution can be micropump technologies integrated with receptors,
which can control the flow of sweat. The newest approach is AI/ML integration aimed at
improving the efficiency of the biosensors applied to skin [71].

3.5. Face Masks

Analysis of volatile organic compound (VOC) content in breath aimed at diagnosis of
various diseases and health conditions originating from specific cells, tissue metabolism,
and local microbiome is a field which has dynamically gained popularity. Development
works on this subject (generally termed breathomics) have accelerated substantially in
recent years. A combination of gas chromatography with mass spectrometry is still a gold
standard in the field of analytical approach to the detection of volatile biomarkers. Due to
some inconveniences of the classic techniques of volatile biomarker analysis, which involve
training of the personnel, cost of sample preparation, analysis, and equipment, a current
trend in biosensor development is focused on non-invasive and fast diagnostic tools. In
recent years, disease diagnostics has been oriented towards fast, simple, non-invasive
methods based on, among other things, the detection of VOCs and their characteristic
profiles as diagnostic markers, which are produced by pathological processes changing
natural physiological and metabolic routes. There is an increasing interest in the methods
for the analysis of exhaled air, which is a multi-component mixture containing numerous
volatile substances, for example, aldehydes, ketones, nitrogen oxides, sulfur oxides, and
others. Effective identification of the pathological markers at an early stage can provide a
diagnosis at the initial phase of a disease, so the patient can be directed to further tests to
confirm or rule out the disease. Moreover, breath analysis can also be useful in monitoring
respiratory tract inflammation and selecting suitable pharmacological treatments. The low
availability of non-invasive identification and monitoring methods, for instance, concerning
respiratory tract inflammation, encourages the development of techniques of breath analysis
allowing the determination of odor profiles, so-called fingerprints, using electronic and
bioelectronic noses (ENs, B-ENs) [37]. It is a dynamically developing field which has
clinical potential and can be the source of early detection and evaluation of such diseases
as asthma, obstructive pulmonary disease, lung cancer, interstitial pulmonary disease,
viral and systemic diseases, etc. [72,73]. Faster diagnosis, for instance, of lung cancer,
is highly demanded because the conventional methods—chest X-ray, sputum cytology,
biopsy, or computer tomography—fail to provide fast screening tests for large populations.
Usually, diagnosis is made at the late disease stage when treatment is already difficult
and ineffective. Given the urgency, there is a critical need for effective and fast tools
to enable early disease identification through non-invasive breath analysis. Successful
implementation depends on progress in biotechnology, micro-/nanotechnology, electronics,
supramolecular chemistry, and computational techniques, which improve the metrological
parameters of biosensors, so they can be more useful in disease diagnostics. A correlation
between variations in breath components and health condition can be monitored in a
continuous way, which would have been particularly useful during the pandemic when
breath spread the infection. Facemasks with biosensors with porphyrins as the receptor
elements were proposed by Di Natale and coworkers. They were able to detect some
VOCs absent in normal, healthy breath [74]. A parallel branch of research in the field
of biosensors is the elaboration of molecular modelling methods to build a library of
receptor elements capable of the detection of selected ligands, which can be classified as
volatile biomarkers [37] and be used for PoC test construction. The main advantage of
such biosensors is non-invasive sampling and real-time monitoring, which makes them
ideal tools from the clinical standpoint. Selected groups of spin-off industrial university
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companies, including Rapid Biosensor Systems Ltd., Cambridge, UK (rapidbiosensor.com)
and Owlstone, Cambridge, UK (owlstonemedical.com), create the breathalyzers, resembling
drunkometers, which allow preliminary diagnosis of pneumonia and other numerous
pulmonary diseases.

3.6. Smartphones

The increasing popularity of health applications for smartphones and peripheral
devices such as smartwatches or smart rings offers innovative ways of acquiring and
managing data from digital biomarkers [61,75,76]. However, insufficient clarity of their
classification, diversity of social groups, and interaction with environmental factors and
traditional biomarkers significantly affect clinical translation of those biomedical devices.
In a progressively shaping field of acquisition, analysis, and storage of digital biomarkers
using smartphones, the key element is understanding its character and capabilities. For
example, optoelectronic properties of nanomaterials and nanocomposites can be utilized
for smartphone-assisted colorimetric detection of biomarkers [77], a novel procedure in-
volving a non-enzymatic strategy of glucose detection using gold nanoparticles and sensor
based on surface plasmon resonance (SPR). This technique was successfully employed for
quantitative measurement of glucose in urine. Similar solutions with nanoparticles and
smartphone data processing are used for saliva analysis [78]. In addition, the sensor met the
PoC test requirements, which makes it a promising platform for biomedical applications in
clinical practice. Micro- and nanocomposites with enzymatic properties, due to their high
binding specificity and selectivity, exhibit a high PoC test potential, also in combination
with wearables. When coupled with suitable AL/ML tools, they can be successfully utilized
in the PoC tests, as reported in detail in a review by Jeon et al. [79].

4. Cancer Biomarker Detection with Biosensors

The turning points in cancer detection are closely interrelated with the rapid advance-
ments in the field of sensors and biosensors. For example, utilization of microfluidic
technology facilitating a precise manipulation of fluids at a micro scale greatly enhances
possibilities for reliable cancer diagnosis [80,81]. Furthermore, integration of AI and ML
algorithms into medical data analysis has revolutionized the identification of cancer risk
factors and the early detection of cancer, offering unprecedented speed and accuracy [82].
In certain biosensors, a substantial volume of data is rapidly generated at the output,
requiring additional processing by skilled personnel, which can potentially bring errors.
Human-based processing of these data can be time-consuming and significantly hampering
the efficiency of the biosensor. Conversely, ML can discern features and trends and offer
comprehensible outputs. A cursory web search reveals a remarkable surge in utilization
of ML in biosensors over the past decade [83]. Also, AI algorithms have been applied on
microfluidics and image cytometry [84,85]. ML algorithms are also employed in analyzing
the data obtained by microscopic image cytometry [86]. In the field of cancer detection,
electrochemical biosensors are predominant. They encompass various types of biorecog-
nition elements, such as immunosensors, aptamers, enzymes, nucleic acids, etc. [87,88].
These biosensors are favored for their remarkable sensitivity, specificity, cost-effectiveness,
and potential for miniaturization. The advancement of various two-dimensional materials,
including better synthesis protocols, increased biocompatibility, field enhancement, and an
increased surface-to-volume ratio, has accelerated the development of miniaturized sensors
aimed at early detection of cancer and other diseases. Moreover, biosensors integrated
with nanoparticles offer multiplexing and amplification capabilities [28,89]. Furthermore,
wearable electronics [90,91], like electronic tattoos, epidermal electronics systems (EES),
and flexible electrochemical bioelectronics, when combined with ML algorithms, offer the
capability to monitor various biomarkers in real time, as has been stated. However, most
wearable biosensors can detect a small number of biomarkers only. It is needed to develop
novel biosensors to detect and monitor a larger range of biomarkers. Understanding the
composition of body fluids, as well as their relationship to specific medical diseases, is
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crucial to gaining general clinical adoption of wearable technology in healthcare [92–94].
In the actual world, rigorous and repeatable interpretation of biosensor results is also a
goal, especially in applications that may require a clinical or operational reaction. The
advancement of diagnostic devices invariably requires assay developer researchers to serve
as intermediaries, connecting both ends. Their role involves identifying detection strategies
aligned with clinical requirements by comprehensively understanding (1) the intended
application of the technology and its fundamental principle, and (2) the preferred test type,
be it qualitative or quantitative, addressing challenges related to sample matrices, defining
biomarker threshold (cutoff value), and determining whether the system requires a mono-
or multiplex assay format [32]. Noninvasive testing with wearable devices is currently
limited to a number of metabolites and electrolytes and should be extended by employ-
ing more multiplex assays based on biosensors. Various ranges of disease biomarkers,
hormones, and stress markers should be employed to the scope of detection. Moreover,
apart from conventional fluid types, the potential of novel fluid types such as urine, breath,
mucus, and semen should be investigated. Furthermore, various fields of biomedicine,
including the clinical development of new experimental medicines guided by biomarkers,
will benefit from this real-time examination of a broader spectrum of biomarkers.

The preprocessing of signals generated by sensors and biosensors involves several
crucial steps. Initially, data cleaning is conducted to address missing data, outliers, and
noise present in the sensor readings. For example, a significant noise interference reduction
and enhanced accuracy when measuring glucose levels has recently been reported by Yang
et al. [95]. AI-based algorithms, such as those used in glucose prediction and calibration,
hold significant potential for advancing continuous glucose monitoring sensors and can be
adopted to different biomarkers [96]. Techniques such as mean imputation, interpolation, or
specialized ML algorithms designed for handling missing data can be employed to address
missing data [97]. Subsequently, data normalization or scaling methods, such as min-max
scaling or z-score normalization, are applied to handle variations in scales and ranges
observed in sensor data, which can impact the performance of machine learning models.
These techniques ensure that no single feature dominates the learning process by bringing
all features to a similar scale. Moreover, feature selection or extraction methods are utilized
to identify the most relevant features from a potentially large number of features present
in sensor data. Commonly used techniques for this purpose include correlation analysis,
mutual information, or feature importance measures. Finally, the preprocessed sensor data
are partitioned into training, validation, and testing sets. The training set is used to train the
machine learning model, the validation set aids in tuning hyperparameters, and the testing
set is employed to evaluate the final performance of the trained model. Advancements
in AI-based algorithms offer promising potential for enhancing sensor performance by
facilitating rapid sensor design and automated data processing, thereby enabling them to
effectively address future challenges [98]. Additionally, integrating physical knowledge can
enhance algorithm performance and alleviate optimization difficulties. For instance, Khatib
et al. [99] found that incorporating knowledge of the underlying physics as input and pre-
training these quantities during the training process holds promise for improving network
performance and mitigating challenges associated with sensor optimization. Moreover,
elaborated Mean Squared Error calculated for the cross-validation set after training serves as
a valuable measure for evaluating the model’s prediction accuracy. Hollon et al. developed
an optical imaging technique employing the CNN algorithm to predict diagnostic test
results [100]. Lussier et al. established a 1D CNN model for assessing chemical spectra in
multiplexing SERS sensing [101]. Moreover, the ML algorithms can facilitate prediction or
decision making from diverse digital data sources [102]. The concept of the digital twin
originated in the healthcare industry for product or equipment prognostics [103]. Angulo
et al. proposed a versatile framework for developing digital twins applicable to healthcare,
particularly for lung cancer patients [104]. Digital twins represent a cutting-edge approach
in digitalization across industries, attracting interest from two key groups: (i) data analysts,
tasked with developing expert recommender systems and extracting knowledge through
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explainable AI, and (ii) medical professionals, who leverage this knowledge to enhance
diagnostic capabilities. The resulting software platform holds potential as a versatile service
tool applicable across various fields of expertise, with particular relevance in healthcare
and industry sectors. Laubenbacher et al. explored the use of medical digital twins to
combat COVID-19 infections and future pandemics, emphasizing their potential to optimize
treatment through a combination of mechanistic understanding and AI techniques [105].

Recent research indicates that electrochemical sensors and biosensors have emerged
as powerful instruments to gain comprehensive understanding and detection of disease-
associated biomarkers. Substantial progress in nanomaterial and biomolecule methodolo-
gies, aimed at enhancing sensitivity, has led to the creation of electrochemical biosensors
capable of real-time detection of single and multiple biomarkers in clinically relevant
samples, which was comprehensively presented by Kim et al. [106] and more recently
by Jarahi Khameneh et al. [107]. The review by Sinha et al. [108] was focused on chronic
disease biomarkers detected through electrochemical sensors and explores the potential
of artificial neural networks (ANNs) for disease monitoring. Additionally, it discusses
risk factors, causes, and severity of chronic diseases, and how ML algorithms can utilize
biomarkers and clinical symptoms for analysis. Finally, it highlights the use of ANN to
predict and diagnose chronic diseases, offering insights for the future development of
innovative analytical tools in healthcare. Some of the most recent concepts are presented
below. The biomarkers produced during metabolic processes are becoming increasingly
important for the early detection of diseases. However, detecting only one analyte has
its limitations, as it may be associated with various conditions. Therefore, in the case of
disease monitoring, which typically arises from the presence of multiple complications,
multi-analyte sensing platforms are essential for accurate diagnosis [109,110].

Electrochemical aptasensors are frequently employed in the detection of cancer biomark-
ers. These sensors can be categorized into three groups for detecting cancer biomarkers:
those designed to identify exosomes, circulating tumor cells, and protein tumor biomark-
ers. Addressing the need for a sensitive and convenient diagnostic tool, Hou et al. [111]
developed a platform that can directly and accurately detect target miRNA-21, a breast
cancer biomarker, in serum without sample preparation and purification. This aptasensor
comprises gold nanoparticle-coated microgel particles with a porous network structure,
mimicking the biocompatible microenvironment of biological tissue for enhanced RNA
detection. Covalently immobilized amino-modified oligonucleotide chains serve as capture
probes complementary to miRNA-21, enabling monitoring of miRNA-21 hybridization
via differential pulse voltammetry (DPV). The aptasensor exhibits a linear detection range
from 10 aM to 1 pM, with a detection limit of 1.35 aM. This approach has promising po-
tential for early diagnosis and treatment monitoring in breast cancer patients. A novel
one-step multiplex analysis of breast cancer exosomes using an electrochemical strategy
assisted by gold nanoparticles was presented by Zhang et al. [112]. The aptasensor utilizes
a multi-probe recognition strategy, incorporating CD63, HER2, and EpCAM aptamers as
capture units, along with methylene blue (MB) and ferrocene (Fc) functionalized aptamers
as signal units. Importantly, the method demonstrates the ability to distinguish between
different types of breast cancer exosomes, including HER2-positive and HER2-negative
subtypes, and exhibits compatibility with complex sample matrices, offering promising
prospects for the screening and prognosis of breast cancer by exosome analysis.

A novel multiplex device integrating paper-microfluidic technology, electrochemical
transduction, and magnetic nanoparticle-based immunoassay was developed by Gutiérrez-
Capitán et al. [113] for simultaneous detection of interleukin-8 (IL-8), tumor necrosis
factor-α (TNF-α), and myeloperoxidase (MPO) biomarkers in sputum. The device features
an on-chip electrochemical cell array and a multichannel paper component. With its
potential for low-cost mass production, this device offers promise as a PoC solution for
improving diagnostics and advancing personalized medicine. There is a high demand for
devices that enable early diagnosis, minimum costs, and time of assessment. Recently, a
novel handheld electronic device for early LC detection by analyzing exhaled breath was
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presented by Emam et al. [114]. Utilizing an electrochemical gas sensor with a graphene
and Prussian blue layer on a chromium-modified silicon substrate, the device employs
MIPs for selective biomarker binding. The device’s efficacy is demonstrated through
its ability to detect biomarker concentrations at the 1–20 ppt level. Equipped with a
printed circuit board for resistance measurement and Bluetooth connectivity for data
transmission to a smartphone app, this device offers promising potential for non-invasive
LC diagnostics (Figure 4). Advancements in deep learning (DL) and AI have facilitated
the classification of pattern data from larger sensor arrays. Furthermore, the development
of artificial olfactory sensor technology has seen notable progress with the integration
of ANNs [115]. The artificial olfactory sensor system enables the analysis of chemical
composition and the quantitative and qualitative levels of trace volatile organic compounds,
required particularly in biomarker detection. By integrating IoTs with volatile biomarker
detection, it is envisioned that these sensors will become commonplace in mobile wearable
devices, seamlessly integrating into our everyday routines. In the near future, monitoring
VOCs may become a substitute to conventional medical diagnostics.

Cancer biomarkers can be identified through biorecognition elements such as peptides,
proteins, DNA, enzymes, and aptamers [116,117]. Electrochemical biosensors (EBs) can
be categorized into immunosensors, aptasensors, enzymatic biosensors, and nucleic acid
biosensors, depending on the specific biorecognition element employed [42]. There is
also an interesting trend of combining AI and ML with standard techniques, like NMR,
MS, and IR spectroscopy [118]. Such integrations have demonstrated potential in vari-
ous fields including environmental monitoring [119–121], food chemistry [122], chemical
sensing [123,124], biosensing [125], diagnostics [126,127], etc. [128]. Moreover, AI has been
integrated with surface-enhanced IR absorption (SEIRA) spectroscopy, allowing for dy-
namic monitoring of protein interactions with other biomolecules such as lipids, nucleic
acids, or carbohydrates, especially when they are present simultaneously [129]. Recently,
Kavungal et al. integrated AI with SEIRA to solve a more intricate challenge, distinguish-
ing between various aggregation states of a particular protein within a mixture [130]. In
conclusion, they demonstrated a structural biosensor capable of extracting the distinctive
absorption signature of pathological protein biomarkers from the intricate biomatrix of
human cerebrospinal fluid (CSF). This advancement brings us closer to broadening the ap-
plication of sensors for diagnostic purposes in neurodegenerative diseases (NDDs) within
clinical settings.

Over the past few decades, achieving early and precise cancer detection has emerged as
a critical goal to enhance survival rates and patients’ quality of life. The integration of state-
of-the-art technology, AI, and data analysis has expanded the field of oncology, opening new
pathways for early detection and characterization of diverse cancer types. Talens et al. [131]
aimed to create a groundbreaking diagnostic tool utilizing EN technology and AI for non-
invasive prostate cancer detection. The authors have successfully engineered a robust
neural network tailored for prostate cancer detection, using MOOSY-32 EN technology and
advanced AI methodologies. This innovation has the potential to boost advancements in
early disease detection, facilitating more accessible and efficient diagnostic tools across
various clinical and medical applications. The ways in which data processing and ML
techniques can be used to facilitate the use of electronic olfaction and gustation in the
detection of disease have recently been provided by reviews [132–134].

An increase in the popularity of DL and ANNs can be seen, with a majority of recent
publications favoring these methods. This is due to the fact that those are the most widely
known techniques for researchers working in fields related to biosensors. An intriguing
finding is that biosensors employing electrical detection techniques seldom utilize DL as
the analytical tool for classification. This could be attributed to the data-intensive nature of
DL, coupled with the deficiency of established databases for biosensing data. Conversely,
there exists an abundance of readily available datasets suitable for training samples in
image and optical detection of various biomarkers. In summary, the integration of ML
algorithms into biosensors offers significant advantages by automating the tasks of data
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extraction, processing, and analysis. Such automation obviates the need for an experienced
professional to interpret the data, bringing us closer to delivering PoC healthcare solutions
in resource-constrained environments.
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Reproduced with permission from [130]. (C) Scheme of the multiplexed quantitative detection of
biomarkers in sputum by a PoC paper-microfluidic electrochemical device [113]. (D) Example of a
handheld LC diagnosis device based on MIP sensor. A patient blows into the replaceable mouthpiece
and the results will be shown on his/her smartphone instantly. The mobile application that graphs
the data during the test, and the exploded view of the proposed lung cancer diagnosis handheld
device. Reproduced with permission from [114]. (E) The construction and working process of the
AuNPs@NIPAm-co-AAc microgel electrodes and detection process of miRNA-21. Reproduced with
permission from [111].

5. AI-Assisted Diagnosis

Multiomic investigations, owing to precise and accurate results for a particular person
or a larger group of people, are gaining increasing attention among scientists and clini-
cians. An advantage of multiomic technologies in genomics, transcriptomics, epigenomics,
proteomics, metabolomics, and other fields is believed to be the key to the development
of personalized medicines tailored to a particular patient [135]. For instance, there are
attempts to generate complex multiomic profiles for 20,000 entities and additional data for
different cancer types in the coming years (The Cancer Genome Atlas—TCGA. However,
as compared to the conventional multiomic analysis producing a large volume of data in a
single experiment that is not conducted in real time, multiomic approach-based biosensors
can become promising, cost-effective platforms for real-time monitoring. Simultaneous
monitoring of many biomarkers via multiplexing of the biosensors can lead to early identi-
fication, prevention, and treatment of diseases in real time [136]. In this regard, the studies
on versatile bioelectronic/electrochemical sensors for simultaneous detection and contin-
uous monitoring of different biomarkers using simple, inexpensive, and fast-responding
elements can provide personalized diagnosis and fluent clinical transition. Nevertheless,
analysis of the data generated by many systems calls for an advanced computational ap-
proach, beginning with data integration, statistics, and AI/ML systems, to become useful
for patients and doctors. Scientists place the spotlight on multiplexing of electrochemical
biosensors, whose effectiveness can be substantially increased after integration with well-
trained AI and/or ML to arrive at clinically significant results. AI/ML can be used to sort
and predict the results from biosensors as well as to increase their sensitivity. Hence, it
is important to understand and develop AI/ML to take full advantage of the biosensors’
potential in the clinical field. Although the integration of AI with biosensors still needs
a lot of effort and improvement, intelligent data processing can revolutionize the field
of biosensors. In recent years, wearables supported by AI appeared as an inexpensive
solution for monitoring health condition. AI explores available data to search for digital
anomalies, sort data, reduce noise, integrate bio-digital markets, and draw clinically rele-
vant conclusions. To achieve the desired precision, AI plays two important roles. The first
focuses on reducing undesired information before data transmission, which at the same
time reduces the consumption of energy necessary for wireless transmission. The other
role is to emphasize data quality parameters, such as accuracy, repeatability, and stability.
These aspects are important for investigation of the interrelation between the biomarkers
in complex biological samples as well as in the case of traditional and digital markers,
offering a perspective for the solution of urgent challenges in the field of biosensors, such
as accuracy, reliability, response time, and lifetime [137]. For example, Raman optical
imaging combined with deep convolutional neural networks (CNN) was elaborated for
the automated prediction of a brain tumor in real time [100]. The prediction based on
CNN revealed a 94.6% accuracy, which was higher than the one from the interpretation
of conventional histologic images by the pathologists (93.9%). Similarly to CNN, ANN,
recurrent neural network (RNN), support vector machine (SVM), principal component anal-
ysis (PCA), hierarchical clustering analysis (HCA), decision tree (DT), partial least squares
discriminant analysis (PLSDA), or partial least squares regression (PLSR) are available and
accepted for biosensor applications.
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In the field of health monitoring and disease diagnosis, the emergence of AI offers
robust tools and algorithms for data processing and analysis, addressing the developmental
constraints encountered by health monitoring sensors [138–140]. Through AI algorithms,
signals and data regenerated by sensors can undergo sophisticated processing and analysis,
thus facilitating intelligent health monitoring. In particular, the wearable intelligent systems
featuring tailored structures and compositions as well as enriched functions enable human
beings to access a next-generation closed-loop platform for early disease prevention and
diagnosis [141]. Such systems, combined with ML algorithms, can sift through vast datasets
to unearth potential health issues, furnishing doctors and patients with more precise
diagnoses and treatment strategies. According to Göndöcs et al. [142], AI algorithms can be
useful to support decision-makers, should not replace decision-makers. Decision making
uses algorithmic analysis, but it is not solely algorithmic analysis; it also involves other
factors, many of which are very human, such as creativity, intuition, emotions, feelings, and
value judgments. AI algorithms can also be used in inverse design, leading to a reduction
in the volume of training data by utilizing both labeled and unlabeled data [143].

There are common challenges encountered in any ML application regarding both the
data utilized and the model itself [144,145]. Developers of ML applications for sensing
devices must address challenges regarding:

• data availability;
• model selection;
• reliability;
• deployment alternatives;
• security and privacy;
• utility and user acceptance;
• communication;
• power consumption limitations;
• storage limitations.

Certain matters can be addressed through clinical and preclinical investigations to
ensure an appropriate user interface and documentation regarding the confidence or
dependence on the results, as required by regulations. The ML model must be deployed and
utilized in both retrospective and prospective studies, with the clinical impact assessed [146].
In many healthcare applications, it is advantageous for the ML models to be customized
according to signals from individual patients. This approach enables each device to train
a personalized model based on the user’s data, leveraging both cloud-based and local
data [145]. Efforts to minimize power consumption in data transmission and reception
have taken various approaches. These include the development of dedicated embedded
hardware to execute ML algorithms, minimizing the volume of data transferred, employing
data compression techniques, scheduling data transfer, computational offloading, and the
creation of self-powered devices [66,147–150].

ML can be realized in either a supervised or unsupervised way. The supervised
algorithm was utilized, among other purposes, for precise prediction of the glucose level in
blood based on analysis of VOCs in exhaled air [151]. Apart from the analysis of glucose in
the blood, SVMs are widely used for the diagnosis of cancer and identification of pathogens
transmitted in water. SVM for breast cancer increased the accuracy of diagnosis by 33.34%
and reduced variance of diagnosis by 97.89% [152]. Unsupervised ML algorithms are
employed for the analysis and grouping of unmarked datasets [153]. These algorithms can
reveal hidden patterns within data without human intervention. PCA is an example of
an unsupervised ML algorithm used for dimensional reduction via substitution of a set of
variables with the principal components and it is widely utilized in sensor and biosensor
systems [154,155]. There is extensive literature on biosensors coupled with AI/ML [90,140],
presenting preliminary investigations waiting for clinical evaluation. For example, much
research has been conducted on clinical patient data used for optimization and control of the
measurement algorithm for wearable skin biosensors for glucose control. Diagnostic results
from the trained algorithm are comparable to the glucose concentration in blood measured



Biosensors 2024, 14, 356 19 of 37

using the reference method and simultaneous measurements of heart rate and SpO2.
Nevertheless, those algorithms have certain limitations, especially prediction algorithms,
which are generally designed to improve the precision of the devices but typically rely on
calibration using gold standards. Owing to these technologies exhibiting acceptable levels
of accuracy with well-suited algorithms, their application as diagnostic tools will certainly
rise in the near future, as shown by intensified research on this subject [96].

Despite recent advancements, significant challenges remain in achieving commercial
maturity for AI biosensors in IoT applications [16]. Crucial to these applications are flex-
ible bioelectronic materials that seamlessly integrate with the human skin. Present soft
wearables mainly capture physiological signals and transmit them to external comput-
ing devices. Moreover, the use of multi-analyte detection approaches and biocompatible
materials opens new avenues for developing electrochemical sensors designed for wear-
able detection of diseases [17]. Flexible bioelectronics provide mechanical flexibility akin
to human organs like skin and muscles, reducing tissue damage and long-term adverse
effects. Electrical detection uses circuits to capture biosignal data as electrical signals.
Impedance is typically used to identify and quantify cells, based on changes as the cells
pass through microfluidic electrodes. This signal reflects cell properties such as size, con-
ductivity, and permittivity. As compared to traditional optical methods, electrical detection
offers advantages such as smaller size and lower cost owing to the absence of bulky optical
equipment. Figure 5A illustrates a schematic diagram of an electrical impedance cytometer
with SVM for data analysis [156]. Creating hybrid nanocomposite materials by combin-
ing 2D nanostructures, e.g., MXenes, borophene, etc., to enhance biosensor parameters
has also been attempted [157,158]. The interfacial integration of 2D materials with 1D
graphene nanoribbons has been explored to develop a pressure sensor with an improved
life cycle. ML approaches were utilized to train the sensors to detect various sitting pos-
tures with over 95% accuracy (Figure 5). Carbon-based nanomaterials, including carbon
nanotubes and graphene, retain their intrinsic electrical properties and exhibit excellent
biocompatibility, making them ideal for bio-signal monitoring [159–161]. These materi-
als facilitate integration with skin-compatible devices to develop wearable monitoring
systems (Figure 5B) [162]. An integrated approach combining surface-enhanced Raman
spectroscopy (SERS) with a specialized DL algorithm, CoVari, was proposed [163]. This sys-
tems’ ability to predict both viral species and concentrations simultaneously, together with
its potential for PoC diagnostics, underscores its novelty and broad applicability in virus
detection (Figure 5C). Moreover, implementing a smart sensor system that relies on large
datasets and advanced algorithms is challenging, particularly regarding data processing
and storage. Recently, cloud computing has become the preferred method for processing
sensor signals due to its powerful computational capabilities and vast storage [164,165].
Integrating cloud technology with biosensors is common in monitoring applications with
expanding data volumes. The essence of mobile edge computing lies in transferring some
or all computing tasks from the original cloud computing center closer to the data source.
This approach holds significant potential for addressing the limitations of sensor–cloud
systems. This approach offers benefits such as improved computational efficiency, faster
network processing, and cost-effectiveness. Consequently, advanced biosensors are likely
to increasingly utilize this technology. A key challenge in deploying AI-powered biosensors
is ensuring unbiased outcomes. ML algorithms can exhibit disparities among different
population groups, especially those already marginalized [166]. To address this, several
strategic measures are needed in the development of ML applications utilizing biosen-
sors. These include incorporating diversity in data collection and establishing robust
post-application performance audits to assess the impact on vulnerable communities. Tech-
nically, monitoring model performance and logging for performance drift detection are
crucial [167]. Implementing these procedures is essential for building confidence among
healthcare professionals and patients in the provided services.
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Figure 5. (A) Scheme of electrical impedance cytometer. As cells pass from the inlet to the outlet
in these biosensors, alterations in impedance are detected by a lock-in amplifier. This amplifier can
simultaneously apply signals at various frequencies. Subsequently, the data are recorded and ana-
lyzed using SVM. Reproduced with permission from [155]. (B) Interfacing 1D graphene nanoribbons
with 2D MXene for the development of pressure biosensor, trained using ML algorithm. Reproduced
with permission from [157]. (C) Schematic illustration of angiotensin converting enzyme 2 (ACE2)-
functionalized AgNR@SiO2 array for SARS-CoV-2 variant detection. Reproduced with permission
from [162].
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A comparison of different developed biosensors with ML analysis for cancer detection
was recently presented by Kokabi et al. [137]. Table 1 presents an overview of other
examples of applications for sensor devices integrated with ML algorithms.

Table 1. Examples of sensing devices combined with ML algorithms in healthcare applications.

Sensing Device Type of ML Algorithm Application Ref.

Metal oxide-based gas sensor array

RF, K-Nearest Neighbor (KNN), DT,
Linear regression, Logistic

Regression, Naïve Bayes, LDA,
ANN, SVM

Detection, classification, and
prediction of concentrations of the

four gases simultaneously for
disease diagnosis and
treatment monitoring.

[168]

Accelerometer sensor embedded in
a smartphone Several ML classifiers

Medical diagnostic, monitoring of
users’ daily routine, and detection

of abnormal cases
[169]

Accelerometer in wristband RF Sleep monitoring [170]

Zephyr BioHarness for
Electrocardiography (ECG) Batch normalization, SVM, KNN Cognitive training and

stress detection [171]

ECG, galvanic skin response (GSR),
body temperature, SpO2, glucose

level, and blood pressure
Neural network model Psychosocial stress detection [172]

Optical biosensor DL Cancer cell detection [173]

Electrodermal activity (EDA) and
Photoplethysmogram (PPG)

LDA, quadratic discriminant
analysis, logistic regression, SVM,

Gaussian kernel, KNN, DTs
Hydration monitoring [174]

Skin temperature, respiratory rate,
blood pressure, pulse rate, blood

oxygen saturation, and
daily activities

Multiple ML techniques Early detection of COVID-19 [175]

ECG, PPG, and blood pressure (BP) ResNet with Long short-term
memory for hypertension detection Blood pressure measurement [176]

Heart rate, heart rate variability,
respiration rate, oxygen saturation,

blood pulse wave, skin
temperature sensors

Multivariate regression for
case deterioration COVID-19 detection [177]

Inertial measurement unit (IMU)
sensor module and plantar pressure K-means clustering, ANN, SVM Rehabilitation [178]

PPG sensor in a ring-type device DL Arrhythmia detection [179]

Plasmonics sensors Logistic regression, SVM, ANN,
CNN, KMM Cancer detection [180]

Au nanoparticle-based sensor SVM Chronic kidney disease detection [181]

Electronic nose ANN Differentiating lung cancer patients [182]

Accelerometer and
electrodermal activity SVM Seizure detection [183]

6. AI-Assisted Biomarker Discovery

Recently, advancements in healthcare digitization and personalized treatments have
led to groundbreaking developments. Utilization of AI and ML has the potential to
enhance comprehension of disease onset and progression, potentially uncovering new
disease subtypes [184], unveiling novel drug targets [185], advancing the field of precision
medicine [186], propelling efforts towards disease prevention by providing insights into
preventive strategies [187], and finally, discovering new biomarkers for the diagnosis
of diseases [188].
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Various biological samples can be utilized to detect disease indicators, biomarkers.
According to the National Institutes of Health (NIH) and the Food and Drug Adminis-
tration (FDA) [189], the basic definition of a biomarker is ‘A defined characteristic that is
measured as an indicator of normal biological processes, pathogenic processes or responses
to an exposure or intervention’. As outlined by the US Food and Drug Administration
(FDA), biomarkers can be divided into seven distinct categories: susceptibility, prognostic,
diagnostic, prediction, monitoring, response, and safety. By grasping these classifications,
it becomes possible to adopt standard protocols by supporting a biomarker with its specific
function and context, thereby enhancing the efficiency of developing accurate diagnostic
and treatment methods. Consequently, this approach aids in the advancement of innova-
tive strategies and instruments for the discovery of new biomarkers [190]. This expansive
definition allows for their application in numerous areas such as diagnostic, monitoring,
pharmacodynamic/response, predictive, and prognostic biomarkers [191]. While invasive
sampling methods often cause discomfort, leading to potential patient aversion, constraints
in sample availability and frequency, and higher costs, non-invasive methods alleviate
many of these issues. However, the availability of non-invasive samples like urine, feces,
and sputum is finite, and their collection may be hindered by the patient’s feelings of
embarrassment or discomfort [192,193]. Biomarkers offer a deeper insight into the disease’s
progression and treatment outcomes than do conventional health indicators. Artificial
intelligence technologies represent advanced approaches that may optimize the potential
for discovery of various biomarkers [19,188,194–197].

Clinical researchers are constantly on the lookout for novel biomarkers and have
lately turned their attention towards digital, uncommon markers. These digital biomarkers
typically merge biological, neurological, socioeconomic, and environmental data, forming
an intermediate biomarker [198]. Recently, the use of ML and DL methods has been in-
creasingly popular for biomarker discovery. Both supervised and unsupervised learning
approaches are employed to unearth biomarkers from a variety of biological data. Su-
pervised learning utilizes methods such as RF, SVM, Logistic Regression, along with DL
techniques like CNNs and RNNs. On the other hand, unsupervised learning employs
PCA, ICA, and clustering algorithms to uncover novel biomarkers [199]. The integrative
digital biomarker will prove more beneficial for researching diseases that necessitate the
combined analysis of data from various sources. By ensuring no subtle patient signals are
overlooked and taking into account the interplay between different signals, this approach
will aid in prompt detection and more precise forecasting of symptoms [200]. Progress in
Next-Generation Sequencing [201] and our comprehension of the human genome have
transformed biomarker discovery, especially in oncology [202]. Conventional biomarkers
typically relied on circulating markers in blood, plasma, and serum, or those detectable
through imaging methods. However, the emergence of genomics has allowed for deeper
exploration, identifying individual genetic variations that significantly influence disease
pathology, particularly in cancers where genetic mutations frequently dominate [203].
AI-based tools demonstrate significant improvements in oncologic clinical trials, with a
50% increase in identifying potentially eligible patients and a 25% reduction in time for
patient screening [204]. A diverse variety of molecular, histologic, radiographic, or phys-
iological entities or features are common types of cancer biomarkers. Recent substantial
advancements in methodology and insights have propelled significant progress in the field
of discovery of biomarkers. The AI/ML-based tool Excelra is dedicated to personalized
medicine and biomarker identification [205]. Within the oncology domain, an internal ML
model harnesses expression data from CCLE, COSMIC, and ArrayExpress, employing
RF regression and recursive feature elimination (RFE) with ridge regression for feature
selection. Trained with SVM and RF, the model accurately predicted drug response for nine
out of ten patients, achieving an 82% accuracy in identifying drug response biomarkers.

While AI-powered applications hold considerable promise, further research is essen-
tial to validate these tools and streamline their adoption. The importance of biomark-
ers in clinical evaluations has been well recognized, yet identifying novel, specific, and



Biosensors 2024, 14, 356 23 of 37

single-molecule biomarkers remains a challenging task. This attempt necessitates a deep
understanding of a disease’s biological mechanisms and the effects of new drugs. The com-
plexity of most diseases, which can vary widely based on an individual’s health conditions,
lifestyle, and diet, adds to this challenge. For instance, glucose serves as both a diagnostic
and monitoring biomarker for diabetes but may also indicate stress or other health issues.
Similarly, electrolyte imbalances could point to dehydration, hyperkalemia, kidney dis-
eases, and various other conditions. The multitude of metabolites and small molecules
associated with different health conditions emphasizes the critical role these substances
play in bodily functions. Consequently, pinpointing precise biomarkers is difficult, as any
newly discovered compound could be linked to multiple known or unknown conditions.
However, the process of systematically testing each biomarker’s concentration for every
disease proves to be both costly and time-intensive. Chemical sensors and biosensors
present a promising solution to the challenges of biomarker discovery by enabling the si-
multaneous tracking of a wide array of molecular signatures for comprehensive multiomics
analysis [206]. Their capacity for continuously monitoring and detecting time-sensitive
patterns offers significant advantages in identifying biomarkers that exhibit rapid fluctua-
tions over short durations. Potential applications include wearable biosensors for tracking
cardiac health, epilepsy, or other sudden medical conditions, providing insights into the
body’s physiological changes preceding such events. Currently, no devices or tests can
foresee critical incidents like heart attacks, epilepsy seizures, or heatstrokes. Furthermore,
many health issues, such as Alzheimer’s disease or long-term effects of COVID-19, lack
established early warning biomarkers [207]. The continuous, real-time tracking of various
biomolecules during everyday activities could yield critical insights into the biochemical
markers of these abnormal conditions. This capability enables swift analysis of molecular
signatures, and when combined with data analytics, it enhances the biomarker discovery
process in ways that other analytical methods cannot match. However, monitoring of a sin-
gle biomarker for disease diagnosis has shown to be inadequate, as it is often influenced by
a mix of other chemical and physical markers. While various models have been suggested
for conducting multiomics analysis [208], they typically depend on molecular data gathered
through diverse techniques at separate times, leading to increased inaccuracies. Recent
advancements in miniaturization of biosensors have facilitated the inclusion of multiple
sensors within a small area. This progress has led to the creation of sensor arrays capable of
analyzing various analytes from a single biofluid sample, thereby opening new possibilities
in chemical biomarker discovery through multiplexed sensors that can track numerous
analytes at once, in real time [209]. Continuous monitoring of heart and respiratory signals,
such as cough frequency, body temperature, and movement patterns, has proven effective
in identifying early signs and progression of COVID-19 [210]. Sensors that concurrently
assess both chemical and physical health indicators are poised to provide a more detailed
and holistic view of an individual’s health status, enhancing the precision of diagnoses.
These integrated devices, capable of simultaneous monitoring of chemical analytes and
physical parameters, represent a significant leap forward in the field of health monitoring
and diagnostics. Recently elaborated databases identifying VOC signatures from spe-
cific bacterial species, microbiomes, and exhaled breath from patients with diseases, such
as respiratory tract infections, gastrointestinal conditions, and inflammatory syndromes
(e.g., acute respiratory distress syndrome and sepsis), offer scientists new opportunities to
discover biomarkers for diagnosing and triaging various diseases.

To understand disease mechanisms and the identification of biomarkers, analyzing
the proteins and related biological pathways of a disease is crucial. Integrating ML tech-
niques into proteomics processes enhances the detection of disease-related biomarkers and
biological pathways [211,212]. Nonetheless, models like deep neural networks (DNNs)
often lack interpretability. Hartman et al. recently proposed a DL strategy based on
biologically informed neural networks (BINNs) that merges the analysis of biological
pathways with biomarker identification to enhance the interpretability of proteomics ex-
periments [213]. The presented software has shown the capability to explore complex
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biological systems more thoroughly and enhance the prospects of biomarker discovery in
proteomics (Figure 6).
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Figure 6. The scheme of analyzing proteomic data using BINNs. First step is the creation of a
BINN for each dataset by selecting relevant pathways from a database such as Reactome. BINNs
are trained using protein quantities from each sample to distinguish between two subphenotypes.
Subsequently, SHAP (feature attribution method) is used to interpret the networks, providing feature
importance values for biomarker identification. Reproduced with permission from [213]. Created
with BioRender.com.

Innovations in (bio)sensor technology, specifically in multimodal and multiplexed
sensors, have enabled significant advancements in the continuous collection of detailed
multiomics data related to patients’ health from biofluid samples [214]. These datasets
consist of complex, multivariable, and non-linear patterns that traditional analysis methods
struggle to handle. In healthcare, ML has proven to be a powerful tool for making sense
of large and complex datasets. The role of ML algorithms in enhancing the transmission
of heart rate data in terms of both accuracy and efficiency, focusing on time series health-
care metrics, has been proven [215]. Advancements in chemical sensing technology have
improved the sensitivity and selectivity of detecting targets, leading to new insights into
how chemical biomarkers are linked to specific diseases [155,216]. Among the primary
types of ML algorithms, supervised learning has been pivotal in identifying relationships
among molecular analytes, vital signs, and health outcomes. Specifically, SVM models
have been effective in drawing connections between VOCs in breath and blood glucose
levels, achieving up to 97.1% accuracy in classifying artificial breath samples against known
glucose levels using diabetic breath analysis data [151]. The development of more robust
sensors, combined with SVM models, promises the discovery of real-time links between
clinically validated biomarkers and the analytes measured in non-invasively collected
body fluids. Sensors, powered by ML, hold the potential for ongoing monitoring of a
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wide array of biomarkers, providing continuous feedback on an individual’s metabolic
and immune states through the chemical composition of interstitial fluid, sweat, or saliva.
Furthermore, analyzing multiple biomarkers across various body fluids can reveal associ-
ations with clinically significant conditions. ML is a versatile tool, enabling not only the
prediction of events but also the identification of those already underway. This capability
is particularly useful in monitoring epileptic patients, where a combination of sensors
measuring galvanic skin response, heart rate, temperature, and movement can pinpoint
ongoing seizures and notify caregivers [217]. Beyond the realm of supervised learning for
regression and classification, unsupervised ML techniques are valuable for uncovering
hidden features in unlabeled molecular sensing data. These techniques facilitate the cre-
ation of simplified data representations and spotting of outliers within data clusters, using
methods such as k-means clustering. With the thorough analysis of data from biosensors,
reinforcement learning algorithms can be incorporated to provide medical guidance and
prompt interventions [108,218].

Integrating multiplexed, multimodal, real-time chemical sensors into the big datasets
can unveil novel connections between established biomarkers and emerging chemical
patterns, enabling ongoing monitoring via readily obtainable body fluids. The fusion of
these vast data streams from sensors, which track both chemical and biophysical indicators,
with ML methodologies, is expected to significantly advance biomarker identification and,
more broadly, transform healthcare practices. Developing a comprehensive platform that
consolidates chemical and biophysical data from various sensor technologies is crucial for
evaluating and confirming the relevance of newly identified biomarkers to specific health
conditions. In essence, the incorporation of fresh chemical insights from alternative bodily
fluids, as provided by real-time monitoring sensors, will greatly enhance the diagnosis and
prevention strategies for a wide array of medical conditions.

To advance biomarker identification, sensors can be designed to monitor specific
molecular markers continuously and in real time (Figure 7). To validate the efficacy of this
novel sensor, the biofluid’s analysis should be conducted both directly on the subject and
verified through standard laboratory methods to approve consistent findings. The sensor
must be capable of detecting the relevant physiological concentration ranges, requiring a
low detection threshold, high sensitivity, and a broad linear response range. The sensor
should be biocompatible and able to discern the target molecule within the complex biofluid
environment without the need for preprocessing the sample. This precision is achieved
through the use of fixed receptors such as enzymes, peptides, aptamers, or molecularly
imprinted polymers (MIPs), which bind specifically to the intended targets [219]. For
successful biomarker discovery, it is essential to efficiently gather molecular data from par-
ticipants. Key obstacles for sensors in accruing accurate data encompass signal interference
from physical activity, and the impact of pH, temperature, conductivity, and fluid renewal
on sensor performance. Implementing appropriate filtering and calibration methods is
essential, as is choosing the right system for fluid sampling. Conducting both longitudi-
nal and cross-sectional studies is critical for biomarker validation, generating extensive
datasets. Leveraging contemporary data analysis techniques, such as machine learning,
can aid in identifying biomarkers and developing algorithms that predict, diagnose, treat,
and prevent diseases.
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7. Perspectives

Sensors and biosensors as potential PoC devices enable bedside tests, bypassing the
need for clinical doctors. These instruments should overcome limitations of dedicated
laboratories, catering to timely testing needs in various scenarios. The spread of PoC tests
has led to an increase in the number of diagnostic instruments and testing data. However,
traditional data management methods remain manual, hampering staff efficiency. An
urgent need exists for a standardized data management platform for disease detection.
Automated interpretation of abnormal results is essential, especially given the limitations
of manual review. In the present era, ML, as a subset of AI, has made remarkable advances.
Special emphasis is placed on DL methodologies, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). ML offers a solution for classification
problems, aiding in interpreting physiological signals and data fusion techniques [154]. AI
will play an even more crucial role in handling large multivariate datasets and extracting
diagnostic information while avoiding dimensionality issues. ML has been implemented
to enhance the specificity of biosensors, effectively substituting the bioreceptor with model-
ing [220]. Specifically, ML techniques have been implemented to design EN and tongues,
and electrochemical, wearable electronics, surface-enhanced Raman spectroscopy (SERS),
fluorescence, and colorimetric biosensors [221]. Notably, PCA combined with SVM and
various ANN algorithms have demonstrated remarkable performance across diverse tasks.
We foresee a steady enhancement of biosensor range through ML and AI, particularly
with the potential for sharing trained models and leveraging cloud computing for mobile
computation. To support this evolution, greater contributions to open-access data reposito-
ries for biosensor data from the biosensing community would be advantageous. A strong
link between ML and biosensors should significantly enhance chemometrics for detection,
analysis, and diagnosis.

Despite a growing number of applications of AI-based technologies, just a few of them
are implemented in the PoC mode today. A bottleneck is mainly the necessity of device
validation, data exchange, their confidentiality, and implementation-related logistics [222].
Such applications as i-PROGNOSIS, based on smartphones, are examples of the CovidSense
projects, which deal with the analysis of different marker types collected mainly with a
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smartphone. They respect privacy and data safety policy and provide real benefits for a
wide group of patients. The smartphone-based sensors allow the detection of diseases,
specified in the European project iPROPELIS (no. 101095697). Using an application, it
is possible to identify structural changes in nail plates that indicate psoriasis or psoriatic
arthritis (https://cordis.europa.eu/project/id/101095697 accessed on 8 May 2024). Intel-
ligent devices and wearables can be used for the elaboration of new digital biomarkers
to create, in addition to already existing solutions, a system for objective monitoring of
markers, risk assessment, prognosis, diagnosis, or progress of a disease. It is predicted
that in the future, effective AI models will require innovative human–AI/device interfaces
capable of collecting and processing the markers in real time, providing the information
about the patient’s condition. However, there is an urgent need for simultaneous evalu-
ation of the traditional and digital biomarkers in real time using AI to attain the goals of
personalized medicine. A combination of these strategies lies in the utilization of sensors,
which can monitor the digital biomarkers (blood pressure, pulse) and the level of traditional
biomarkers (glucose, lactate, caffeine, and others). Ultrasonic transducers monitor digital
biomarkers and electrochemical sensors measuring the levels of traditional biomarkers.
The designed wearable sensor on the skin [223] consisted of both rigid and soft elements,
namely non-standard piezoelectric ultrasonic transducers made of lead zirconate, ultrasonic
transducers from lead titanate, and printed polymer composites with high mechanical and
corrosion resistance. This device is the first step towards multimodal wearable sensors be-
ing a combination of acoustic and electrochemical sensors for more complex monitoring of
human health. The authors suggest that future development of the self-contained interface
integrated with AI/ML would completely convert the current device into an intelligent
system wearable on the skin.

Progress in bioelectronics, wearable devices, consumer devices, and digitalization
enabled the monitoring of health data in real time and outside conventional clinical condi-
tions. Increasing trust in smart devices propels the demand for these technologies among
consumers, researchers, and service providers. The possibility of continuous medical
data collection from the natural environment of a patient, which in the past used to be
confined to clinical conditions, is supposed to revolutionize and decentralize healthcare.
However, continuous monitoring can lead to an overestimation of the health condition of
the patient, evoking panic situations. Moreover, variability of sensor output data, namely
signal-to-noise ratio and the resulting accuracy, especially in the case of data on a single
analyte, can lead to false results because many factors can affect the concentration of a
particular biomarker. Since many analytes can be associated with a particular physiological
state, multiplex analysis with the integration of digital biomarkers and raw data should
generate a more holistic view of the patient’s condition. This kind of complete identifi-
cation generates very relevant clinical data, which need significant AI/ML intervention
regarding sorting and prediction of the results. Accordingly, it is necessary to integrate
various technologies, which would support the collection of a broad data spectrum with
simultaneous maximization of information accuracy. The key option should be the combi-
nation of traditional data with digital biomarkers and their integration with well-trained
AI using multiomic data. This should provide a kind of cross-evaluation and combination
of personalized biomarkers, which are crucial for a clear evaluation of health condition and
minimization of undesired fear-generating factors. That is why there is an urgent but often
neglected need for validation, a combination of traditional biomarkers with digital ones,
and vice versa. The technologies integrated with AI, with the possibility of multiplexing,
would certainly be more consistent with a regulatory mechanism to easily pass through
clinical, commercial, and consumer bottlenecks. With all respect for the current research
and progress in biosensors and AI/ML, one should ask a question about the target level of
clinical and analytical accuracy, which would deem these devices to be good enough to
be implemented in clinical practice. The future of biosensors is promising and continuous
technological progress results in more accurate and cheaper sensors. For example, the
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possibility of monitoring glucose level in blood in real time by patients has already changed
the practices for healing diabetics.

Finally, some attention should be paid to AI-based language models, which have
been the subject of many debates and controversies in recent years. It turns out that it can
easily facilitate the correct interpretation of laboratory results. AI-based language models
could make diagnoses and plan treatment, but the mistakes made during the calculation
of in-vain infusion rate disqualified it as a legitimate ‘online doctor’. Trustworthiness
is fundamental in medicine, and as the patient–physician relationship expands into a
broader healthcare ecosystem, the introduction of AI prompts a re-evaluation of trust. The
creation of trustworthy AI ecosystems is essential. Subtle mistakes can result in serious
consequences. On the other hand, ‘real doctors’ can be also mistaken, but in their case, there
are legal regulations to force a doctor to care about the patient and to take all necessary
precautions. Similarly to mobile health applications, one must differentiate between the
application of the language models to high- and low-risk cases, for instance, when diagnosis
has a direct impact on patients’ health and life, the supervision and presence of qualified
specialists are necessary.

8. Conclusions

The field of biomarker detection and their discovery using sensors is notably a mul-
tidisciplinary area, requiring a close collaboration among chemists, biologists, engineers,
and medical professionals to create advanced, integrated, and multiplexed devices capable
of forecasting and averting health issues. We anticipate that advancements in sensor tech-
nology will facilitate ongoing, real-time analysis of metabolomics, proteomics, genomics,
and other omics fields. The vast amounts of data generated from extensive human studies,
combined with effective data fusion and mining techniques, are expected to enhance early
disease prediction, diagnosis, and prompt intervention strategies.

Addressing challenges such as data availability and quality, sample size, label variabil-
ity, privacy concerns, and ethical considerations is essential to fully harness AI’s potential
in healthcare. Establishing robust data-driven healthcare systems begins with capturing
clean, accurate, and properly formatted data suitable for diverse healthcare applications.
There is a widespread belief that large datasets are necessary for accurate predictions,
highlighting the importance of high-quality data, thorough annotations, and collaboration
with healthcare experts to build reliable ML models. Data security remains a top priority,
with healthcare organizations vulnerable to risks such as data breaches, hacking, and
ransomware incidents. ML can strengthen data and system security by analyzing patterns
to prevent attacks and adapt to evolving threats. Another significant obstacle is the lack
of transparency in algorithms and the complexities associated with validation and testing
procedures. AI-based applications often show variations from data input to output, and
there is currently no standardized procedure in place. Algorithms with similar performance
levels may employ different approaches to tackle identical problems, requiring specific
preprocessing techniques prior to inference. This diversity complicates scalability, espe-
cially in commercial AI-based products, where each application may require its own server
or virtual environment. Moreover, ensuring the algorithm’s applicability across different
nations faces challenges due to stringent medical regulations.

While many devices concentrate on a single parameter, endeavors should be directed
towards simultaneous and noninvasive monitoring of a broad spectrum of biomarkers. This
comprehensive analysis not only enables a more thorough examination of physiological
states but also facilitates dynamic calibration and correction of responses for more precise
monitoring. Biosensors employing multiple sensing methods for the same analyte can also
enhance reliability. Digital markers can be used to find patterns and predict medical results
thanks to the development of AI. Future progress suggests that digital health platforms will
increasingly integrate biosensors into their systems. The patients will be able to share their
data with healthcare personnel and monitor their condition in real time, leading to more
individualized and prophylactic healthcare. This digital clinical pathway should emphasize
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the necessity of close interdisciplinary cooperation, where AI can play an important role in
integrating different scientific worlds.
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