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Simple Summary: Breast cancer ranks as the most prevalent cancer among women. Current screening
includes regular mammography and subsequent biopsy if the mammography results are abnormal.
These procedures are costly and uncomfortable. We propose an alternative non-invasive method based
on X-ray scattering. Using a machine learning approach, we have examined almost 3000 measurements
of cancerous and non-cancerous samples belonging to 110 patients and shown excellent results on
cancer/non-cancer separation. This can lead to patient-friendly, fast, and economical solutions for breast
cancer screening to complement mammography and reduce biopsy. It should be emphasized that this
approach can be readily extended to other types of cancer and even other diseases.

Abstract: With breast cancer being one of the most widespread causes of death for women, there is
an unmet need for its early detection. For this purpose, we propose a non-invasive approach based
on X-ray scattering. We measured samples from 107 unique patients provided by the Breast Cancer
Now Tissue Biobank, with the total dataset containing 2958 entries. Two different sample-to-detector
distances, 2 and 16 cm, were used to access various structural biomarkers at distinct ranges of
momentum transfer values. The biomarkers related to lipid metabolism are consistent with those of
previous studies. Machine learning analysis based on the Random Forest Classifier demonstrates
excellent performance metrics for cancer/non-cancer binary decisions. The best sensitivity and
specificity values are 80% and 92%, respectively, for the sample-to-detector distance of 2 cm and 86%
and 83% for the sample-to-detector distance of 16 cm.

Keywords: structural biomarkers; X-ray scattering; extracellular matrix; cancer detection; machine learning

1. Introduction

Breast cancer is currently the leading type of new cancer cases and the second leading
cause of cancer mortality for women. More than three hundred thousand new cases of
breast cancer and more than forty thousand deaths are estimated for the US in 2024 [1].
While the mortality rate has slightly decreased over the last few years [1], the total number
is still worryingly large. The decrease in mortality can be attributed to early diagnosis of
breast cancer [2], and thus, the development of early-stage biomarkers is paramount. To
address this, we propose monitoring the status of extracellular matrix components using
X-ray scattering.
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The extracellular matrix (ECM) [3,4] is the noncellular part of tissue with components
synthesized mainly by cells. It provides mechanical support for cells and plays a significant
role in maintaining tissue homeostasis. The ECM is constantly remodeled to adapt to various
stresses [5], and this process generally becomes deregulated in the case of disease [6,7].
Specifically, notable changes in the structure of ECM molecules can indicate a tumor’s existence
and progression and, correspondingly, serve as biomarker origins [8,9].

Since their discovery, X-rays have been widely used in medicine. However, early
and current applications, such as fluorography, radioscopy, and mammography, are based
on absorption processes, with X-ray scattering not explicitly exploited. Initially, X-ray
crystallography was used to determine atom arrangements in crystalline solids. Later, the
possibility of crystallizing biological molecules led to the development of biocrystallog-
raphy, i.e., the revealing of the molecular content of complex structures; see [10,11] for
historical overviews. However, the X-ray scattering approach can be applied to biological
molecules or molecular complexes without crystallization, and, if there are periodic struc-
tures, they will manifest themselves in scattering patterns. In this, the periodicity, d, of the
structure will appear as momentum transfer, q = 2π/d. While ECM components, such as
fibrous proteins (collagens, elastins, fibronectins, and laminins) and glycoproteins, are not
crystalline per se, their structural periodicity emerges during synthesis. To separate the
studies of such objects from biocrystallography, we introduce the term vitacrystallography,
which appears in the title of this paper.

Increasing numbers of reports use X-ray scattering to examine the physicochemical
features of breast tissue ECM. Molecular imaging from X-ray scattering has been employed
to examine collagen types derived in vivo from intralobular, functionally anomalous fibrob-
lasts associated with invasive tumors. Initially, studies examined tertiary-level collagen
structures, leading to new breast tumor microenvironment models [12,13]. Subsequently,
multiple studies have examined X-ray scattering (coherent and incoherent) to probe the
atomic scales of breast tissues. These have demonstrated high levels of imaging contrast
based upon tissue type [14–16]. More recently, the physicochemical properties of ECM
microcalcifications (small calcium phosphate deposits typically 10–100s µm in size) fre-
quently associated with breast cancers, especially ductal carcinomas, have been reported.
The chemical and microstructural characteristics of apatite (type II) microcalcifications act
as immortalized biomarkers of the tissue environment when calcifications form, i.e., at the
onset of pathological change. Thus, such features may provide a record of tissue changes
from genesis to invasion. Atomic-scale X-ray scattering unlocks this information to indicate
both intracellular and extracellular ionic concentrations [17–21] and other characteristics.
This is relevant to, for example, elevated intracellular Na and Mg associated with mitogen-
esis. Such data would impact upon research into overtreatments as Mg is critical to cellular
temporal benchmarking.

Another component that can be monitored in relation to cancer progression is lipids.
The relationship between cancer and lipid metabolism was first reported in the mid-
60s [22,23], with recent studies revisiting this relationship [24–28]. Cancer cells modify
lipid metabolism, activating, desaturating, or elongating fatty acids. Moreover, de novo
synthesized lipids can differ from those in circulation, affecting the lipid composition of
tumors. These changes in lipid profile can be used to establish biomarkers. Currently, the
primary analytic tool is mass spectroscopy [24,29], but lipids can be addressed directly
using X-ray diffraction. For example, at least two diffraction maxima from breast tissue
scattering are uniquely associated with lipid structures. One of them, the wide-angle
maximum at q = 13.9 nm−1, corresponds to inter-fatty-acid molecular distances. It was
shown [30–32] that for cancerous tissues, the intensity of this maximum reduces (often to
<3σbackground), while another peak at q = 20.2 nm−1 concomitantly increases in intensity.
This maximum is attributed to the oxygen–oxygen distance in the tetrahedral structure
of water [31]. Accordingly, it can be used as a structural biomarker. It should be noted
that the values of q are off by 4π in [14,15,33], where it was reported that healthy adipose
tissue exhibits a narrow peak at q = 1.1 nm−1, while for cancerous tissues, this peak appears
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shifted to q = 1.5 nm−1. When multiplied by 4π, it would give values similar to [30–32]. In
small-angle scattering, the peak at q = 1.5 nm−1 has been attributed to the regular packing
of triglyceride molecules and is a characteristic of healthy tissue [31,34,35]; moreover, it
was shown [35] that this peak is absent in benign tissues. Another work [36] reported a
peak at q = 1.725 nm−1 that appears primarily associated with malignant lesions.

The metastatic spread of breast cancer often involves bone as a secondary site. Although
‘bone homing’ mechanisms are poorly understood, some early indications of the role of
local mineral environments are starting to emerge [37]. Many fundamental questions are
associated with osteo-tumors that currently hinder the progression of early-stage diagnostics
and effective therapies. For example, dormancy processes and mesenchymal–epithelial
transitions have been difficult to characterize but are essential for understanding the natural
history of metastatic cancers [38,39]. Dormancy and other components (progression) of the
metastatic cascade are undoubtedly influenced by tumor microenvironments [40]. X-ray
scatter imaging can critically provide information simultaneously on bone mass, architecture,
and material ‘quality’ associated with microenvironments [41]. Further, detection of bone
cancer at significantly earlier stages than currently possible with conventional radiology within
animal models would be possible due to the enhanced contrast afforded by the technique.
X-ray scattering has already been demonstrated to be capable of providing new biomarkers
for osteoporosis and fracture prediction using atomic scale features (0.4–0.1 nm) averaged over
~mm3 mineral volumes [42,43]. Simultaneous architectural imaging can also be employed,
using finite element modeling, to provide mechanical properties of the tissue and thus indicate
the degradation of bone strength as cancer progresses.

In this paper, we report the analysis of data produced by measurements of X-ray
scattering of breast tissues. We use two distinct sample-to-detector distances to ad-
dress different q-ranges. The distance of 2 cm provides a q-range of up to 22.5 nm−1,
while the distance of 16 cm magnifies small-angle scattering with a q-range of up to
4.5 nm−1. These two distances are chosen to examine both ranges associated with cancer-
induced lipid transformations. We measure samples from 107 unique patients, obtaining
2958 distinctive scattering patterns. After azimuthal integration, these patterns are con-
verted to dependencies of the scattered intensity on q. The averaged curves exhibit the
previously obtained results, with a q = 1.5 nm−1 peak predominantly appearing in healthy
tissues; suppression of the q = 13.9 nm−1 peak; and the appearance of a q = 20.2 nm−1

peak in cancerous samples. However, the total number of samples in our research signifi-
cantly exceeds that of previous studies. It became possible for two reasons. First, many
samples can be readily processed as we use a developed table-top diffractometer instead of
a synchrotron. Second, a machine-learning technique has been employed for data analysis.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Breast Tissue Specimens

A total of 214 fresh-frozen core biopsy breast tissue specimens totaling 107 patients
were utilized for this study and were obtained via the Breast Cancer Now Tissue Biobank.
Two specimens per patient were provided for the study to assess heterogeneity. The donors
were all female and ranged from 19 to 93 in age and included 60 patients diagnosed with
cancer and 47 non-cancer patients. Ethical approval for the project was obtained locally
via Keele University (NS-210096), and for the collection and use of specimens via the BCN
tissue biobank (NRES Approval Number 21/EE/0072).

2.1.2. Sample Preparation

Each tissue specimen was placed into a bespoke aluminum sample holder of 2 mm
thickness utilizing a SPEXTM 6 µm thick mylar window film to seal and secure the tissue
within a 5 mm aperture, as shown in Figure 1a. Crucially, the sample holders were
designed to ensure the tissues remained hydrated throughout the analysis, which was
validated by utilizing porcine tissue prior to scanning human tissue. To ensure consistency
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in sample-to-detector distances and measurements, the volume of tissue fully filled the
sample holder. Silver behenate powder (Thermoscientific® 045494.06, Waltham, MA, USA)
was also scanned (utilizing the bespoke aluminum holders) to allow for accurate sample-
to-detector distance measurements.
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Figure 1. (a) Human breast tissue sealed within a 5 mm aperture bespoke sample holder; (b) EosDx
X-ray diffractometer; (c) schematics of the experiment.

2.1.3. X-ray Diffraction (XRD) Measurements

XRD analysis was carried out using a bespoke X-ray diffractometer (Figure 1b) engineered
and built by EosDx, Inc. (Menlo Park, CA, USA), a US-based company developing X-ray
scattering for medical diagnostics. The radiation produced by the Incoatec Microfocus Source
copper source was collected with two multilayer curved mirror optics, resulting in a low-
divergence monochromatic beam with a radiation wavelength λ = 0.154 nm. The two-
dimensional detector was an MiniPix SN1442 Si 500 µm detector (ADVACAM, Prague, Czech
Republic) with a 256 by 256 pixel array and a 55 by 55 m pixel size. Schematics of the
experiment are shown in Figure 1c. The incident X-ray beam hits the sample containing
various biomolecules and is scattered by the angle 2θ. The experimental data were stored
as a 256 by 256 matrix of integers representing the photon counts. All the experiments were
performed at room temperature (19 ◦C) under atmospheric pressure. To assess specimen
heterogeneity, specimens were mapped with data collected from 10 individual spots on the
sample, providing 10 diffractograms per specimen. Each diffractogram was collected for
3 min with a count time of 0.1 s. Background data were collected from an empty aluminum
sample holder sealed utilizing mylar (as described above) and subtracted from sample data.
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2.2. Data Analysis

The first step of data analysis was removing images from the database that were either
empty or lacked a defined beam center, ensuring that only relevant data proceeded to the
analysis stage. Following data cleaning, the center of each measured pattern was identified
using the Pyfai module, and the precise sample-to-detector distance was determined using
a calibration based on AgBH diffraction. The next step was azimuthal integration around
the center to obtain radial profiles, effectively translating 2D image data into 1D dependence
of the intensity of scattered X-rays on the distance from the center. Initially expressed in
pixel units, the radial profiles were converted into momentum transfer q = (4π sin θ)/λ,
where sin 2θ was calculated as the ratio of the distances from the pixel to the center and
from the sample to the detector; see Figure 1c.

The dataset was clustered into two groups corresponding to the two different experi-
mental sample-to-detector distances. The q-ranges were interpolated within each cluster to
achieve a uniform length of 50 points, enhancing comparability, with a 4.5% cut from both
sides of the q-range. This step involved the removal of outliers using the z-score technique
to ensure the reliability of the interpolation process.

Prior to classification, the radial profiles underwent normalization and scaling. This
step, executed with the scikit-learn library [44], involved adjusting the data within each
cluster to have a standard distribution. The processed data from each cluster underwent
a randomized separation (200 times) with respect to patients, with a train-test split of an
approximately 60/40 ratio, forming not-overlapping subsets, i.e., training was performed
using certain patients, and the test was accomplished with the other subset.

The machine learning algorithm from the scikit-learn library, Random Forest Classifier,
was employed to classify the samples into cancerous and non-cancerous categories. This
algorithm was chosen for its robustness and ability to handle complex patterns in data. The
training phase involved adjusting the models to best fit the training data, while the testing
phase assessed their performance in classifying unseen data. The number of trees was set
to 100; the depth of trees was set to 10; and the learning rate of 0.01 was set for Random
Forest. The learning was performed for all train-test subsets; 200 for each cluster.

We evaluated our model using sensitivity and specificity as our performance met-
rics. Sensitivity refers to the proportion of tumor samples that were accurately identified,
while specificity relates to the accuracy in identifying control samples. To determine the
most effective threshold for classification, we selected the one that brought our model’s
performance closest to that of an ideal classifier, as indicated on the receiver operating char-
acteristic (ROC) curve. The area under the ROC curve (AUC) is another critical measure,
with values closer to one indicating superior performance.

3. Results

The samples were measured at two sample-to-detector distances. The descriptions of
the collected datasets are shown in Table 1.

Table 1. Datasets for X-ray scattering data measured at two different distances of 2 and 16 cm.

Clusters
Diagnosis

Cancer Non-Cancer Total

Cluster 2 cm 825 1463 2288

Cluster 16 cm 306 364 670

1131 1827 2958

Typical results of the measurements are shown in Figure 2.
As shown in Figure 2, the scattering patterns are almost isotropic, and the azimuthal

integration can be performed without losing information. As a result of this integration,
the scattered intensity can be represented as a function of the distance to the center, which,
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in turn, can be rearranged in terms of the transfer momentum magnitude. The obtained
dependencies of the intensity of the scattered X-rays on the transfer momentum are shown
in Figure 3. The 2 cm cluster includes the region of 2.3–22.5 nm−1 of the transfer momentum
magnitude, while the 16 cm cluster covers the 0.44–4.29 nm−1 range.
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If we compare the averaged intensities, shown as black dashed curves, we can confirm
the results of previous studies [37–42] related to lipid metabolism. For the 16 cm measure-
ments, the peak at q = 1.5 nm−1 is very pronounced in non-cancer samples (Figure 3a) but
much less visible in cancer samples (Figure 3b). For the 2 cm measurements, the peak at
q = 14 nm−1 is clearly seen in non-cancer samples (Figure 3c) but less pronounced than
the peak at q = 20 nm−1 in cancer samples (Figure 3d). These findings confirm previously
obtained results relating these peak modifications to lipid metabolism [30–32,34,35]. How-
ever, the individual measurements can be significantly different from these general trends,
as seen in all the panels of Figure 3. In particular, the 1.5 nm−1 peak appears in many
cancer samples (Figure 3b). In contrast, the 20 nm−1 peak dominates the one at 14 nm−1

for many non-cancer samples (Figure 3c). Correspondingly, to reveal all the tendencies
and facilitate the applications of this approach to actual diagnostics, we applied machine
learning techniques.
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cancer samples measured at the sample-to-detector distance of 16 cm, (b) cancer samples measured
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intensities for each specific sample are showed at different colors, with the averaged intensities shown
as black dashed curves.

We trained the Random Forest Classifier procedure on 60% of measurements, using
the remaining 40% for the test to determine the outcome metrics, with the same percentage
of cancer patients in both clusters as in the total dataset. Several measurements of a single
patient were kept in the same training or test clusters. Such training/test sequences were
performed 200 times. The ROC curves for the test sets are shown in Figure 4 for both 16 cm
and 2 cm measurements.

With each of the 200 realizations exhibited in grey, the best and the worst are shown in
red and blue, respectively. The average curve is black. The corresponding performance
metrics are presented in Table 2.
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Table 2. Random Forest performance metrics for 2 cm and 16 cm datasets.

Metrics Distances (cm)
AUC ROC Sensitivity Specificity

2 16 2 16 2 16

Random Forests (min) 64 58 56 78 73 36

Random Forests (max) 92 89 80 86 92 83

Random Forests (average) 78 73.5 68 82 82.5 59.5
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4. Discussion

It is evident from Figure 4 and Table 2 that the Random Forrest Classifier approach
allows promising cancer/non-cancer binary diagnostics. For the best realization, the AUC
ROC reached 94% for the 2 cm measurements and 87% for the 16 cm measurements. The
metrics for the average realization are slightly worse but still very good. As illustrated
in Table 2, the test specificity is demonstrated to possess credible metrics consistent with
confirmatory diagnostic tests following initial positive screening. In such cases, high
specificity becomes critical to ensure that patients identified as having cancer truly have
the disease and to reduce the number of false positives and overtreatment. In general,
the performance metrics are better for the 2 cm experiments. We believe this is due
to the extremely small q-range, with significant contributions from the primary beam
and small-angle amorphous scattering, which have more minor effects on data analysis
in this case.

It should be emphasized that the most prominent features for both visual analyses
based on Figure 3 and performance metrics obtained in machine learning are related to lipid
metabolism. In the presence of a tumor, regular triglyceride packing is broken, suppressing
the 1.5 nm−1 peak. Tumor cells also affect fatty acids, so the 13.9 nm−1 peak, corresponding
to inter-fatty-acid molecular distances in healthy tissues, becomes less pronounced. It is
crucial to include the other components of ECM in our analysis. However, the resolution
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on our diffractometer was too low to observe discrete collagen peaks at a low q, which is
the direction of future improvements.

In the present paper, the measurements were performed on small samples obtained
from biopsies. However, the same structural biomarkers determined in our studies would
also appear in large samples and, eventually, in in vivo procedures. The developed table-
top diffractometer should be modified for these future applications. Instead of the current
Cu source, with a penetration depth of several mm, a Mo or Ag source will be used. They
have much shorter wavelengths, leading to more negligible absorption and a penetration
depth of several hundred mm. Moreover, the design of the diffractometer must be changed
to accommodate in vivo measurements, and the current device is a prototype on the path to
this ultimate goal. As biomarker determination is based on X-ray diffraction, not absorption,
the received dose will be negligible. It should also be emphasized that at least small-sample
studies are not limited to breast cancer. X-ray scattering measurements can determine
structural biomarkers associated with other types of cancer and even other diseases.

5. Conclusions

In conclusion, we performed X-ray scattering measurements of breast tissue samples
from 107 patients at two sample-to-detector distances of 2 and 16 cm. After azimuthal
integration of the acquired patterns, we obtained the dependencies of scattered intensity
on the momentum transfer magnitudes, exhibiting lipid structure features. The peaks
associated with the regular packing of triglyceride molecules (at 1.5 nm−1) and with inter-
fatty-acid molecular distances (at approximately 14 nm−1) were observed predominantly in
non-cancer tissues, which confirms the results of previous studies, on average. To examine
the feasibility of cancer detection on an individual level, we performed a statistical analysis
based on the machine-learning Random Forest Classifier approach. We separated the total
dataset into 60/40 training/test splits and repeated this separation 200 times, with the
training and test splits not overlapping regarding patients. The obtained performance
metrics vary from very good to excellent, with the sensitivity and specificity reaching 86%
and 83%, respectively, for the best realization. We believe such results show great promise
for future non-invasive technology for breast cancer detection.
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