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Abstract: Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in
advanced therapies due to their therapeutic potential in the regulation of tissue repair and home-
ostasis, and immune modulation. However, their use in cancer therapy is controversial: they can
inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting an-
giogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This
opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment.
To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their
tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we
highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments
due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived
extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing
clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future
advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of
bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as
effective therapeutics in the evolving field of cancer therapy.

Keywords: mesenchymal stem/stromal cells; cell therapy; anti-cancer therapy; targeted therapy;
therapeutic vehicles

1. Introduction

Mesenchymal stem/stromal cells (MSCs) are a multipotent adult stem cell heteroge-
neous population with the ability to both self-renew and differentiate into cells particularly
belonging to mesoderm-derived tissues such as bone, adipose tissue and cartilage [1,2].
These cells were first discovered in bone marrow by Friedenstein et al. and were initially
called colony forming units–fibroblasts (CFU-Fb) [3], but later they were found in many
other adult and extraembryonic tissues including adipose tissue, umbilical cord, dental
pulp and amniotic membrane [4–6].

The therapeutic potential of MSCs is enormous, particularly because of their ability to
modulate immune responses, regulate tissue homeostasis through the secretion of paracrine
trophic factors with pleiotropic effects, and maintain tissue health and structure [4,5,7–9].
These properties position MSCs as a cornerstone in the development of repairing cell thera-
pies with ongoing clinical trials exploring their potential for the treatment of acute/chronic
inflammatory and/or degenerative diseases, such as osteoporosis, osteoarthritis, graft-
versus-host disease, systemic sclerosis and myocardial infarction [10–12].

However, the role of MSCs in cancer therapy presents a complex picture. While
MSCs can home to tumour sites after their systemic administration, their impact on disease
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progression can be double-edged. On the one hand, they have been reported to directly
fight some types of cancer by suppressing cancer cell proliferation through reducing the
expression of positive regulators of the cell cycle [13–16]. On the other hand, it has also
been found that MSCs may contribute to tumour growth by fostering a supporting tumour
vascular network which modulates the peritumour immune environment, protecting it
from immune attack, and promoting the proliferation and invasiveness of cancer stem
cells [17–21] (Figure 1). This paradoxical behaviour of MSCs in tumours highlights the
need for cautious and nuanced application in anti-cancer therapeutic approaches [22,23].
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Figure 1. Dual roles of MSCs in tumour dynamics. MSCs possess unique properties that make
them promising therapeutic agents. However, these same properties can also influence tumour
development. MSCs can release a variety of factors that have both pro- and anti-tumour effects,
influencing cellular tumour processes such as survival, proliferation, angiogenesis and chemotherapy
resistance. These paracrine factors can be released directly into the tumour microenvironment or
transported via extracellular vesicles (EVs). Created using BioRender.

Therefore, the use of MSCs, particularly in cancer therapy, requires a delicate bal-
ance. Notwithstanding, several strategies are currently being developed to use MSCs as
anti-cancer cell therapeutics. These include bioengineering MSCs to enhance their tumour
homing and anti-tumour properties, or to carry as a “Trojan horse” some therapeutic agents
that target and eliminate cancer cells more efficiently [24–28]. The development of such
strategies requires a deep understanding of the interactions between MSCs, tumour mi-
croenvironment and immune system and calls for an interdisciplinary approach combining
insights from cell biology, oncology and cell bioengineering to overcome current challenges
and fully exploit the therapeutic potential of MSCs in cancer treatment.

2. Cutting-Edge Applications of Mesenchymal Stem/Stromal Cells in Cancer Therapy
2.1. Enhancing MSC Homing to Tumour Sites

Over the last few decades, the ability of MSCs to migrate into the tumour microenvi-
ronment has been extensively studied to analyse the effect they have on tumour biology.
In preclinical models, systemically administered MSCs have been shown to be able to
migrate and infiltrate inflamed or tumour tissues. At these tissues, local elements such
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as hypoxia, cytokines and chemokines stimulate the MSC infiltration and secretion of a
variety of growth factors, thereby accelerating tissue repair [29]. In addition, tumours are
able to recruit MSCs from distant tissues, such as adipose tissue or bone marrow, and direct
their homing into the tumour microenvironment via inflammatory signals [30]. Several
studies have already shown that MSCs are particularly recruited to different tumour types,
such as breast cancer, liver cancer and glioma [31–33].

The tumour environment is rich in immune cells that, together with cancer cells, release
a variety of soluble factors that influence the homing and infiltration of MSCs at sites of
injury. Specific cytokines such as IL-6 attract MSCs to tumours, while other studies have
reported similar recruitment driven by IL-8 in gliomas [34,35]. In addition, several growth
factors have been found to promote MSC migration, including platelet-derived growth
factor subunit B (PDGFB), vascular endothelial growth factor (VEGF) and transforming
growth factor beta-1 (TGF-β1) [36]. The chemokine receptors CXCR4, CXCR6, CCR1, CCR7
and CCR9 also play an important role in the homing of MSCs to tumours [37]. Once MSCs
reach the tumour, they contribute to its stroma by differentiating into fibrovascular cells
such as endothelial cells, pericytes and possibly tumour-associated fibroblasts involved in
the extracellular matrix remodelling [38]. However, further investigation into the molecular
mechanisms that mediate specific migration to tumours may help to improve the efficacy
of MSC-based therapeutics.

Given their ability to target and integrate into malignant tissues, coupled with their
immune-evasive properties, MSCs are considered an ideal approach for the delivery of anti-
cancer therapeutics, potentially improving their efficacy compared to standard anti-cancer
treatments [39,40].

Unfortunately, the homing efficiency of systemically administered MSCs is very low,
with only a small fraction of these cells reaching their target tissues due to their entrapment
in the lungs, liver and spleen vasculature, as demonstrated in several studies [41–43],
limiting their expected therapeutic efficacy. To overcome this hurdle, the use of a variety of
cell bioengineering strategies to improve MSC homing to inflamed and tumour tissues is
being widely investigated. Several methodological approaches have been explored to alter
the expression of different homing molecules on migrating MSCs, including priming with
bioactive molecules, genetic engineering, enzymatic modifications or ligand conjugation
techniques [44].

Exposure of MSCs to the pro-inflammatory cytokine TNF-α has been shown to upreg-
ulate CXCR4 expression, which may enhance the ability of MSCs to home to specific tissues,
including tumours [45,46]. Additionally, priming MSCs with the cytokine TGF-β has been
shown to increase their CXCR4-driven homing to glioblastoma, while MSCs stimulated
with IL-1β showed an upregulated CXCR4 expression, increased production of metallopro-
teinases and enhanced migration [47,48]. Furthermore, pre-treating MSCs with valproic
acid, erythropoietin, the iron chelator deferoxamine and granulocyte colony-stimulating
factor (G-CSF) has been shown to improve their homing to inflamed tissues [49–51]. On
the other hand, the peritumoural microenvironment that has a persistent inflammatory
state, secreting various pro-inflammatory chemokines and cytokines (e.g., MCP-1, TGF-β,
CXCL12, TNF-α and various interleukins), could prime MSCs enhancing their migration
to tumours.

Another strategy to enhance MSC homing is the genetic modification to achieve
permanent overexpression of key homing factors by viral transduction or alternatively
transient overexpression by mRNA transfection. Zheng et al. introduced the CXCR4 gene
into mouse bone marrow-derived MSCs by lentiviral transduction. Subsequently, mice
with colitis-associated tumorigenesis that were injected with these CXCR4-overexpressing
MSCs displayed a reduced tumour burden compared to mice treated with unmodified
counterparts [52]. Overexpression of other chemokine receptors such as CXCR7 or the α4
chain of VLA-4 integrin, has demonstrated an improved MSC homing to inflamed/injured
tissues [53,54]. Levy et al. aimed to enhance the ability of MSCs to tether and roll over
endothelium by transfecting these cells with mRNA for PSGL-1 and sialyl Lewis X (sLeX),
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which are ligands for P- and E-/L-selectin, respectively [55], while Hervás-Salcedo et al.
showed that the transient expression of CXCR4 by mRNA transfection improved MSC
migration to inflamed tissues [56].

Enzymatic modification to transiently improve MSC homing has also been reported.
Treatment of MSCs with an α(1,3)-fucosyltransferase VI or VII in the presence of GDP-
fucose has been shown to convert CD44 into the E-selectin ligand HCELL glycovariant
on the MSC surface. This modification by exofucosylation significantly enhances rolling
contacts on E-selectin-expressing endothelial surfaces in the bone marrow microvasculature
and inflamed tissues [57,58]. Notably, other studies have shown that exofucosylated MSCs
exhibit enhanced migration towards specific pro-inflammatory chemokines such as CCL5,
CCL20 and CXCL16 [59]. In addition, cell surface engineering techniques allow the direct
conjugation of desired ligands, rather than modifying existing surface glycoproteins. For
example, attaching sLeX to MSC surfaces via a biotin–streptavidin link, coupling E-selectin-
targeting peptides to the MSC membrane, or conjugating recombinant CXCR4 to the
phospholipid DMPE-PEG enhanced MSC rolling on P- and E-selectin-coated surfaces and
migration to inflamed vascular endothelium in vivo [60–63].

2.2. MSC-Derived Extracellular Vesicles

Extracellular vesicles (EVs) are membrane-derived nanostructures, including mi-
crovesicles, exosomes and apoptotic bodies (0.1–2 nm, 40–100 nm, and >1 µm in diameter,
respectively) released by cells, including MSCs, under physiological and pathological
conditions. Their internal contents depend on the cell of origin and may include proteins,
enzymes, growth factors, carbohydrates, lipids and nucleic acids such as double-stranded
DNA, mRNAs, long non-coding RNAs or microRNAs [64]. EVs have been shown to be
involved in intercellular communication between MSCs and target cells, regulating the
immune response and tissue repair [65]. Thus, MSC-derived EVs are considered a promis-
ing therapeutic alternative because they recapitulate the biological properties of MSCs
themselves, reduce undesirable side effects such as toxicities due to MSC infusion and have
potential for use in gene delivery, regenerative medicine and immunomodulation [66].

In the context of cancer, it has been suggested that MSC-derived EVs may facilitate
the delivery of their cargo to tumour cells. However, like the MSCs from which they are
derived, they can either suppress or promote tumour growth through different mechanisms
including modulation of tumour angiogenesis, inhibition of cell proliferation, promotion of
apoptosis, and facilitation of tumour growth and metastasis [67–69]. MSCs may influence
tumour angiogenesis through mechanisms involving increased VEGF secretion, which
activates the ERK1/2 pathway [68], or via the transfer of oncogenic miRNAs that affect
various processes in tumour cells, such as inhibition of PTEN, inhibition of apoptosis
or induction of macrophage type M2 polarization [70,71]. MSC-derived EVs have also
been implicated in inducing chemoresistance, particularly in breast and gastric cancers, by
transferring miRNAs that modulate distinct cellular signalling pathways and promote a
chemotherapy-resisting dormant state [72,73].

On the other hand, some studies have shown that MSC-EVs may contain a diverse
array of miRNAs, including but not limited to miR-31, miR-223, miR-205 and miR-21, all of
which play critical roles in regulating tumour dormancy, a property of tumours to persist
as a small number of undetectable cells following the surgical removal of the primary
tumour [72,74]. For example, Wu and colleagues demonstrated the efficacy of EVs derived
from human Wharton’s jelly-derived MSCs in halting bladder tumour cell proliferation
through inducing G0/G1 phase arrest in a dose-dependent manner [75]. Subsequently, a
recent in vitro study unveiled that EVs from bone marrow MSCs can reduce the prolifer-
ation, migration and metastatic invasion of osteosarcoma cells by delivery of miR-206, a
well-known tumour suppressor [76]. Another study demonstrated the capability of MSC-
derived EVs containing miRNA-100 to significantly suppress angiogenesis by modulating
the mTOR/HIF-1α/VEGF signalling pathway in breast cancer-derived cells [77], while
MSCs carrying miR-23b have been shown to not only reduce the growth and invasion



Biomolecules 2024, 14, 734 5 of 25

of breast metastatic cancer cells, but also to reduce their sensitivity to the chemotherapy
drug docetaxel [74]. Thus, MSC-derived EVs, including EVs derived from modified MSCs,
are increasingly being explored for their potential in cancer therapy. These bioengineered
EVs can be tailored to enhance their therapeutic efficacy, targeting capabilities and to carry
specific therapeutic agents.

EVs can be engineered to carry chemotherapeutic agents and deliver them directly to
the tumour site, potentially increasing the efficacy of treatments while reducing systemic
toxicity. This targeted approach helps to manage and treat cancer more effectively by
ensuring that the drugs are delivered specifically to the cancer cells, minimising the impact
on healthy tissue. There are different methods for transferring the desired cargo inside the
EVs. Pre-loading methods involve modifying parental cells to package therapeutic cargoes
into EVs during their biogenesis. This can be achieved through genetic manipulation,
leading to the overexpression of therapeutic molecules, or by incubating drugs with parental
cells to produce drug-containing EVs [78]. While pre-loading ensures stable and intact EV
membranes, it is time-consuming and has low efficiency. On the other hand, post-loading
methods are performed after EV isolation, and the cargoes are encapsulated either passively
or actively. Passive loading involves hydrophobic drugs attaching to the EV membrane,
while active loading involves physically or chemically permeabilizing the EV membrane to
incorporate hydrophilic drugs. Techniques include electroporation, sonication, freeze/thaw
cycles and the use of chemical permeabilizers [79,80]. Each strategy has pros and cons, with
careful consideration needed to prevent EV membrane damage or EV aggregation [81,82].

Using these manipulation strategies, it is also possible to load MSC-derived EVs with
cytotoxic chemotherapeutic agents such as doxorubicin, paclitaxel or gemcitabine. Such EVs
have been shown to inhibit cancer cell growth, induce apoptosis and suppress epithelial–
mesenchymal transition in oral squamous cell carcinoma and cervical cancer [83,84]. Other
approaches include vesicle loading with specific miRNAs, siRNAs, mRNAs, ncRNAs,
proteins and peptides that have previously shown anti-tumour activity [69,85,86]. Some
studies have reported the use of MSC-EVs to counteract chemoresistance in glioblastoma
multiforme cells by delivering anti-miR-9, with promising results in reversing the chemore-
sistance of this tumour [87]. In addition, MSC-EVs loaded with miR-146b, miR124, miR-145
or miR-122 showed anti-tumour activity in malignant glioma and hepatocellular tumours,
respectively [88–90]. MSC-EVs containing miR-124a and miR-15a have been shown to
reduce cancer stem cell viability and growth in a glioma and multiple myeloma model,
respectively [91,92]. Another innovative approach involves engineering MSCs to produce
TRAIL-expressing EVs, molecules known to induce cancer cell apoptosis [93].

Despite their promising properties such as stability, target specificity and non-toxicity,
challenges remain in the clinical application of MSC-derived EVs. Issues such as the need
for large-scale production, standardized manufacturing methods and stringent clinical
regulations are critical to maintaining the consistency and functionality of these biological
carriers. Current research supports the notion that these EVs can naturally home to cancer
sites, enhancing their potential as drug delivery systems. Future developments could
include surface modifications to enhance delivery, such as enabling EVs to cross biological
barriers, such as the brain–blood barrier, more efficiently and accumulate at tumour sites,
thereby increasing the therapeutic impact of their cargo [94]. However, rigorous dosage
and efficacy studies are essential to advance the clinical application of EVs and ensure their
safe and effective use in cancer therapy.

2.3. MSCs as Therapeutic Cell Vehicles

There is considerable interest in using MSCs as carriers for tumour-targeted therapies
because of their unique properties, particularly their natural affinity for homing tumours
and to infiltrate the tumour environment [95–98]. Thus, MSCs have shown great promise in
delivering drugs and genes in various tumours minimizing side effects of chemotherapeutic
drugs and improving clinical outcomes. Therefore, the use of MSCs to directly deliver
therapeutic agents to tumours has become a major focus of research. The therapeutic
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potential of MSCs originates from paracrine factors involving peptides, proteins and
hormones, and the transfer of MSC-derived extracellular vesicles (EVs) containing different
molecules inside. Remarkably, bioengineering strategies can prepare MSCs for the targeted
delivery to tumours of various factors, focusing on a variety of biological approaches. For
example, it has been shown that MSCs can be loaded with and subsequently release anti-
cancer drugs [99–102]. However, the ability of MSCs to release a particular drug depends
on both the MSC biology and the properties of these therapeutic compounds. Anti-cancer
drugs loaded into MSCs have been found in various cellular components, affecting not only
tumour cells but also gene expression and cellular functions of the MSCs themselves [101].
In addition, MSCs can be bioengineered to enhance their tumour-killing properties by
preloading with suicide genes, oncolytic viruses, cytokines, anti-mitotic or anti-angiogenic
factors, among others [98,103–105]. Accordingly, a first issue to develop is the analysis of
the advanced techniques for bioengineering both MSCs and MSC-derived EVs to promote
anti-tumour effects, which hold promise for the development of tumour-targeted therapies
(Figure 2).
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Figure 2. Different strategies to enhance the anti-tumour properties of both MSCs and MSC-derived
EVs. (1) MSCs can be used to deliver chemotherapeutic drugs or bioactive molecules (e.g., interferons,
interleukins, chemokines, and pro-apoptotic, anti-tumour or anti-angiogenic molecules) directly
into the tumour microenvironment. (2) MSCs are effective oncolytic virus carriers because they can
be easily infected, allowing viral replication and sustained viability until they reach the tumour
microenvironment. (3) MSCs can be genetically engineered to carry suicide genes that encode specific
enzymes that convert non-toxic prodrugs into cytotoxic metabolites directly in the tumour cells,
increasing the specificity and efficacy of therapy while reducing systemic toxicity. (4) Bioengineered
MSC-derived EVs can be customized to improve their therapeutic efficacy and capacity to deliver
specific anti-cancer agents. (5) Various bioengineering strategies are being investigated to improve
MSC homing to tumours, including priming with bioactive molecules, genetic engineering, enzymatic
modification and ligand conjugation techniques. Created using BioRender.
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2.3.1. Therapeutic Drugs and Bioactive Molecules

MSCs, with their inherent ability to take up a wide range of products including
anti-cancer drugs from the culture medium, have emerged as a key tool in cancer ther-
apy. Research has shown that human bone marrow-derived MSCs (hBM-MSCs) can be
effectively primed with several chemotherapeutic agents, such as doxorubicin, paclitaxel,
gemcitabine and sorafenib, through a simple incubation process [99,100,106–108]. This
process facilitates the uptake of these drugs by the MSCs, albeit with varying degrees of
efficiency. In particular, while hBM-MSCs show significant uptake of paclitaxel and other
drugs, their interaction with pemetrexed is less effective, resulting in insufficient drug
internalisation to adversely affect tumour cells [107]. Further investigation on MSCs from
other sources, such as human adipose tissue (hAd-MSCs) or dental tissues, reveals a similar
capacity to absorb several anti-cancer drugs, including cisplatin and paclitaxel [109–111].
This uptake is not uniform across MSC types, suggesting a dependence on the cellular
properties specific to each MSC type. For example, the amount of paclitaxel absorbed by
each hBM-MSC was quantified at approximately 2.7 pg/cell, whereas for other type of
cells such as human olfactory bulb stem cells, it was 0.19 pg/cell, indicating a substantial
capacity of uptake of MSCs that might involve specific transporters or membrane properties
inherent to these cells [100].

The underlying drug uptake mechanisms by MSCs are diverse and include transporter-
mediated entry, simple diffusion due to the lipophilic nature of some drugs, and various
forms of endocytosis [112–114]. Specifically, the hydrophilic nucleoside analogue gemc-
itabine utilizes nucleoside transporters such as human concentrative nucleoside transporter
1 (hCNT1) and human equilibrative nucleoside transporter 1 (hENT1) for cell entry, sug-
gesting that the efficacy of gemcitabine uptake may be closely linked to the expression
levels of these transporters in MSCs [83,99,112]. On the other hand, lipophilic drugs such as
paclitaxel can diffuse across the cell membrane, while larger molecules can be internalized
via endocytotic pathways mediated by different receptors [111,114].

The therapeutic application of drug-loaded MSCs is two-fold, either through the
utilization of MSC-conditioned media or by employing the MSCs as direct drug carriers.
The conditioned media from drug-primed MSCs is particularly enriched with a secretome
comprising various biologically active molecules, offering a targeted anticancer effect which
exceeds that of the drugs alone. This enhanced effect is attributed to a more sophisticated
drug release system that possibly influences MSC-EVs for improved drug delivery to
cancer cells [115,116]. On the other hand, direct administration of drug-loaded MSCs
facilitates an intimate cell-to-cell interaction, allowing a more direct and potent transfer
of anti-cancer agents to the tumour cells. This method not only affects the MSC natural
tumour-tropic properties but also provides a sustained release of the therapeutic agents,
thereby maximizing the therapeutic impact while minimizing systemic side effects.

In vitro and in vivo studies have confirmed the efficacy of MSC-based drug delivery
systems. Conditioned media derived from MSCs treated with gemcitabine or paclitaxel
exhibit a significant inhibitory effect on the proliferation of several cancer cell lines, includ-
ing some derived either from pancreatic adenocarcinoma and glioblastoma [100,117]. In
addition, direct co-culture of cancer cells with drug-loaded MSCs has shown promising re-
sults in reducing tumour cell proliferation and attenuating tumour growth in some in vivo
animal models [100,108,118].

In addition to their direct anti-tumour effects, drug-primed MSCs have shown po-
tential for modulating tumour microenvironment-derived factors affecting angiogenesis
and metastasis. For example, conditioned media from sorafenib-treated MSCs can inhibit
endothelial cell proliferation, thereby affecting tumour vascularization [108]. In addition,
the down-regulation of critical adhesion molecules by conditioned media from paclitaxel-
loaded MSCs reduces the ability of tumour cells to metastasize [118], highlighting the
multifaceted role of MSCs in cancer therapy.

MSCs have also been genetically engineered to produce various bioactive molecules
and immunomodulatory cytokines such as interferons (e.g., IFN-α, IFN-β, IFN-γ), in-
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terleukins (e.g., IL-2, IL-12, IL-15, IL-18, IL-10, IL-21), chemokines (e.g., CXC3L1), pro-
apoptotic molecules (e.g., TRAIL), anti-angiogenic molecules (e.g., alpha-1 anti-trypsin
(AAT), NK4, VEGFR1), and molecules with other anti-tumour properties (e.g., TNF-α), en-
hancing their ability to deliver specific therapeutic gene products, thereby reducing tumour
growth, inducing apoptosis or acting as inhibitors of different pro-tumour factors [119–132].
It can be achieved by different methods: genetic modification of MSCs using viral vectors,
as well as DNA plasmids or transposons. The choice of the appropriate method for genetic
editing depends on the therapeutic goals and the specific targets involved.

Despite the efficacy of engineered MSCs in cancer therapy, their therapeutic outcomes
as monotherapy in highly heterogeneous cancers remains limited, prompting the explo-
ration of combined strategies to overcome chemotherapy resistance. For instance, the
combination of TRAIL-engineered MSCs with temozolomide has shown greater efficacy in
the treatment of glioblastoma than either treatment alone [133]. This synergistic effect that
is attributed to the simultaneous induction of apoptosis and inhibition of cancer cell pro-
liferation highlights the potential of engineered MSCs in the treatment of non-Hodgkin’s
lymphoma [134]. However, concerns about the long-term safety of viral gene therapy
have led to the consideration of non-viral gene transfection methods, despite their lower
efficiency. Interferons, known for their anti-tumour properties, have been used in combi-
nation with tumour-specific antibodies (e.g., anti-PD-L1) or conventional chemotherapy
such as β-cisplatin to control cancer progression in animal models [135–137]. Similarly,
IL-12 has been recognized for its immunotherapeutic potential, stimulating T and NK cell
activation and inhibiting tumour growth in both renal carcinoma and cervical tumour
murine models [138,139]. In addition, Zhao et al. showed that MSCs transfected with a
recombinant plasmid encoding IL-10 suppressed the proliferation of pancreatic cancer cells,
reduced the growth of this xenografted tumour in vivo, and inhibited tumour angiogen-
esis [130]. MSCs overexpressing IL-21, a pro-inflammatory cytokine naturally produced
by Th17 cells that inhibits regulatory T cell differentiation, effectively neutralized dissem-
inated B-cell lymphoma [131]. Chen et al. found that MSC administration suppressed
anti-tumour T cell responses and promoted tumour growth, while knocking down PD-L1
with shRNA prevented this effect [140]. Other strategies include the use of zoledronate-
primed MSCs, which have a TGF-β-impaired secretion and induce Vδ2 T cell proliferation
with anti-tumour properties [141]. These findings provide some explanations on the escape
mechanisms that cancer exerts on the immune system. Bioengineered MSCs expressing
proteins such as NK4, which inhibits hepatocyte growth factor (HGF), or thrombospondin-1
(TSP-1) variants, which suppress angiogenesis, have shown promising results in reducing
tumour growth and vascularization in a lung metastatic and a glioblastoma tumour model,
respectively [126,142,143]. However, the safety of such therapies, particularly the risk
of teratoma formation, needs to be further evaluated. The bioengineering of MSCs to
express other tumour suppressor proteins, such as bone morphogenetic protein 4 (BMP4),
or phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase (PTEN), has also explored and
further demonstrated the versatility of MSCs in cancer therapy, opening new ways for the
development of more effective and targeted cancer treatments [144–146].

The anti-neoplastic effects of modified MSCs with different anti-cancer drugs or
bioactive/immunomodulatory molecules and the main mechanisms of action in tumour
cells are summarized in Table 1.

Table 1. Anti-tumour mechanisms of drug/biomolecule-loaded MSCs.

Loaded Drug/Molecule Target Cancer Therapeutic Effect References

Doxorubicin
Lung melanoma metastases Reduction of tumour cell viability [106]

Oral squamous cell carcinoma Inhibition of tumour cell growth [83]

Paclitaxel

Multiple myeloma Inhibition of tumour cell growth [99]
Prostate, malignant glioma and

melanoma cancer cell lines Inhibition of tumour cell growth [100]

Oral squamous cell carcinoma Inhibition of tumour cell growth [83]
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Table 1. Cont.

Loaded Drug/Molecule Target Cancer Therapeutic Effect References

Gemcitabine
Oral squamous cell carcinoma Inhibition of tumour cell growth [83]

Pancreatic carcinoma Inhibition of tumour cell growth [117]

Sorafenib Glioblastoma multiforme Inhibition of tumour cell growth
and angiogenesis [108]

Cisplatin Mesothelioma and
glioblastoma multiforme Inhibition of tumour cell growth [109]

IL-18, IFN-β Intracranial glioma Inhibition of tumour cell growth [120,137]

IL-2 Glioma Increased anti-tumour effects [122]

IL-12, IL-15
Melanoma, lung cancer, pancreatic

cancer, intracranial glioma
and hepatoma

Direct anti-tumour effect and activation
of cytotoxic T and NK cells [123–125]

IL-10 Pancreatic cancer Inhibition of tumour cell proliferation
and angiogenesis [130]

NK4 Pancreatic cancer Inhibition of tumour cell proliferation
and migration [126,142]

TRAIL+/−
temozolomide Malignant glioma Direct anti-tumour effect and apoptosis

of tumour cells [127,133]

TSP-1 Glioblastoma multiforme Inhibition of tumour angiogenesis [143]

BMP4 Malignant glioma Increased anti-tumour effects [144]

PTEN Glioma Induced cytotoxicity on tumour cells [145,146]

2.3.2. Oncolytic Viruses

Oncolytic viruses (OV) are attenuated, non-pathogenic viruses designed to selectively
recognize, infect and destroy tumour cells without affecting the rest of the healthy cell types
where they are unable to replicate [105,119,147]. Its therapeutic use began at the end of the
19th century, with some controversy due to the poor clinical outcomes observed in early
cancer patient trials. However, it was not until the end of the 20th century that oncolytic
virotherapy was revived, due to the development of molecular biology and the introduction
of genetic modification techniques, which not only allowed viruses with greater affinity for
tumour cells to be isolated, but also modified or assembled to enhance their anti-tumour
properties [119,148–150].

Most viruses used in oncolytic virotherapy, whether single- or double-stranded DNA
or RNA, are usually based on human pathogens such as adenovirus (Ad), herpes simplex
virus (HSV), measles virus (MV), coxsackievirus, vaccinia virus or reovirus, among others.
However, viruses from other animal species, such as Newcastle virus, vesicular stomatitis
virus or retroviruses, can also be used, and more than 10 viral families with their serotypes
and subgroups have been studied as anti-tumour therapeutic agents [149–152]. Their
mechanisms of action are dual, based on: (1) the selective destruction of tumour cells
after infection (direct cellular oncolysis); and (2) the stimulation of the patient systemic
anti-tumour immunity induced by the release of new viral particles generated by the lysis
of tumour cells, which create a more pro-inflammatory tumour microenvironment that
favours the immune attack and limits the evasion capacity of tumour cells (indirect cellular
oncolysis) [105,119,147,148,151,153].

Unfortunately, these anti-cancer effects associated with oncolytic virus may be re-
duced when administered systemically intravenously, resulting in more occasional and
transient responses than when administered locally (intratumorally) [154]. The main factors
associated with this low anti-tumour efficacy after intravenous administration are (1) the
ability of the patient immune system to recognize and neutralize the oncolytic viruses
before they can reach the tumour and exert their therapeutic effects; (2) the presence of an
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inadequate tropism, whereby these oncolytic viruses are directed to tissues where they can
be trapped or retained, such as the liver or spleen; (3) the presence of factors associated
with the tumour development; and (4) the occurrence of factors associated with the tumour
microenvironment that prevent their pre-penetration and intratumoural diffusion, includ-
ing the release of chemokines and cytokines such as IL-10 and transforming growth factor
β (TGF-β), among others [105,119,147,148,150,154].

Therefore, in recent years, new strategies have been developed to overcome these
limitations: (1) increase of the tumour tropism (selection of entry receptors that are highly
expressed by tumours); (2) improve their safety (restriction of viral replication to tumour
cells only); (3) increase their therapeutic efficacy by inserting therapeutic transgenes that
co-express cytokines and other molecules with anti-tumour activity; and (4) improve their
biodistribution in the tumour environment [149].

Among the strategies to improve the biodistribution of oncolytic virus to tumour cells,
different cell types (lymphocytes, myeloid cells, mesenchymal stem/stromal cells, etc.) as
carriers of these oncolytic viruses to the tumour environment have been tested [150,152].
Of all these, MSCs have attracted most interest as oncolytic carriers due to (1) their easy
capacity to be infected by oncolytic viruses, which allows them to replicate and produce
new virions, remaining viable long enough to reach the tumour microenvironment; (2) their
capacity for selective migration, achieving a more direct transport towards the tumour
microenvironment (tumour tropism), where a large amount of pro-inflammatory cytokines
and chemokines are released, favouring the chemoattraction of these MSCs carriers; and
(3) their immunomodulatory properties, which prevent the recognition of these viruses by
the patient innate and adaptive immune system [105,119,150–152,154–156].

The main preclinical studies evaluating the use of human MSCs as oncolytic virus
vectors are summarized in Table 2.

Table 2. Preclinical studies using MSCs as carrier for oncolytic viruses.

Family Natural Host Type of OV Host Cell Target Cancer Route References

Adenoviridae Human

Ad-ICOVIR5
AT-MSCs Lung adenocarcinoma IP [157]

AT-MSCs Osteosarcoma IP [158]

AT-MSCs Lung adenocarcinoma IT [159]

Ad-ICOVIR15-Ad.IC9 BM-MSCs Lung cancer IV [160]

Ad-ICOVIR15

Men-MSCs,
BM-MSCs

Lung and pancreatic
adenocarcinoma, melanoma IP [161]

Men-MSCs + PBMNCs
Lung adenocarcinoma,

epidermoid carcinoma, pharynx
squamous cell carcinoma

IP [162]

Ad-ICOVIR15,
Ad-ICOVIR15-cBITE Men-MSCs Lung adenocarcinoma and

epidermoid carcinoma IP [163]

Ad-ICOVIR15,
Ad-ICOVIR17 AT-MSCs Glioblastoma multiforme IT, IV [164]

Ad-ICOCAV17 AT-MSCs
Osteosarcoma and brain tumours IV [165]

Spontaneous lung carcinoma IV [166]

Ad-hOC-E1 BM-MSCs Renal carcinoma IP [167]

Ad-RLX-PCDP BM-MSCs Pancreatic cancer IV [168]

Ad-Ad5-HexPos3 BM-MSCs,
AT-MSCs

Head and neck squamous cells
carcinoma IV, IP [169]

Ad-Ad5-Ki67/IL-15 Source of MSCs
non-specified Glioblastoma multiforme IT [170]

Ad-5, Ad-3,
Ad-5.Pk7-Delta24

BM-MSCs,
AT-MSCs Lung and breast tumours IV [171]

Ad-AFPp-E1A,
Ad-AFPp-E1A-122 WJ-MSCs Hepatocellular carcinoma IV [172]

Ad5/3-∆19K-Luc-GFP,
Ad5/3-TRAIL-GFP,

Ad5/3- FCU1-GFP/5-FC
BM-MSCs Pancreatic cancer - [173]

Ad-Ad5/3
Ad-Ad5/3RGD-Luc BM-MSCs Ovarian carcinoma IP [174]



Biomolecules 2024, 14, 734 11 of 25

Table 2. Cont.

Family Natural Host Type of OV Host Cell Target Cancer Route References

Adenoviridae Human

Ad-Ad5/3-TRAIL BM-MSCs Pancreatic ductal adenocarcinoma IV [175]

Ad-hTERTp-IL24 WJ-MSCs Hepatocellular carcinoma IV [176]

Ad-5-E3, Ad-WNTi BM-MSCs Hepatocellular carcinoma IV [177,178]

Ad-CRAd-EGFP BM-MSCs Colon cancer IV, IP [17]

Ad-CRAd, Ad-bic MSCs-E1
(Gene Ad E1A/E1B) Prostate cancer IT [179]

Ad-CRAd,
Ad5/3.CXCR4 BM-MSCs Lung metastases of

breast carcinoma IV [180]

Ad-CRAdNTR
(PS1217H6) BM-MSCs Colorectal cancer IV [181]

Ad-CRAd5/F11 Men-MSCs Colorectal cancer IV, IP, IT [182]

AD-5/3-kBF5HRE-E1Awt BM-MSCs Melanoma, breast tumour IO [183]

Ad-WT, Ad-RGD,
Ad-5/3, Ad-CRAd

Source of MSCs
non-specified

Gliomas
(Glioblastoma multiforme) IC [184]

Ad-WT,
Ad-5-CRAd-S-pk7 BM-MSCs Breast cancer IT [185]

Ad-rAd.DCN
Ad-rAd.Null WJ-MSCs Breast cancer lung metastatic IV [186]

Ad5-Delta-24-RGD Source of MSCs
non-specified Ovarian and breast cancer IV [187]

Ad-Delta-24-RGD BM-MSCs Gliomas IC, IA [188–190]

Ad5/35-Tet-on-E1b
Pro-D24-ES-IL-24 UCB-MSCs Gliomas IV [191]

Ad-YSCH-01 DP-MSCs Glossopharyngeal, bladder and
breast squamous cancer IV, IP, IT [192]

Herpesviridae Human

Herpes Simplex Virus
(HSV)

Source of MSCs
non-specified

Melanoma brain metastatic IA [193]

HSV-R-LM249
BM-MSCs, AM-MSCs,

AT-MSCs,
DP-MSCs

Lung and brain
metastases IV [194]

Poxviridae

Human
and Bovine

Vaccinia virus
(CAL1) AT-MSCs Colon cancer IT [195]

Vaccinia virus
(Copenhagen, Wyeth and

LIVP strains)
AT-MSCs Canine soft tissue sarcoma IV [196]

Vaccinia virus
(WT1/ACAM2000

and L14 strains)
AT-MSCs Melanoma, lung carcinoma,

myelogenous leukaemia - [197]

Rabbit

MYXV-IL15 BM-MSCs Pulmonary melanoma IV [198]

MYXV-TNFSF14 AT-MSCs Pancreatic adenocarcinoma IP [199,200]

MYXV AT-MSCs Glioblastoma multiforme IC [201]

Paramyxoviridae

Human MV

AT-MSC Ovarian cancer IP [202,203]

BM-MSC
Hepatocellular carcinoma IV [204]

Lymphoblastic leukaemia IV [205]

Birds

NDV
(LaSota strain)

BM-MSC +
Lactobacillus
casei extract

Colorectal cancer - [206]

BM-MSC Human papillomavirus
associated malignancy [207]

NDV
(MTH-68/H)

BM-MSCs,
AT-MSCs,
WJ-MSCs

Glioblastoma multiforme - [208]

Reoviridae Mammalians
Reovirus

(T3D strain)

AT-MSC Lung cancer IV [209]

AT-MSC Glioblastoma multiforme - [210]

AT-MSC Colorectal cancer IT [211]

AT-MSC Lung cancer - [212]

WJ-MSC Acute myeloid leukaemia IV [213]

Abbreviations: OV (oncolytic virus), Ad (adenovirus), MV (measles virus), MYXV (myxoma virus), NDV (New-
castle disease virus), RLX (relaxin), PCDP (biodegradable polymer), WNTi (Wnt-inhibiting decoy receptor), MSCs
(mesenchymal stem/stromal cells), BM (bone marrow), AM (amniotic membrane), AT (adipose tissue), DP (dental
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pulp), WJ (Wharton’s jelly), Men (menstrual blood), UCB (umbilical cord blood), BITE (bispecific T cell engager), IT

(intratumoural), IV (intravenous), IA (intra-arterial), IP (intraperitoneal), IC (intracranial), IO (intraocular), WT

(wild-type), PBMNCs (peripheral blood mononuclear cells), DCN (decorin).

2.3.3. Suicide Genes

Gene-directed enzyme prodrug therapy, also known as suicide gene therapy, is a
promising alternative of cancer treatment that goes far beyond the limits of conventional
chemotherapy. This innovative therapy modality involves delivering a gene construct
into the therapeutic cells encoding an enzyme that is capable of converting a non-toxic
prodrug into a cytotoxic metabolite subsequently within the tumour environment, thereby
concentrating the cytotoxic effect onto the malignant cells while minimizing the effect on
healthy cells [214].

The most common example of this approach is the combination of the thymidine
kinase (TK) gene from herpes simplex virus (HSV) with ganciclovir (GCV) as a prodrug.
TK catalyses the phosphorylation of deoxythymidine and a wide range of nucleotide
analogues, including GCV, which is then further phosphorylated by cellular kinases to its
active and cytotoxic triphosphate form, GCV-TP [215]. Then, GCV-TP is incorporated into
DNA during replication, ultimately leading to premature chain termination, and eventually
inducing apoptotic cell death [216]. Although GCV-TP is not able to diffuse passively to
adjacent cells, the gap junctions established between MSCs encoding the HSV-TK gene
and the surrounding tumour cells allow the entry of GCV-TP into the tumour cells, hence
causing cell apoptosis. This mechanism of action has been termed “bystander effect”.
Additionally, the bystander effect can be augmented by cells that do not express the TK
gene through the phagocytosis of apoptotic vesicles that contain GCV-TP. For example,
MSCs expressing the HSV-TK gene in combination with GCV have provided promising
results in the treatment of a variety of tumours, including colorectal cancer, melanoma,
glioblastoma and breast cancer [217–220].

Another approach of suicide gene therapy is based on the use of the Escherichia coli
cytosine deaminase (CD) gene in combination with the prodrug 5-fluorocytosine (5-FC). In
this setting, therapeutic MSCs are bioengineered to express the CD enzyme, which converts
5-FC into 5-fluorouracil (5-FU), a potent cytotoxic metabolite for the neighbouring tumour
cells [221,222]. Other examples include the combinations of the carboxylesterase gene
with irinotecan, and the cytochrome P450 gene with cyclophosphamide. These combined
treatments have been successfully tested in preclinical animal models of osteosarcoma,
melanoma, and brain, breast and colorectal tumours [223–227].

The use of MSCs as delivery vectors for the suicide genes has shown remarkable
progress in the targeted transfer of suicide genes. MSCs, known for their tumour-homing
capabilities, can be genetically engineered to express the suicide gene, thereby directly
delivering the gene to the tumour site. This strategy increases the specificity and efficacy
of the therapy and reduces the risk of systemic toxicity. Moreover, some studies have
explored the combination of suicide gene therapy with other therapeutic strategies to
enhance its efficacy. For example, combining HSV-TK/GCV with immune checkpoint
inhibitors, radiation or other targeted therapies (e.g., histone deacetylase inhibitors and
valproic acid) can synergize to produce more robust anti-tumour responses, potentially
overcoming resistance mechanisms and improving treatment outcomes [228–230].

Preclinical cancer models using MSCs as therapeutic vehicles of suicide genes are
summarized in Table 3.
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Table 3. Preclinical anti-tumour models using suicide genes expressing MSCs.

Suicide Gene/Prodrug Tumour Preclinical Model References

Thymidine kinase
+ ganciclovir

Melanoma lung metastasis [217]
Breast cancer

Glioblastoma multiforme
Colon cancer

Malignant melanoma
Intracranial glioma

[218]
[219,231]

[220]
[228]
[229]

E. coli cytosine deaminase
+ 5-Fluorocytosine

Glioblastoma multiforme
Osteosarcoma

[221]
[222]

Colon cancer [225]

Carboxylesterase
+ irinotecan Glioma [226]

Cytochrome P450
+ cyclophosphamide Colorectal and breast cancer [227]

3. Clinical Trials

Among the changing scenarios in cancer therapy, MSCs have emerged as a promising
tool, not only because of their regenerative capabilities, but also because of their above-
mentioned potential utility as delivery vehicles for anticancer agents. The use of MSCs
with oncolytic viruses, genetically modified and engineered cells, and other therapeutic
modalities is opening new avenues in the fight against various malignancies, as evidenced
by completed and ongoing Phase I and II clinical trials (Table 4).

Table 4. Human MSC-based clinical trials targeting solid tumours.

Clinical Trial ID Target Cancer Therapeutic MSCs Status Location

NCT01844661 Solid metastatic and
refractory tumours

Autologous MSC-ICOVIR-5
(CELYVIR) Completed Spain

NCT04758533 Diffuse intrinsic pontine glioma
and medulloblastoma

Allogeneic MSC-ICOVIR-5
(AloCELYVIR) Recruiting Spain

NCT03896568 Recurrent glioblastoma, gliosarcoma
and astrocytoma Allogeneic MSC-DNX-2401 Recruiting United States

NCT02068794 Recurrent ovarian, primary
peritoneal or fallopian tube cancer MSC-MV-NIS Recruiting United States

NCT02008539 Advanced gastrointestinal
adenocarcinoma

Autologous MSC-HSV-TK
(MSC_apceth_101) + GCV Completed Germany

NCT03298763 Metastatic lung adenocarcinoma MSC-TRAIL Recruiting United Kingdom

NCT02530047 Ovarian cancer MSC-IFN-β Completed United States

NCT02079324 Head and neck cancer MSC-IL-12 (GX-051) Unknown status South Korea

NCT03608631
Metastatic pancreatic ductal

adenocarcinoma with KrasG12D
mutation

MSC-EV-siRNA KrasG12D
(iExosomes) Active, Not recruiting United States

Initial clinical attempts to fight different types of tumours combined MSCs with
oncolytic viruses. For example, a Phase I/II clinical trial studied the systemic administration
of autologous hBM-MSCs infected with the oncolytic adenovirus ICOVIR-5 (CELYVIR) for
the treatment of paediatric and adult patients with solid metastatic and refractory tumours
(NCT01844661). The authors found that CELYVIR had a very low systemic toxicity and a
great safety profile and beneficial anti-tumour effects [103,232]. The same strategy but using
allogeneic MSCs infected with ICOVIR-5 (AloCELYVIR), is being investigated alone or in
combination with radiotherapy, to assess its safety, tolerability and preliminary efficacy
for the treatment of diffuse intrinsic pontine glioma and medulloblastoma (NCT04758533).
Another clinical study, identified as NCT03896568, which is still recruiting patients, involves
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the intra-arterial administration of allogeneic hBM-MSCs loaded with the oncolytic virus
DNX-2401, also known as Delta-24-RGD. This treatment is being investigated in patients
with recurrent glioblastoma, gliosarcoma and astrocytoma, while the Phase I/II clinical trial
NCT02068794 is still evaluating the therapeutic efficacy of intraperitoneal administration of
MSCs infected with oncolytic measles virus encoding thyroidal sodium iodide symporter
(MV-NIS) in the treatment of ovarian, primary peritoneal or fallopian tube cancer.

Subsequent studies have broadened the scope of bioengineered MSC applications.
For example, the phase I/II TREAT-ME1 clinical trial evaluated the safety and efficacy of
autologous MSCs delivering the gene HSV-TK (MSC_apceth_101) in combination with GCV,
showing acceptable safety, tolerability and some signs of effectiveness in reducing tumour
growth and metastases in advanced gastrointestinal adenocarcinoma (NCT02008539) [233].

The ability of MSCs to release therapeutic drugs or bioactive molecules into the tumour
microenvironment has also been explored in several clinical trials. Thus, the TACTICAL
trial is evaluating the combination of allogeneic MSCs overexpressing the TRAIL gene
and chemotherapy in patients with metastatic lung adenocarcinoma to determine tol-
erability and efficacy (NCT03298763), while IFN-β or IL-12-producing MSCs are being
evaluated for ovarian cancer or head and neck cancer treatment, respectively (NCT02530047
and NCT02079324).

Furthermore, the clinical use of MSC-EVs for cancer treatment is currently one of the
future challenges for cell-free therapies. An example of this approach is an active Phase I
clinical trial to evaluate the therapeutic effects of MSC-EVs loaded with small interfering
RNA (siRNA) against KrasG12D (iExosomes) in metastatic pancreatic ductal adenocarci-
noma patients with KrasG12D mutation (NCT03608631). MSC-EVs are considered as a
promising platform through which to further enhance the anti-cancer effects of traditional
therapies, and of course more translational studies will be conducted in the foreseeable
future to further reveal their therapeutic potential.

4. Challenges and Future Prospects

Mesenchymal stem/stromal cells are widely used to treat various inflammatory and
degenerative diseases due to their ability to engraft and repair damaged tissues, differen-
tiate into different cell types and secrete a variety of soluble mediators with pleiotropic
effects. However, the use of MSCs in the treatment of cancer must be approached with
caution to minimize their potential to support tumour growth while maximizing their
anti-tumour effects. Developing effective strategies involve genetically modifying MSCs or
extracellular vesicles to enhance their anti-cancer effects or to deliver therapeutic agents to
cancer cells as “Trojan horses”. Future understanding of the complex interactions between
MSCs, the immune system and the tumour environment is essential for these advances.
While challenging, these strategies aimed at enhancing MSC homing and engraftment in
tumours following systemic administration, hold promise for fully unlocking the therapeu-
tic potential of MSCs in precise and tailored anti-tumour therapies. Continued preclinical
and clinical research is essential to develop safe and effective MSC-based cancer therapies
that will ultimately improve the survival and quality of life of patients suffering from a
wide range of malignancies.
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