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Simple Summary: Pancreatic neuroendocrine tumors are rare, but their incidence is rising. Several
grades exist, and distinguishing between these is pivotal for clinical management. Currently, the
grades can only be differentiated by histological analysis requiring invasive sampling. MicroRNAs
are short non-protein coding RNA molecules that were shown to be differentially expressed in a
wide variety of tumors. Here, we examined whether microRNAs could be exploited to differen-
tiate grade 1 and 2 pancreatic neuroendocrine tumors and established significantly differentially
expressed microRNAs.

Abstract: Pancreatic neuroendocrine neoplasms pose a growing clinical challenge due to their
rising incidence and variable prognosis. The current study aims to investigate microRNAs (miRNA;
miR) as potential biomarkers for distinguishing between grade 1 (G1) and grade 2 (G2) pancreatic
neuroendocrine tumors (PanNET). A total of 33 formalin-fixed, paraffin-embedded samples were
analyzed, comprising 17 G1 and 16 G2 tumors. Initially, literature-based miRNAs were validated
via real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), confirming
significant downregulation of miR-130b-3p and miR-106b in G2 samples. Through next-generation
sequencing, we have identified and selected the top six miRNAs showing the highest difference
between G1 and G2 tumors, which were further validated. RT-qPCR validation confirmed the
downregulation of miR-30d-5p in G2 tumors. miRNA combinations were created to distinguish
between the two PanNET grades. The highest diagnostic performance in distinguishing between
G1 and G2 PanNETs by a machine learning algorithm was achieved when using the combination
miR-106b + miR-130b-3p + miR-127-3p + miR-129-5p + miR-30d-5p. The ROC analysis resulted in a
sensitivity of 83.33% and a specificity of 87.5%. The findings underscore the potential use of miRNAs
as biomarkers for stratifying PanNET grades, though further research is warranted to enhance
diagnostic accuracy and clinical utility.

Keywords: pancreatic neuroendocrine tumor; grade; microRNA; biomarker; machine learning;
formalin-fixed paraffin-embedded
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1. Introduction

Pancreatic neuroendocrine neoplasms (PanNENs) are among the most common neu-
roendocrine tumors and have shown an increasing incidence over the previous decades [1,2].
According to the most recent World Health Organization (WHO, 2022) classification sys-
tem, pancreatic neuroendocrine tumors (PanNETs) and pancreatic neuroendocrine car-
cinomas (PanNECs) belong to the group of PanNENs. Well-differentiated PanNETs are
grouped into grades 1 to 3 based on the Ki-67 index (<3%, 3–20%, and >20%, respectively),
whereas poorly differentiated tumors are categorized as PanNECs [3]. PanNETs comprise
functioning or hormonally active tumors, among others such as insulinoma, gastrinoma,
glucagonoma, somatostatinoma, vasoactive intestinal peptide-secreting tumors (VIPomas),
ACTH-producing tumors, and non-functioning, hormonally inactive tumors [4]. Hormone-
producing tumors are associated with typical syndromes, whereas hormonally inactive
tumors are often discovered incidentally.

Histologically, the differentiation between low/intermediate grade PanNETs (G1 and
G2) and PanNECs is not specifically challenging, while distinguishing high-grade PanNETs
(G3) from PanNECs can be rather difficult [5]. The differentiation of grade 1 from grade 2
PanNETs is also relevant. G1 tumors have a more favorable prognosis, with an approxi-
mately double median overall survival compared to G2 tumors [6]. Treatment strategies
for G1 and G2 PanNETs are similar, but G2 tumors often require more aggressive treat-
ment. However, the choice of treatment is influenced by the disease extent rather than by
grade [7,8]. The primary treatment for non-metastatic tumors is usually surgical. Treatment
options for differentiated metastatic PanNETs include somatostatin analogues, the mTOR
inhibitor everolimus, the multikinase inhibitor sunitinib, peptide receptor radionuclide
treatment, systemic chemotherapy, etc. [7–9]. Gallstone formation represents a potential
long-term side effect of somatostatin analogue treatment [10] that could warrant cholecys-
tectomy [11]. Moreover, the grade can change during the progression of the disease [12].
G1 and G2 PanNETs are distinguished histologically, requiring invasive sampling. There
is no other reliable, accurate, minimally or non-invasive biomarker that could help in the
differentiation, but such a biomarker would be clinically relevant.

Mature microRNAs (miRNA, miR) are small, non-coding, single-stranded RNA
molecules, typically ranging from 19 to 25 nucleotides in length. They play a key role in reg-
ulating gene expression, primarily operating at the posttranscriptional level. MicroRNAs
have tissue-specific expression and are secreted in body fluids as well [13]. Numerous
studies have demonstrated the utility of miRNAs as valuable biomarkers across various
diseases, encompassing a range of neoplastic conditions. As miRNAs can be found in the
blood as well, they might be used as minimally invasive biomarkers. Recently, hsa-miR-21,
hsa-miR-10a, and hsa-miR-106b were found to be upregulated in more proliferative PanNENs
(G2 and G3) compared to grade 1 tumors by studying formalin-fixed, paraffin-embedded
(FFPE) samples [14]. miR-96-5p and miR-130b-3p showed significantly lower expression
in G1 compared to G2 to G3 gastroenteropancreatic NETs (GEP-NETs), and miR-194-5p
showed a significant decrease through grades of GEP-NETs [15]. miR-30d-5p, miR-451a,
and let-7i-5p showed decreasing trends of expression from G1 to G2 and G3 samples in
a small cohort [16]. Significantly higher expression of circulating miRNA levels was also
identified in PanNEN samples compared to healthy control samples (serum miR-193b) or
chronic pancreatitis (miR-21) [17,18]. Significantly lower levels of serum miR-1290, miR-584,
miR-1285, miR-1825, and miR-550-002410 were found in PanNET samples compared to
pancreatic adenocarcinomas [19]. To the best of our knowledge, there have only been three
articles describing miRNAs that can differentiate between G1 and G2 (or G3) PanNETs
so far [14–16]. In other tumors, miRNA combinations have been found to be superior to
individual miRNAs in differentiating between different tumor types [20].

Our aim was to investigate the expression of tissue miRNAs in G1 and G2 PanNETs.
We have studied certain miRNAs described in the literature previously, but also performed
miRNA profiling to identify novel miRNAs.
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2. Materials and Methods
2.1. Tissue Collection

A total of 33 histologically confirmed formalin-fixed, paraffin-embedded (FFPE) sam-
ples were utilized, all sourced from human tumor blocks (Table 1). Specifically, 17 grade 1
(G1) and 16 grade 2 (G2) PanNET samples were procured from the Pathology Departments
of Semmelweis University, Budapest, Hungary. To ascertain tumor grade and identify
the Region of Interest within the block, which contained “pure” tumor tissue of the spec-
ified grade, hematoxylin–eosin slides were prepared, marked, and assessed by expert
pathologists. For RNA isolation, 4 × 20 µm micro-dissected sections were prepared and
placed into RNase-free tubes. All procedures were conducted in compliance with the
applicable guidelines and regulations (Ethical permission by the Hungarian Health Council
IV-2388/1/2022/EKU).

Table 1. Characteristics of tumor samples studied. NF: non-functioning. M: male, F: female.

Sample No. Tumor Grade Ki-67 Index Sex Age Hormonal Activity

1. 1 2% M 60 NF
2. 1 2% F 34 NF
3. 1 <1% F 46 Insulinoma
4. 1 1% F 42 NF
5. 1 1% F 49 Insulinoma
6. 1 3% F 70 NF
7. 1 0% F 65 NF
8. 1 1% M 69 NF
9. 1 <1% F 67 NF
10. 1 2% F 74 NF
11. 1 <1% F 40 NF
12. 1 <1% F 53 NF
13. 1 1% F 44 Insulinoma
14. 1 <2% M 70 NF
15. 1 <1% M 71 NF
16. 1 <1% F 79 NF
17. 1 1% F 56 NF
18. 2 20% F 48 NF
19. 2 15% F 42 NF
20. 2 10% M 69 NF
21. 2 5% F 60 NF
22. 2 1–3% F 62 NF
23. 2 10% F 65 NF
24. 2 5% M 66 NF
25. 2 1–4% M 49 NF
26. 2 5–8% M 44 NF
27. 2 2.8–3.1% F 76 NF
28. 2 5–10% M 54 NF
29. 2 5% M 47 NF
30. 2 5% M 48 NF
31. 2 20% F 49 NF
32. 2 5% F 74 NF
33. 2 7% F 41 NF

M: male, F: female.

2.2. Sample Processing and RNA Isolation

For the extraction of total RNA, encompassing miRNAs, the RecoverAll™ Total Nu-
cleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific, Waltham, MA, USA) was
employed. Following deparaffinization using xylene isomers, the samples underwent
digestion and purification as per the manufacturer’s instructions. As a spike-in control
for purification efficiency and for external control in the real-time quantitative reverse
transcription polymerase chain reaction (RT-qPCR) process, 2 µL of 5 nM Syn-cel-miR-39
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was added. The obtained total RNA was stored at −80 ◦C until further processing. RNA
concentration was determined using the Qubit 4 Fluorimeter with the Qubit RNA Broad
Range RNA Assay Kit (Thermo Fisher Scientific).

2.3. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) for
Quantification and NGS Validation

Initially, each miRNA was reverse-transcribed into cDNA individually using miRNA-
specific primers (TaqMan miRNA assays; Thermo Fisher Scientific) in a ProFlex™ PCR
machine (Thermo Fisher Scientific). Each RT sample included 10 ng of RNA as starting
material. Subsequently, 1 µL of the synthesized cDNA was subjected to qPCR using miRNA-
specific fluorescently labeled hydrolysis probes (TaqMan probes, Thermo Fisher Scientific).
The Quantstudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific) was used with a
96-well fast block, and Ct values were determined for each target. Relative quantification
of miRNAs was performed utilizing RNU 48 (ID: 001006) as an internal control target
and cel-miR-39 (ID: 000200) as an external control target, employing the ∆∆Ct method as
described by Livak and Schmittgen [21]. The internal and external control was unified
into one measure by calculating the geometric mean of the two values. Specific primers
for miRNAs selected based on literature research were [miR-130b-3p (ID: 000456); miR-194-
5p (ID: 000493); miR-106b (ID: 000442); and miR-96-5p (ID: 000186)] and those identified
via NGS were [miR-127-3p (ID: 000452); miR-129-5p (ID: 000590); miR-769-5p (ID: 001998),
miR-671-5p (ID: 197646_mat); miR-375-3p (ID: 000564); and miR-30d-5p (ID: 000420)].

2.4. miRNA Expression Profiling from FFPE Samples by Next-Generation Sequencing (NGS)

For library preparation, 100 ng of total RNA served as the initial material, using
the QIAseq miRNA Seq Kit (Qiagen GmbH, Hilden, Germany). Sequentially, adapters
were ligated to both the 3′ and 5′ ends of miRNAs, followed by reverse transcription to
create cDNA. The cDNA product was purified using magnetic bead separation. In the
subsequent library amplification stage, cDNA was labeled with dual molecular indexes,
each containing a unique sequence for individual samples. Following library amplification,
further purification by magnetic beads was conducted. Each sample was then diluted
to a concentration of 4 nM and equimolarly combined into a pooled cDNA library at a
concentration of 4 nM. After chemically denaturing 5 µL of the pooled library and diluting
it to 10 pM, sequencing was performed using the MiSeq v3 150 cycles sequencing kit on a
MiSeq™ NGS sequencer (Illumina, San Diego, CA, USA). The acquired sequence data un-
derwent demultiplexing and fastq files were analyzed using the Qiagen GeneGlobe system
(QIAGEN RNA-seq Analysis Portal 5.0, (website: rnaportal.qiagen.com)). This software
platform facilitates miRNA annotation, count determination, and gene expression analysis.

2.5. Statistical– and Machine Learning Analysis

GraphPad Prism version 6.01 (GraphPad Software, La Jolla, CA, USA) and R for
Windows version 4.4.0 environment (R Core Team, 2024, R Foundation for Statistical
Computing, Vienna, Austria) were used in the analysis of RT-qPCR data. As most of the
RT-qPCR data were significantly skewed, outlier removal was performed prior to any
statistical analysis. All the data that were over the upper quartile + 1.5 × interquartile range
or were under the lower quartile − 1.5 × interquartile range were marked as NA. For dif-
ferentiating between G1 and G2 PanNET groups, Welch’s t-test was used. p-Values of < 0.05
were considered significant. A 90–10% learner–tester cross-validation simulation with
100,000 iterations was run to differentiate G1 and G2 tumors utilizing a single hidden-layer
neural network model (R package nnet, version 7.3-19). Each miRNA’s differentiation
potential was tested as a standalone marker, as well as the potential of their combinations.
The combination models included up to 6 miRNAs out of the 10 available, resulting in
a total of 847 possible combinations to investigate. Following the simulation procedure,
the original and predicted groups were compared, and the number of true negatives (TN),
true positives (TP), false negatives (FN), and false positives (FP) were determined. As

rnaportal.qiagen.com
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the last step, sensitivities (Se) and specificities (Sp) of the neural network models were
calculated using the Se = TP/(TP + FN) and the Sp = TN/(TN + FP) equations, respectively.
The best-performing model was selected for receiver operating characteristic (ROC) curve
modeling, which was performed using the R package pROC (version 1.18.5).

3. Results
3.1. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
Validation of miRNAs Found in Literature

Thirty-three FFPE samples (17 G1 and 16 G2) were subjected to RT-qPCR validation.
The results of the validation of significantly differently expressed miRNAs found in the
literature are presented in Figure 1. miR-130b-3p and miR-106b showed significantly lower
expression in G2 samples compared to G1 tumors, while miR-194-5p and miR-96-5p showed
no significant differences in expression between the two groups. No changes in the results
were found when the insulinoma cases were removed.
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Figure 1. Expression of miRNAs identified by literature search. (A) miR-130-3p; (B) miR-106b;
(C) miR-194-5p; (D) miR-96-5p. miR-130b-3p and miR-106b showed significantly lower expression in
G2 samples compared to G1 samples. *: significant difference (p < 0.05).

3.2. miRNA Expression Profiling by Next-Generation Sequencing

Altogether, five G1 and five G2 FFPE samples were subjected to NGS profiling. miR-
NAs are listed in Table S1. From the sequenced miRNAs, we selected the six miRNAs
showing the greatest difference between G1 and G2 samples (miR-127-3p, miR-129-5p,
miR-769-5p, miR-671-5p, miR-375-3p, and miR-30d-5p). NGS data were uploaded to the
openly accessible repository under the Gene Expression Omnibus accession identification
number GSE265752.
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3.3. RT-qPCR Validation of Significantly Differentially Expressed miRNAs

The 6 differentially expressed miRNAs identified during NGS profiling were validated
on all 33 G1 and G2 FFPE samples used for the validation of literature-based miRNAs
(17 G1 and 16 G2 samples; Figure 2). Validation showed a significant downregulation
of miR-30d-5p (p = 0.0454) in G2 samples relative to G1 samples. The other five selected
miRNAs [miR-127-3p (p = 0.3280); miR-129-5p (p = 0.6055); miR-769-5p (p = 0.6862); miR-671-
5p (p = 0.5174), and miR-375-3p (p = 0.6575)] displayed no difference in expression. When
comparing insulinoma samples with non-insulinoma PanNET samples, no statistically
different expression levels were found. Furthermore, no change in the results was found if
all the insulinoma cases were removed.
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Figure 2. RT-qPCR validation of significantly differentially expressed miRNAs selected based on
NGS data. (A) miR-30d-5p; (B) miR-129-5p; (C) miR-127-3p; (D) miR-769-5p; (E) miR-375-3p; (F) miR-
671-5p. miR-30d-5p showed significantly lower expression in G2 samples compared to G1 samples.
*: significant difference (p < 0.05).

3.4. Diagnostic Performance of miRNAs

The diagnostic performance of selected and validated miRNAs was assessed using
neural network models for all of the 847 miRNA combinations. The best-performing
miRNA combination in differentiating G1 PanNETs from G2 PanNETs was miR-106b +
miR-130b-3p + miR-127-3p + miR-129-5p + miR-30d-5p with a specificity of 77.44% and a
sensitivity of 87.82% (Table 2). Only the ten best-performing combinations are shown
here, while the complete dataset is included in Table S2. The diagnostic performance
of the combination was better than that of individual miRNAs. The ROC curve of the
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best-performing miRNA combination resulting from the neural network model analyses is
shown in Figure 3, where a sensitivity of 83.33 and specificity of 87.5% was achieved.

Table 2. Ten best-performing neural network models for diagnostic performance of miRNA combina-
tions. Best-performing combination is indicated in bold.

Model Combination TP FP TN FN Specificity Sensitivity

miR_106b + miR_130b_3p + miR_127_3p + miR_129_5p + miR_30d_5p 14.92 4.34 14.92 2.07 77.44 87.82

miR_106b + miR_130b_3p + miR_127_3p + miR_129_5p + miR_671_5p + miR_30d_5p 14.86 6.03 14.86 2.13 71.11 87.47

miR_106b + miR_130b_3p + miR_127_3p + miR_769_5p + miR_671_5p + miR_30d_5p 14.54 5.56 14.54 2.45 72.33 85.56

miR_769_5p + miR_375_3p + miR_30d_5p 13.85 4.44 13.85 3.14 75.70 81.52

miR_106b + miR_130b_3p + miR_127_3p + miR_769_5p + miR_30d_5p 14.59 5.97 14.59 2.40 70.96 85.88

miR_106b + mir_194_5p + miR_130b_3p + miR_127_3p + miR_129_5p + miR_30d_5p 14.16 5.39 14.16 2.83 72.42 83.33

miR_106b + miR_130b_3p + miR_127_3p + miR_769_5p + miR_671_5p 14.00 5.29 14.00 2.99 72.567 82.4

miR_106b + miR_130b_3p + miR_127_3p + miR_129_5p + miR_769_5p + miR_30d_5p 14.65 6.84 14.65 2.34 68.14 86.19

miR_106b + miR_130b_3p + miR_127_3p + miR_671_5p + miR_30d_5p 14.20 6.12 14.20 2.79 69.85 83.53

miR_106b + miR_130b_3p + miR_127_3p + miR_129_5p + miR_375_3p 14.93 7.85 14.93 2.06 65.52 87.84

FN: false negative; FP: false positive; TN: true negative; TP: true positive.
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Figure 3. The receiver operator characteristic (ROC) curve of the best-performing miRNA combi-
nation. In the ROC model, the predictor was the percentage value estimated by the selected neural
network model. The following simulation procedure was used to estimate the percentages for each
sample. The best-performing neural network model was re-run by training a new learning sam-
ple omitting the sample selected for testing. We then performed model prediction on whether the
given sample was Grade I or II. All samples were tested using 10,000 iterations. The sensitivity and
specificity values differ from that of the data in Table 2 as this is a recalculation by ROC.



Cancers 2024, 16, 2528 8 of 10

4. Discussion

We studied miRNAs showing differential expression between G1 and G2 PanNETs.
First, we examined miRNAs already described to be differentially expressed between G1
and G2 GEP-NETs in the literature. From the selected four miRNAs, we were unable to
demonstrate significant differences in the expression levels between the two tumor grade
groups for miR-96-5p and miR-194-5p. miR-106b was confirmed to be decreased in G2
relative to G1 samples. However, the expression of miR-130b-3p showed an inverse change
as reported previously, being underexpressed in G2 [15]. This incongruence might arise
from the imparity of the original samples, namely that Cavalcanti et al. [15] used GEP-NETs,
while we used only its subset, PanNETs. There are differences between pancreatic and
other GEP-NETs, such as PanNENs being more likely to have a hereditary background (e.g.,
von Hippel–Lindau syndrome, multiple endocrine neoplasia syndrome type 1, tuberous
sclerosis, and neurofibromatosis) or have distinct biological activity [3,22]. Moreover, the
treatment protocols between PanNEN and small bowel NEN are also different [8,23].

We have discovered further significantly differentially expressed miRNAs between
G1 and G2 PanNETs by NGS. From these miRNAs, we selected the top six miRNAs
showing the largest differences. RT-qPCR validation of the selected miRNAs confirmed
the significant downregulation of miR-30d-5p in G2 samples while for miR-127-3p, miR-129-
5p, miR-769-5p, and miR-671-5p, no significant difference was detected. In the literature,
miR-127-3p mainly functions as a tumor suppressor [24,25]; however, in our study, only
non-significant changes in its expression in higher-graded PanNETs could be observed. It
is not unusual for a miRNA to have tumor suppressor or oncogenic activity depending
on the tissue [26]. miR-127-3p and miR-375 appear to be involved in insulin secretion,
and they are highly abundant in pancreatic islet cells [27]. The expression of miR-127-3p
was non-significantly higher in our few insulinoma samples compared to non-functional
PanNETs. miR-127 was also found significantly overexpressed in PanNENs and their
corresponding metastases compared to other GEP-NETs [28]. miR-671 has been shown to
be underexpressed in pancreatic ductal carcinoma among other tumors and upregulated in
colorectal, prostate, and hepatocellular cancer [29]. miRNA combinations showed higher
diagnostic performance than individual miRNAs in concordance with the literature [20].

5. Conclusions

In conclusion, we have found a miRNA combination, namely miR-106b + miR-130b-
3p + miR-127-3p + miR-129-5p + miR-30d-5p, that can possibly differentiate between G1
and G2 PanNETs. The diagnostic performance of these miRNAs is not perfect but is
promising. Further, preferably multicentric studies on larger sample cohorts are warranted
to validate and increase the diagnostic accuracy of the combined miRNA marker. If
matching circulating miRNAs could be identified, this might open the way for minimally
invasive blood-borne biomarkers and would have major clinical relevance in determining
the grade of PanNETs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16142528/s1, Table S1: NGS miRNA combined data;
Table S2: Diagnostic performance of miRNA combinations derived from neural network models.
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